1. Let $G = (V, E)$ be an undirected graph. Initially, each node $v \in V$ is assigned a value $x_v(0)$ in the interval $[0, 1]$. Time is discrete, and nodes update their values synchronously according to the linear recursion

$$x_v(t + 1) = \frac{1}{\deg(v)} \sum_{u:(u,v) \in E} x_u(t). \quad (1)$$

(a) Write down the set of linear equations in (1) in matrix form as $x(t + 1) = P x(t)$, i.e., specify the elements of the matrix P.

(b) Compute an invariant distribution corresponding to the stochastic matrix P, i.e., find a solution of $\pi P = \pi$.

Hint: It turns out the Markov chain with transition probability matrix P is reversible, and you can compute an invariant distribution by solving the local balance equations.

(c) Assume that the graph G is connected and non-bipartite. (A graph is bipartite if the vertex set V can be partitioned into disjoint subsets V_1 and V_2, i.e., with $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$, such that there are no edges between two nodes of V_1 or two nodes of V_2. In other words, $E \subseteq V_1 \times V_2$.) In this case, it is known that the Markov chain with transition probability matrix P is irreducible and aperiodic. Comment on what happens to $x(t)$ as t tends to infinity.

(d) What property of a node determines how influential that node is in determining the final outcome of the above process?

2. Let $X_t, t \geq 0$ be an asymmetric random walk on $\{0, 1, 2, \ldots, n\}$ in continuous time, with transition rates given by $q_{k,k+1} = \lambda$ and $q_{k,k-1} = \mu$ for all $k \in \{1, 2, \ldots, n-1\}$. All other transition rates are zero. In particular, the states 0 and n are absorbing.

(a) Write down the rate matrix (also known as infinitesimal generator) for this Markov process.

(b) Show that $M_t = \left(\frac{\mu}{\lambda} \right)^X_t$ is a martingale.

(c) Find the probability that the random walk, started in some state $k \in \{0, 1, 2, \ldots, n\}$, hits state n before state 0.
3. Consider the following modification of the classical voter model on the complete graph K_n. Nodes can be in one of two states, 0 or 1, and change state as follows. Each node v becomes active at the points of a Poisson process of rate λ, independent of all other nodes. It then contacts a node w chosen uniformly at random from among all n nodes (including itself). If w has the same state as v, nothing happens. Otherwise, v copies the state of w with probability p, independent of everything in the past; with the residual probability $1 - p$, it retains its current state. (You can think of this as modelling an attachment to one’s current opinion / preference /affiliation.)

Suppose that initially, at time zero, k nodes are in state 1 and $n - k$ nodes are in state 0. Let T denote the random time that the process hits one of the absorbing states, either the all-zero state, denoted 0, or the all-one state, denoted 1.

(a) Compute the probability of hitting the all-one state.

(b) Compute the expectation of T, the random time to absorption.

Hint. You may, if you wish, use the following facts for the classical voter model; the first was derived in lectures, the second is a known result. These facts are that, for the classical voter model, $\Pr_k(\text{hit } 1) = k/n$, and $\mathbb{E}_k[T] = \frac{1}{\lambda} nh(k/n)$, where, for $x \in [0, 1]$, $h(x) = -x \log x - (1 - x) \log(1 - x)$ denotes the entropy of a Bern(x) random variable.