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Decidability

We are particularly interested in Turing machines which halt on all inputs.
Such a machine is called a decider.

I We say that M decides a language L if M is a decider and M
recognises L.

I L is said to be decidable if some Turing machine decides it.
I Otherwise, L is said to be undecidable.

For example, we have seen already that the language

LEQ = {w#w | w ∈ {0,1}∗}.

is decidable.
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Undecidable problems

I Is it the case that the Turing machine model can compute anything?

I More specifically, is every language L decidable?

I We will see that the answer is unfortunately (?) no.

I Assuming that the Church-Turing thesis is true, this implies that there
are problems which we cannot solve by any mechanical means!
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An undecidable problem

Let LU be the following language:

LU = {x ∈ {0,1}∗ | x = 〈M〉, where M is a TM that does not accept x}

I That is, LU is the language of (descriptions of) Turing machines that
do not accept when given their own descriptions as input.

I This means that on this input they either reject, or run forever.

Lemma
LU is undecidable.
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LU = {x ∈ {0,1}∗ | x = 〈M〉, where M is a TM that does not accept x}

Claim: LU is undecidable.

Proof
The proof is by contradiction.

I Assume there is a Turing machine N which decides LU .
I Then, for all y ∈ {0,1}∗, N accepts if and only if y ∈ LU .
I In particular, N accepts 〈N〉 if and only if 〈N〉 ∈ LU .
I But by the definition of LU , 〈N〉 ∈ LU if and only if N does not accept
〈N〉. Contradiction.

Intuition: The barber paradox

A man from Seville is shaved by the Barber of Seville if and only if he does
not shave himself. Does the barber shave himself?
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Diagonalisation

Another way to view this argument is as follows.

We write down an infinite table M whose rows and columns are indexed by
bit-strings x , y ∈ {0,1}∗. Rows represent TMs, columns represent inputs.

0 1 00 01 . . . y
0 0 1 0 0
1 0 1 0 1
00 1 1 1 0
01 0 1 0 0
...

. . .
x

I We fill in entry (x , y) of this table with 1 if the TM with description x
accepts input y , and 0 otherwise.
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Diagonalisation
0 1 00 01 . . . y

0 0 1 0 0
1 0 1 0 1
00 1 1 1 0
01 0 1 0 0
...

. . .
x

I Now consider the bit-string u ∈ {0,1}∗ whose i ’th bit is equal to the
negation of the i ’th entry on the diagonal of M (so here u would start
1001 . . . )

I u differs from the first row of M in the first position, the second row in
the second position, . . .

I So u is not equal to any of the rows of M.
I So there is no TM which accepts the language of strings y such that

uy = 1.
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The halting problem
We have shown that the language

LU = {x ∈ {0,1}∗ | x = 〈M〉, where M is a TM that does not accept x}

is undecidable. But what if we don’t care about deciding this language?

I It turns out that many decision problems which we care about in
practice are also undecidable.

I A classic example is the halting problem: given a program, and an
input, does it terminate on that input?

I Put another way, given a Turing machine M and an input x , does M
halt on input x? More formally, the language

LHALT = {〈M, x〉 | M is a TM that halts on input x}
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The halting problem

Claim
LHALT is undecidable.

Proof

I Suppose there exists a TM M deciding LHALT.

I We will show there exists a machine M ′ which decides LU .
I On input x = 〈N〉, M ′ simulates M to determine whether N halts on

input 〈N〉.
I If M says “no”, M ′ accepts.
I Otherwise, M ′ simulates N on input 〈N〉 and accepts if and only if N

rejects (this can be done in finite time because we know that N halts).
I Thus M ′ can decide LU . Contradiction!
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The halting problem in practice
Informally, we have shown that it is impossible to determine whether a
program terminates. Is this an important problem?

I For some very simple programs, we don’t know whether they halt:

int f(int n) {
if (n <= 1) return 0;
else if (even(n)) return f(n/2);
else return f(3*n+1);

}

I Determining whether f(n) terminates for all n is known as the Collatz
conjecture and has been an open problem for over 70 years!

I Tools exist to solve special cases of the halting problem (e.g. Microsoft
Terminator project).
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Reductions
This proof illustrates a key concept in proving hardness: reductions.
A reduction from A to B is a computable function f (x) such that x ∈ A if
and only if f (x) ∈ B.

I Imagine we know that language A is undecidable, and we want to
prove that language B is undecidable.

