Colimit preservation from weaker large cardinals

Andrew Brooke-Taylor

University of Bristol

Joint work with Joan Bagaria

University of Barcelona

Trest, October 2014
Background

Theorem (Rosický, Trnková & Adámek, 1990)

Assuming Vopěnka’s Principle, for each full embedding $F : \mathcal{A} \to \mathcal{K}$ with \mathcal{K} an accessible category, there is a regular cardinal λ such that F preserves λ-directed colimits.

Recall that a poset is λ-directed if every subset of cardinality less than λ has an upper bound. A λ-directed diagram is one whose index category is a λ-directed poset.
Vopěnka’s Principle

This is a very strong set-theoretic axiom schema.

Vopěnka’s Principle (VP)

For any signature Σ, and any proper class C of Σ-structures, there are distinct structures A and B in C such that there exists a homomorphism from A to B.
Vopěnka’s Principle

This is a very strong set-theoretic axiom schema.

Vopěnka’s Principle (VP)

For any signature Σ, and any proper class C of Σ-structures, there are distinct structures A and B in C such that there exists a homomorphism from A to B.

Bagaria, Casacuberta, Mathias and Rosický: VP for classes defined by formulae of a given quantifier complexity is strictly weaker than full VP, so many specific applications of VP can be obtained from weaker assumptions.
Vopčenka’s Principle

This is a very strong set-theoretic axiom schema.

Vopčenka’s Principle (VP)

For any signature Σ, and any proper class C of Σ-structures, there are distinct structures A and B in C such that there exists a homomorphism from A to B.

Bagaria, Casacuberta, Mathias and Rosický: VP for classes defined by formulae of a given quantifier complexity is strictly weaker than full VP, so many specific applications of VP can be obtained from weaker assumptions.

Question:
Can the colimit preservation theorem from the previous slide be stratified in this way?
Answer

Yes!
Answer

Yes!
Theorem (Bagaria & B-T)

Suppose that \mathcal{K} is a full subcategory of $\text{Str } \Sigma$ for some signature Σ. Let $F : \mathcal{A} \rightarrow \mathcal{K}$ be any Σ_n-definable full embedding with Σ_n-definable domain category \mathcal{A}, for some $n > 0$. If there exists a $C^{(n)}$-extendible cardinal greater than

- the rank of Σ,
- the arity of each function or relation symbol in Σ, and
- the ranks of the parameters used in some Σ_n definitions of F and \mathcal{A} and in some definition of \mathcal{K},

then there exists a regular cardinal λ such that F preserves λ-directed colimits.
The set-theoretic framework

The von Neumann hierarchy

\[V_0 = \emptyset \]
\[V_{\alpha+1} = \mathcal{P}(V_\alpha) \]
\[V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha \quad \text{for limit ordinals } \lambda \]
\[V = \bigcup_{\alpha \in \text{Ord}} V_\alpha, \quad \text{the full set-theoretic universe.} \]

The rank of a set \(x \) is the least \(\alpha \) such that \(x \subseteq V_\alpha \).
The set-theoretic framework

The von Neumann hierarchy

\[V_0 = \emptyset \]
\[V_{\alpha+1} = \mathcal{P}(V_\alpha) \]
\[V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha \quad \text{for limit ordinals } \lambda \]
\[V = \bigcup_{\alpha \in \text{Ord}} V_\alpha, \quad \text{the full set-theoretic universe.} \]

The rank of a set \(x \) is the least \(\alpha \) such that \(x \subseteq V_\alpha \).

Classes are collections of sets given by formulae (possibly with parameters): \(C = \{ x \mid \varphi(x, p) \} \) for some formula \(\varphi \) and set \(p \).
The set-theoretic framework

The von Neumann hierarchy

\[V_0 = \emptyset \]
\[V_{\alpha+1} = \mathcal{P}(V_\alpha) \]
\[V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha \quad \text{for limit ordinals } \lambda \]
\[V = \bigcup_{\alpha \in \text{Ord}} V_\alpha, \quad \text{the full set-theoretic universe.} \]

The rank of a set \(x \) is the least \(\alpha \) such that \(x \subseteq V_\alpha \).

Classes are collections of sets given by formulae (possibly with parameters): \(C = \{ x \mid \varphi(x, p) \} \) for some formula \(\varphi \) and set \(p \).

Categories and functors are taken to be classes.
Formula complexity

Levy hierarchy
In the language of set theory, \(\Sigma = \{ \in \} \), a formula is

- \(\Sigma_0 \) and \(\Pi_0 \) if all of its quantifiers are bounded (i.e., of the form \(\forall x \in X \) or \(\exists x \in X \)).
- \(\Sigma_{n+1} \) if it is of the form \(\exists x (\varphi(x)) \) for some \(\Pi_n \) formula \(\varphi \).
- \(\Pi_{n+1} \) if it is of the form \(\forall x (\varphi(x)) \) for some \(\Sigma_n \) formula \(\varphi \).

A class (or category, or functor) is \(\Sigma_n \) if there is a \(\Sigma_n \) formula defining it.
Formula complexity

Levy hierarchy
In the language of set theory, $\Sigma = \{\in\}$, a formula is

- Σ_0 and Π_0 if all of its quantifiers are bounded
 (i.e., of the form $\forall x \in X$ or $\exists x \in X$).
- Σ_{n+1} if it is of the form $\exists x(\varphi(x))$ for some Π_n formula φ.
- Π_{n+1} if it is of the form $\forall x(\varphi(x))$ for some Σ_n formula φ.

A class (or category, or functor) is Σ_n if there is a Σ_n formula defining it.

For a structure \mathcal{M}, we write $\mathcal{M} \models \varphi(m)$ for “\mathcal{M} satisfies formula φ with parameter m”.

Example

$$\langle \mathbb{Z}, + \rangle \models \forall x \exists y(x + y = 3)$$
We denote by $C^{(n)}$ the class of cardinals κ such that $V_\kappa \prec_{\Sigma_n} V$, that is, for every Σ_n formula $\varphi(x)$ and set $x_0 \in V_\kappa$,

$$\langle V_\kappa, \in \rangle \models \varphi(x_0) \text{ if and only if } \langle V, \in \rangle \models \varphi(x_0).$$

For every n, $C^{(n)}$ is unbounded: given any cardinal γ, one can find a cardinal κ greater than γ in $C^{(n)}$.

Proof sketch

By induction on n. Iteratively take larger and larger κ in $C^{(n-1)}$ so that V_κ contains sets witnessing statements of the form $\exists x (\varphi(x))$ with φ a Π_{n-1} formula. This process “closes off” at a limit point κ in $C^{(n)}$.

Note however that trying this for all formulae (i.e., all n) at once raises Gödelian, definability of definability problems.
$C^{(n)}$ cardinals

We denote by $C^{(n)}$ the class of cardinals κ such that $V_\kappa \prec \Sigma_n V$, that is, for every Σ_n formula $\varphi(x)$ and set $x_0 \in V_\kappa$,

$$\langle V_\kappa, \in \rangle \models \varphi(x_0) \text{ if and only if } \langle V, \in \rangle \models \varphi(x_0).$$

For every n, $C^{(n)}$ is unbounded: given any cardinal γ, one can find a cardinal κ greater than γ in $C^{(n)}$.

Proof sketch
By induction on n. Iteratively take larger and larger κ in $C^{(n-1)}$ so that V_κ contains sets x witnessing statements of the form $\exists x (\varphi(x))$ with φ a Π_{n-1} formula. This process “closes off” at a limit point κ in $C^{(n)}$. □
We denote by $C^{(n)}$ the class of cardinals κ such that $V_\kappa \prec \Sigma_n V$, that is, for every Σ_n formula $\varphi(x)$ and set $x_0 \in V_\kappa$,

$$\langle V_\kappa, \in \rangle \models \varphi(x_0) \text{ if and only if } \langle V, \in \rangle \models \varphi(x_0).$$

For every n, $C^{(n)}$ is unbounded: given any cardinal γ, one can find a cardinal κ greater than γ in $C^{(n)}$.