I We can achieve this by showing that, if we could decide B, we could
decide A.

I Therefore, B must be undecidable!

x x ∈ A?

Decider for A
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Reductions: another example
Problem
Show that the following language is undecidable.

L1 = {〈M〉 | M accepts 1}

Solution
We give a reduction from LHALT to L1.

I Given 〈M, x〉, the reduction outputs the description of a TM N.
I N begins by checking whether the input is equal to 1. If not, it rejects.

Otherwise, it writes x to the tape and then simulates the operation of
M. If M halts, N accepts.

I Thus N accepts 1 if and only if M halts on input x .
I So, if we can decide the language L1, we can decide LHALT.
I So L1 is undecidable!
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Countability
There is a connection between diagonalisation and a beautiful argument
used to show that the real numbers R are not countable.

I A set is said to be countable if it has the same cardinality (size) as
some subset of N = {1,2,3, . . . }.

I This means that we can associate each element in the set with a
unique natural number – its “position” in the set.

I For example, {red,green,blue} is countable because we can
assign

red 7→ 1, green 7→ 2, blue 7→ 3.

I Any finite set is countable, but the question of whether infinite sets are
countable is more interesting.

I For example, consider the integers Z = {. . . ,−3,−2,−1,0,1,2,3, . . . }
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Countability

I There are intuitively “twice as many” integers as natural numbers.

I But the integers are nevertheless a countable set!

I Write them in the order Z = {0,1,−1,2,−2,3,−3, . . . }.

I Then we can associate each z ∈ Z with the natural number

φ(z) =

{
2z − 1 if z > 0
−2z if z ≤ 0

I This is a one-to-one mapping (check this!), so Z is countable.

I What about the real numbers R?
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The real numbers are not countable
We can prove that R is not countable using the same diagonalisation
argument as before.

I Assume that R is countable. Then we can associate each x ∈ R with a
unique natural number φ(x) ∈ N.

I Write down a table whose n’th row is the digits of the real number
corresponding to n ∈ N, for example:

0 2. 7 8 1 8 . . .
1 13. 0 0 0 0 . . .
2 0. 1 1 9 3 . . .
3 6. 6 6 6 6 . . .
...

. . .
n
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The real numbers are not countable
For each row i , we take the i ’th digit after the decimal point and add 1 to it:

0 2. �7 8 8 1 8 . . .
1 13. 0 �0 1 0 0 . . .
2 0. 1 1 �9 0 3 . . .
3 6. 6 6 6 �6 7 . . .
...

. . .
n

I Consider the real number x formed by making the i ’th digit after the
decimal point equal to the resulting number.

I For each i , the i ’th digit of x differs from the real number in row i .

I So x cannot appear in the table.

I So R is not countable!
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Decidability of proofs
The Turing machine model has another connection to the foundations of
mathematics itself.

I Imagine we would like to prove logical statements about the natural
numbers, like Fermat’s Last Theorem:

∀a,b, c,n ∈ N [(a,b, c > 0 ∧ n > 2)⇒ an + bn 6= cn]

I The Entscheidungsproblem (“decision problem”) of Hilbert asked
whether there was a mechanical procedure to prove such claims.

Claim (informal, see Sipser §6.2)

Let LMATHS be the language of true mathematical statements about the
natural numbers. Then LMATHS is undecidable.

The basic idea: encode the operation of a Turing machine in terms of
constraints on some numbers, and write down a logical statement about
these numbers which is true if and only if the machine accepts its input.
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Other undecidable problems
There are a vast number of interesting problems which turn out to be
undecidable, some of which are apparently completely unrelated to Turing
machines.

I Given a multivariate polynomial with integer coefficients, does it
evaluate to 0 at some integer point? e.g.

f (x , y , z) = 5x2y + 3xyz − 7xy + z3 + 2

has f (1,−3,1) = 0. This is known as Hilbert’s tenth problem.

Pic: Wikipedia/David Hilbert
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Other undecidable problems
The Post correspondence problem:

I We are given a collection S of dominos, each containing two strings
from some alphabet Σ (one on the top half of the domino, one on the
bottom). For example,

S =

{[
a

ab

]
,

[
b
a

]
,

[
abc

c

]}
.

I The problem is to determine whether, by lining up dominos from S
(with repetitions allowed) we can make the concatenated strings on
the top of the dominos equal to the concatenated strings on the
bottom.