Proof sketch

By induction on n. Iteratively take larger and larger κ in $C^{(n-1)}$ so that V_κ contains sets x witnessing statements of the form $\exists x(\varphi(x))$ with φ a Π_{n-1} formula. This process “closes off” at a limit point κ in $C^{(n)}$.

Note however that trying this for all formulae (i.e., all n) at once raises Gödelian, definability of definability problems.
Recall that an elementary embedding is a function preserving all formulae.

Definition
A cardinal κ is $C^{(n)}$-extendible if for every $\lambda > \kappa$ there is a cardinal $\mu > \lambda$ and an elementary embedding $j : V_\lambda \to V_\mu$ such that

1. $\kappa = \text{crit}(j)$, i.e., κ is the least ordinal such that $j(\kappa) \neq \kappa$,
2. $j(\kappa) > \lambda$, and
3. $j(\kappa) \in C^{(n)}$.

$C^{(n)}$-extendible cardinals
Recall that an elementary embedding is a function preserving all formulae.

Definition

A cardinal κ is $C^{(n)}$-extendible if for every $\lambda > \kappa$ there is a cardinal $\mu > \lambda$ and an elementary embedding $j : V_\lambda \to V_\mu$ such that

1. $\kappa = \text{crit}(j)$, i.e., κ is the least ordinal such that $j(\kappa) \neq \kappa$,
2. $j(\kappa) > \lambda$, and
3. $j(\kappa) \in C^{(n)}$.

κ is $C^{(n)+}$-extendible if moreover, for every $\lambda > \kappa$ in $C^{(n)}$, there is a $\mu > \lambda$ in $C^{(n)}$ and an elementary embedding $j : V_\lambda \to V_\mu$ such that (1), (2) and (3) hold.
Theorem (Bagaria & B-T)

For all α,

$$\exists \kappa > \alpha (\kappa \text{ is } C^{(n)}\text{-extendible})$$

is equivalent to

$$\exists \kappa > \alpha (\kappa \text{ is } C^{(n)+}\text{-extendible}).$$
Theorem (Bagaria & B-T)

For all α,

$$\exists \kappa > \alpha (\kappa \text{ is } C^{(n)}\text{-extendible})$$

is equivalent to

$$\exists \kappa > \alpha (\kappa \text{ is } C^{(n)+}\text{-extendible}).$$

Theorem (Bagaria, Casacuberta, Mathias & Rosický)

Vopěnka’s Principle is equivalent to the existence of a proper class of $C^{(n)+}$-extendible cardinals for every n. Moreover, the existence of a $C^{(n)+}$-extendible κ corresponds exactly to Vopěnka’s Principle for classes that are Σ_{n+2}-definable with parameters from V_κ.
The main theorem again

Theorem (Bagaria & B-T)

Suppose that \mathcal{K} is a full subcategory of $\text{Str} \; \Sigma$ for some signature Σ. Let $F : \mathcal{A} \to \mathcal{K}$ be any Σ_n-definable full embedding with Σ_n-definable domain category \mathcal{A}, for some $n > 0$. If there exists a $C^{(n)}$-extendible cardinal greater than

i. the rank of Σ,

ii. the arity of each function or relation symbol in Σ, and

iii. the ranks of the parameters used in some Σ_n definitions of F and \mathcal{A} and in some definition of \mathcal{K},

then there exists a regular cardinal λ such that F preserves λ-directed colimits.
Want to show $F : \mathcal{A} \to \mathcal{K}$ preserves λ-directed colimits.

Sufficient:

\[i \circ F : \mathcal{A} \to \text{Str } \Sigma \text{ preserves } \lambda\text{-directed colimits,} \]

where $i : \mathcal{K} \to \text{Str } \Sigma$ is the inclusion functor (and this notional inclusion doesn’t change the quantifier complexity). So WLOG assume $F : \mathcal{A} \to \text{Str } \Sigma$.

Note: $\text{Str } \Sigma$ has all λ-directed colimits, for λ greater than the arities of the symbols in Σ (i.e. cardinals as per (ii)). Let β be sufficiently large as per (i), (ii) and (iii).
Want to show $F : \mathcal{A} \to \text{Str} \Sigma$ preserves λ-directed colimits.

Sufficient:

$$i \circ F : \mathcal{A} \to \text{Str} \Sigma \text{ preserves } \lambda\text{-directed colimits,}$$

where $i : \mathcal{K} \to \text{Str} \Sigma$ is the inclusion functor (and this notional inclusion doesn’t change the quantifier complexity). So WLOG assume $F : \mathcal{A} \to \text{Str} \Sigma$.

Note: $\text{Str} \Sigma$ has all λ-directed colimits, for λ greater than the arities of the symbols in Σ (i.e. cardinals as per (ii)). Let β be sufficiently large as per (i), (ii) and (iii).
Want to show $F : \mathcal{A} \to \text{Str} \Sigma$ preserves λ-directed colimits.

Sufficient:

$$i \circ F : \mathcal{A} \to \text{Str} \Sigma \text{ preserves } \lambda\text{-directed colimits},$$

where $i : \mathcal{K} \to \text{Str} \Sigma$ is the inclusion functor (and this notional inclusion doesn’t change the quantifier complexity). So WLOG assume $F : \mathcal{A} \to \text{Str} \Sigma$.

Note: $\text{Str} \Sigma$ has all λ-directed colimits, for λ greater than the arities of the symbols in Σ (i.e. cardinals as per (ii)).

Let β be sufficiently large as per (i), (ii) and (iii).
Proof

Want to show $F : \mathcal{A} \to \mathbf{Str} \Sigma$ preserves λ-directed colimits.

Consider the following category \mathcal{C}:

Objects: $\mathbf{Str} \Sigma$ morphisms $a : \bar{A} \to F(A)$ such that for some $\lambda > \beta$ and some λ-directed diagram D in \mathcal{A},
- A is the colimit of D in \mathcal{A},
- \bar{A} is the colimit of $F D$ in $\mathbf{Str} \Sigma$, and
- a is the morphism induced by the image under F of the \mathcal{A}-colimit cocone from D to A.

Morphisms: From a to b: pairs $\langle g, h \rangle$ of $\mathbf{Str} \Sigma$ morphisms such that

\[
\begin{array}{ccc}
\bar{A} & \xrightarrow{a} & F(A) \\
\downarrow{g} & & \downarrow{h} \\
\bar{B} & \xrightarrow{b} & F(B).
\end{array}
\]

commutes.
Proof

Want to show $F : \mathcal{A} \to \text{Str } \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

Consider the following category \mathcal{C}:

Objects: $\text{Str } \Sigma$ morphisms $a : \bar{A} \to F(A)$ such that for some $\lambda > \beta$ and some λ-directed diagram D in \mathcal{A},

- A is the colimit of D in \mathcal{A},
- \bar{A} is the colimit of $F D$ in $\text{Str } \Sigma$, and
- a is the morphism induced by the image under F of the A-colimit cocone from D to A.

Morphisms: From a to b: pairs $\langle g, h \rangle$ of $\text{Str } \Sigma$ morphisms such that

\[
\begin{array}{ccc}
\bar{A} & \xrightarrow{a} & F(A) \\
\downarrow{g} & & \downarrow{h} \\
\bar{B} & \xrightarrow{b} & F(B).
\end{array}
\]

commutes.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$
Proof

Want to show $F : \mathcal{A} \to \mathbf{Str} \Sigma$ preserves λ-directed colimits. Let C be the category of λ-directed colimit morphisms $a : \bar{\mathcal{A}} \to F(\mathcal{A})$.