I For example, [
a

ab

] [
b
a

] [
a

ab

] [
abc
c

]
would be a valid solution.
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Other undecidable problems
I A Wang tile is a unit square with coloured edges.

I Given a set S of Wang tiles, the problem is to determine whether tiles
picked from S (without rotations or reflections) can be arranged
edge-to-edge to tile the plane, such that adjoining edges of adjacent
tiles have the same colour.

I For example, the following set S does satisfy this property:

Pics: Wikipedia/Wang tile

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Undecidability Slide 20/29



Decidability of problems related to automata

I Turing machines are intuitively at least as powerful as the models of
automata we have studied previously.

I We can formalise this by showing that any language that can be
recognised by an automaton in one of these models can be decided
by a Turing machine. For example:

LDFA = {〈A, x〉 | A is a DFA that accepts input string x}.

LPDA = {〈A, x〉 | A is a PDA that accepts input string x}.

Claim
LDFA and LPDA are decidable.
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Decidability of problems related to automata

Claim
LPDA is decidable.

We prove the claim by giving an algorithm for deciding LPDA.

Proof
On input 〈A,w〉, where A is a PDA and w is a string:

1. Find a CFG G corresponding to A;

2. Convert G into Chomsky normal form;
3. If |w | ≥ 1, loop through all derivations with 2|w | − 1 steps. Otherwise,

loop through all derivations with 1 step;
4. Accept if any of the derivations generates w ; otherwise reject.

The CYK algorithm you saw in Programming and Algorithms is another,
more efficient way of solving the same problem.
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A hierarchy of languages

Recall that

LHALT = {〈M, x〉 | M is a TM that halts on input x}

I We have seen that LHALT is undecidable.

I But is LHALT Turing-recognisable?

I Yes! We can use the universal TM to simulate the TM it was given as
input and accept if the TM halts.

I If it does not halt, this process will run forever.

So the set of decidable languages is strictly smaller than the set of
Turing-recognisable languages.
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A hierarchy of languages

Turing-recognisable

Decidable

Context-free

Regular

LHALT

{anbncn | n ≥ 0}

{anbn | n ≥ 0}

{a7bn | n ≥ 0}
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There is another level in this hierarchy which we haven’t yet seen:

Turing-recognisable

Decidable

Context-free

Context-sensitive

Regular

LHALT

{anbncn | n ≥ 0}

{anbn | n ≥ 0}

{a7bn | n ≥ 0}
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Context-sensitive languages
A context-sensitive language is generated by a context-sensitive grammar.

I This is a grammar with rules of the form

α→ β,

where α and β are strings (of terminals and non-terminals) such that
|α| ≤ |β|. If the start variable S does not appear on the right-hand side
of any rules, we also allow the rule S → ε.

I The name “context-sensitive” comes from the fact that such grammars
have a normal form where all rules are of the form αAβ → αγβ; so the
rule applied to A can depend on the surrounding symbols.

For example, {anbncn | n ≥ 1} is generated by the grammar

S → aSTc | abc
cT → Tc
bT → bb
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Context-sensitive languages

Just as with the other classes of languages we have met, context-sensitive
languages are recognised by a corresponding class of automata: linear
bounded automata.

I A linear bounded automaton is a nondeterministic Turing machine
which is not allowed to move off the tape to the right of the input.

I That is, there is a barrier to the right of the last input symbol which the
machine cannot move beyond. Other than this, the machine behaves
exactly like a normal NDTM.

It can be shown using diagonalisation that there exist decidable languages
which are not context-sensitive.
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The Chomsky hierarchy
We can summarise (some of) these types of languages as follows:

Languages Automaton Production rules
Regular DFA / NFA A→ a or A→ aB

Context-free PDA A→ α
Context-sensitive Linear bounded automaton αAβ → αγβ

Turing-recognisable Turing machine α→ β

Here α, β, γ are arbitrary strings of terminals and non-terminals.
This classification is called the Chomsky hierarchy.

Pic: Wikipedia/Noam Chomsky
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Summary and further reading
To summarise:

I There are languages which cannot be decided by any Turing machine.

I A specific and important example of such a language is the halting
problem.

I An important way of proving that a language is undecidable is the use
of reductions.

Some additional references:
I The barber paradox can be formalised as Russell’s paradox.
I Further reading: Sipser §4.1, §4.2
I Also Computation: Finite and Infinite Machines by Minsky
I A nice selection of undecidable problems:
http://math.mit.edu/~poonen/papers/sampler.pdf
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