Let C^* be the full subcategory of C of those a which are not isomorphisms.

If the theorem fails, then C^* is not essentially small.
Proof

Want to show $F : \mathcal{A} \to \text{Str } \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{\mathcal{A}} \to F(\mathcal{A})$

\mathcal{C}^*: full subcat. of non-isos

Want to show \mathcal{C}^* is essentially small

Let \mathcal{C}^* be the full subcategory of \mathcal{C} of those a which are not isomorphisms.

If the theorem fails, then \mathcal{C}^* is not essentially small.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

- \mathcal{C}: cat. of λ-directed colimit morphisms $a : \tilde{A} \to F(A)$
- \mathcal{C}^*: full subcat. of non-isos

Want to show \mathcal{C}^* is essentially small

Claim

Obj(\mathcal{C}^*) is Σ_{n+2}-definable over the language of set theory (extended with \mathcal{P}_β):
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \tilde{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos

Want to show \mathcal{C}^* is essentially small

Claim

$\text{Obj}(\mathcal{C}^*)$ is Σ_{n+2}-definable over the language of set theory (extended with P_β): $a \in \text{Obj}(\mathcal{C}^*)$ iff

$$\exists \lambda \exists \mathcal{D} \exists \langle \tilde{A}, \tilde{\eta} \rangle \exists \langle A, \eta \rangle (\lambda \text{ is a regular cardinal } \land \mathcal{D} \text{ is a diagram in } \mathcal{A} \land \mathcal{D} \text{ is } \lambda\text{-directed} \land \langle \tilde{A}, \tilde{\eta} \rangle = \text{Colim}_{\text{Str } \Sigma}(F\mathcal{D}) \land \langle A, \eta \rangle = \text{Colim}_{\mathcal{A}}(\mathcal{D}) \land a : \tilde{A} \to F(A) \text{ is the induced homomorphism} \land a \text{ is not an isomorphism}).$$

The universal property of colimits makes the middle line Π_{n+1}.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

Claim

Obj(\mathcal{C}^*) is Σ_{n+2}-definable over the language of set theory (extended with \mathcal{P}_β): $a \in \text{Obj}(\mathcal{C}^*)$ iff

$$\exists \lambda \exists D \exists \langle \bar{A}, \bar{\eta} \rangle \exists \langle A, \eta \rangle (\lambda \text{ is a regular cardinal } \land D \text{ is a diagram in } \mathcal{A} \land D \text{ is } \lambda\text{-directed } \land \langle \bar{A}, \bar{\eta} \rangle = \text{Colim}_{\text{Str} \Sigma(FD)} \land \langle A, \eta \rangle = \text{Colim}_A(D) \land a : \bar{A} \to F(A) \text{ is the induced homomorphism } \land a \text{ is not an isomorphism}).$$

The universal property of colimits makes the middle line Π_{n+1}.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small
Proof

Want to show $F : \mathcal{A} \to \text{Str } \Sigma$ preserves λ-directed colimits.
\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{\mathcal{A}} \to F(A)$
\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

Assume for contradiction that \mathcal{C}^* is not essentially small.
Proof

Want to show $F : \mathcal{A} \rightarrow \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \tilde{A} \rightarrow F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

Assume for contradiction that \mathcal{C}^* is not essentially small.

Let κ be a $C^{(n)+}$-extendible cardinal greater than β.

Let a be an object of \mathcal{C}^* of rank $> \kappa$, arising from a λ_a-directed diagram D_a for some $\lambda_a > \kappa$.

Let $\lambda \in C^{(n)}$ be greater than the ranks of $a, D_a, F D_a$, and the corresponding cocones $\langle \tilde{A}, \tilde{\eta} \rangle_a$ and $\langle A, \eta \rangle_a$.
Proof

Want to show $F : \mathcal{A} \to \text{Str} \Sigma$ preserves λ-directed colimits.

C: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

C^*: full subcat. of non-isos; C^* is Σ_{n+2}-definable

Want to show C^* is essentially small

If not take κ a $C^{(n)^+}$-extendible, $a \in C^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger

Assume for contradiction that C^* is not essentially small.

Let κ be a $C^{(n)^+}$-extendible cardinal greater than β.

Let a be an object of C^* of rank $> \kappa$, arising from a λ_a-directed diagram D_a for some $\lambda_a > \kappa$.

Let $\lambda \in C^{(n)}$ be greater than the ranks of $a, D_a, F D_a$, and the corresponding cocones $\langle \bar{A}, \bar{\eta} \rangle_a$ and $\langle A, \eta \rangle_a$.

Proof

Want to show $F : \mathcal{A} \to \text{Str } \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $C^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger

Let $j : V_\lambda \to V_\mu$ be an elementary embedding with critical point κ such that $\mu > j(\kappa) > \lambda$ are all in $C^{(n)}$.

Then $V_\mu \models \lambda a$, $D a$, $\langle \bar{A}, \bar{\eta} \rangle a$ and $\langle A, \eta \rangle a$ witness that $a \in \text{Obj}(\mathcal{C}^*)$.

Henceforth work in V_μ.

Note that because $\kappa > \beta$, the definition of F is unaffected by j, so j commutes with F.
Proof

Want to show $F : A \to \text{Str } \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \tilde{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $C^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger

Let $j : V_\lambda \to V_\mu$ be an elementary embedding with critical point κ such that $\mu > j(\kappa) > \lambda$ are all in $C^{(n)}$.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : A \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $C^{(n)^+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger,

$j : V_\lambda \to V_\mu$ a $C^{(n)^+}$-extendibility embedding

Let $j : V_\lambda \to V_\mu$ be an elementary embedding with critical point κ such that $\mu > j(\kappa) > \lambda$ are all in $C^{(n)}$.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \tilde{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $\mathcal{C}(n)^+\text{-extendible}$, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in \mathcal{C}(n)$ yet bigger,

$j : V_\lambda \to V_\mu$ a $\mathcal{C}(n)^+\text{-extendibility embedding}$

Let $j : V_\lambda \to V_\mu$ be an elementary embedding with critical point κ such that $\mu > j(\kappa) > \lambda$ are all in $\mathcal{C}(n)$. Then

$$V_\mu \models \lambda_a, \mathcal{D}_a, \langle \tilde{A}, \tilde{\eta} \rangle_a \text{ and } \langle A, \eta \rangle_a \text{ witness that } a \in \text{Obj}(\mathcal{C}^*).$$
Proof

Want to show $F : \mathcal{A} \to \text{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $\mathcal{C}^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in \mathcal{C}^{(n)}$ yet bigger,

$j : V_\lambda \to V_\mu$ a $\mathcal{C}^{(n)+}$-extendibility embedding

Let $j : V_\lambda \to V_\mu$ be an elementary embedding with critical point κ such that $\mu > j(\kappa) > \lambda$ are all in $\mathcal{C}^{(n)}$. Then

$V_\mu \models \lambda_a, \mathcal{D}_a, \langle \bar{A}, \bar{\eta} \rangle_a$ and $\langle A, \eta \rangle_a$ witness that $a \in \text{Obj}(\mathcal{C}^*)$.

Henceforth work in V_μ.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $C^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger,

$j : V_\lambda \to V_\mu$ a $C^{(n)+}$-extendibility embedding

Let $j : V_\lambda \to V_\mu$ be an elementary embedding with critical point κ such that $\mu > j(\kappa) > \lambda$ are all in $C^{(n)}$. Then

$V_\mu \models \lambda_a, D_a, \langle \bar{A}, \bar{\eta} \rangle_a$ and $\langle A, \eta \rangle_a$ witness that $a \in \text{Obj}(\mathcal{C}^*)$.

Henceforth work in V_μ.

Note that because $\kappa > \beta$, the definition of F is unaffected by j, so j commutes with F.
Proof

Want to show $F : A \to \text{Str } \Sigma$ preserves λ-directed colimits.

C: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

C^*: full subcat. of non-isos; C^* is Σ_{n+2}-definable

Want to show C^* is essentially small

If not take $\kappa a C^{(n)+}$-extendible, $a \in C^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger,

$j : V_\lambda \to V_\mu$ a $C^{(n)+}$-extendibility embedding
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \tilde{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $\mathcal{C}^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in \mathcal{C}^{(n)}$ yet bigger,

$j : V_\lambda \to V_\mu$ a $\mathcal{C}^{(n)+}$-extendibility embedding

Since j is elementary, we have a morphism in $\mathcal{C}^* V_\mu$

\[
\begin{array}{ccc}
\tilde{A} & \xrightarrow{a} & F(A) \\
\downarrow j|\tilde{A} & & \downarrow j|F(A) \\
\downarrow & & \\
j(\tilde{A}) & \xrightarrow{j(a)} & j(F(A)).
\end{array}
\]
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{\mathcal{A}} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $C^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in C^{(n)}$ yet bigger,

$j : V_\lambda \to V_\mu$ a $C^{(n)+}$-extendibility embedding

Since j is elementary, we have a morphism in $\mathcal{C}^* V_\mu$

$$
\begin{array}{c}
\bar{\mathcal{A}} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
j(\bar{\mathcal{A}}) \\
\end{array} \\
\xrightarrow{a} \\
\xrightarrow{\lambda(a)} \\
\xrightarrow{\lambda(F(A))} \\
F(A) \\
\xrightarrow{j(F(A))}
$$

Now, D_a is λ_a-directed, so $j(D_a)$ is $j(\lambda_a)$-directed, and $j(FD_a) = Fj(D_a)$ is $j(\lambda_a)$-directed.
Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small
If not take κ a $\mathcal{C}^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in \mathcal{C}^{(n)}$ yet bigger, $j : V_{\lambda} \to V_\mu$ a $C^{(n)+}$-extendibility embedding

Since j is elementary, we have a morphism in $\mathcal{C}^* \mathcal{V}_\mu$

$\bar{A} \xrightarrow{a} F(A)$

$\xymatrix{ \bar{A} \ar[r]^a \ar[d]_{j|\bar{A}} & F(A) \ar[d]^{j|F(A)} \\
 j(\bar{A}) \ar[r]_{j(a)} & j(F(A)).}$

Now, \mathcal{D}_a is λ_a-directed, so $j(\mathcal{D}_a)$ is $j(\lambda_a)$-directed, and $j(F\mathcal{D}_a) = Fj(\mathcal{D}_a)$ is $j(\lambda_a)$-directed. Since $j(\lambda_a) > j(\kappa) > \lambda > |\mathcal{D}_a|$, $j"F\mathcal{D}_a$ has an upper bound $F(d_0)$ in $Fj(\mathcal{D}_a)$.
Proof

Want to show $F : \mathcal{A} \to \textbf{Str} \Sigma$ preserves λ-directed colimits.

\mathcal{C}: cat. of λ-directed colimit morphisms $a : \bar{A} \to F(A)$

\mathcal{C}^*: full subcat. of non-isos; \mathcal{C}^* is Σ_{n+2}-definable

Want to show \mathcal{C}^* is essentially small

If not take κ a $\mathcal{C}^{(n)+}$-extendible, $a \in \mathcal{C}^*$ “bigger”, $\lambda \in \mathcal{C}^{(n)}$ yet bigger, $j : V_\lambda \to V_\mu$ a $\mathcal{C}^{(n)+}$-extendibility embedding