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We have so far seen a number of examples of random processes on networks,
including the spread of information, competition between opinions, and ran-
dom walks. In all these cases, we see that the structure of the network plays
an important role in determining the long-term behaviour or final outcome,
and the speed of convergence to this outcome. For example, the mixing time
of a random walk is determined by the second eigenvalue of the Laplacian,
which is related to the conductance of the network. The conductance also
plays a role in bounding the time for information to spread on it. These
findings are relevant to studying random processes on real-world networks
such as the Internet or online social networks, contact networks that impact
on the spread of diseases, gene regulatory networks in biology, etc. They
are also relevant to designing algorithms or control mechanisms operating
on such networks, e.g., routing in the Internet, targeted vaccination or quar-
antining for epidemics, etc.

However, many real-world networks are much too large and complex for us
to expect to know their structure in full. We may only have very partial
information about the structure on which to base our analysis. This is one
of the motivations for studying random network models, as these can pro-
vide parsimonious representations of complex networks, while (hopefully!)
capturing the key properties of interest or relevance. They can also be used
to develop statistical tests of hypotheses concerning structures or patterns
that arise in real-world networks.

There are a few different types of random graph models in widespread use,
depending on the applications being considered. We will study the simplest
of these in detail, and briefly mention some of the other models.
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1 Erdős-Rényi (ER) random graphs

This random graph model was introduced by Erdős and Rényi in 1959,
and has been studied extensively since then. A great deal is known about
the properties of random graphs generated according to this model, and
we shall look at a few of these properties. The model is parametrised by
two parameters and is denoted G(n, p). The notation refers to an undirected
graph on n nodes, where the edge between each pair of nodes is present with
probability p, independent of all other edges. This may appear to be, and
indeed is, a highly over-simplified model that leaves out many features that
characterise real-world networks. Nevertheless, the independence between
edges makes mathematical analysis of this model especially tractable, and is
one of the reasons for its continuing popularity. Another is that the model
exhibits some unexpected or surprising features that may be relevant to real-
world models and applications as well. One of these features is the existence
of “phase transitions” for many properties where, as we change a parameter
of the model, the probability of the model exhibiting that property shows a
sharp transition from nearly 0 to nearly 1. We shall see some examples of
this.

A closely related model, which was also studied by Erdős and Rényi in their
1959 paper introducing these models, was the G(n,M) model. Here, there
are n nodes and M edges, and the probability distribution is uniform on the
set of all such graphs. As there are only finitely many graphs with n nodes
and M edges, this is a valid model. However, this description is clearly
non-constructive, and it seems harder to work out properties for this model.
Moreover, edges in this model are not independent; the presence of one edge
makes every other edge less likely, because the total number of edges is fixed.
This lack of independence also makes analysis harder. It turns out that the
two models are closely related. The mean number of edges in the G(n, p)
model is clearly

(
n
2

)
p. If M is set equal to this value (rounded to a whole

number), then the corresponding G(n,M) is ’close’, at least for large n, in
the sense that it assigns comparable probabilities to many events of interest;
in particular, the phase transitions happen at the same parameter values.

In the following, we shall typically be interested in a sequence of random
graphs indexed by n and p, where p will typically be a function of n, and
n will tend to infinity. You should keep this in mind. We will be inter-
ested in understanding the limiting behaviour as n tends to infinity, rather
than calculating exact probabilities for specific values of n and p. With this
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justification, we are going to be extremely sloppy in many of our calcula-
tions, only keeping track of dominant terms and how they scale with n, and
ignoring constants and lower order terms!

1.1 Emergence of motifs or small subgraphs

Consider an ER random graph generated according to the G(n, p) model.
Let H be a fixed subgraph, say a triangle. We want to ask whether a copy
of this subgraph occurs anywhere within the random graph G(n, p). More
precisely, we would like to ask about the probability of this event. For all
but the simplest subgraphs H, an exact calculation of this probability is
very difficult. However it turns out that, as n tends to infinity, if we plot the
probability of H appearing in G(n, p) against p, this graph shows a sharp
transition from a value very close to 0, to a value very close to 1. In other
words, as we gradually increase p, there is a sudden change from a regime
in which the random graph is extremely unlikely to contain a copy of H, to
one in which it is very likely to do so (and in fact contains a large number
of such copies). We shall try to characterise the value of p at which this
transition takes place.

If we were to fix p at some constant value, say 3/16, and let n tend to infinity,
then the random graph G(n, p) would be very likely to contain triangles. In
fact, it would be very likely to contain any given fixed-size subgraph as n
tended to infinity. In order to see the threshold at which triangles begin to
appear in the randomg graph G(n, p), we need to consider a suitable scaling
for p as a function of n. It turns out that the scaling p = n−α is the correct
one. We shall look at p of this form, with α a positive constant, and ask
what happens as we vary α.

For concreteness, we first continue to work with H being the triangle, and
later show how to generalise the analysis to arbitrary subgraphs H. In
biological applications, these small subgraphs are called motifs. Certain
motifs are seen to arise often in biological networks such as gene regulation
networks, and a question of interest is whether this is just chance (there are,
after all, a huge number of patterns that could arise), or whether it might
be an indicator of the functional importance of these structures. Addressing
such questions requires working out how likely such structures are to arise
by chance. (Obviously, the use of ER random graphs as the baseline for
calculating these probabilities can be criticised.)
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We now proceed with detailed calculations for the triangle. We shall start by
calculating the expected number of triangles in a random graph G generated
according to the distribution specified by G(n, p).

Fix three nodes i, j, k ∈ V . The probability that there is a triangle on these
3 nodes is the probability that all 3 edges of this triangle are present in
the random graph, which is p3. Let χi,j,k be the indicator random variable
that takes the value 1 if the triangle on these 3 nodes is present in G, and
takes the value 0 otherwise. If you want to think of this formally, then the
sample space is the set of all undirected graphs on a vertex set V and the
probability distribution on the sample space is obtained by assigning to a

graph G = (V,E) the probability p|E|(1−p)(
n
2)−|E|. For any fixed unordered

triplet of vertices i, j, k, the random variable χi,j,k maps the sample space
to {0, 1}; for each graph, it specifies whether or not it contains a triangle on
the vertices labelled i, j and k.

Let N∆ be the random variable counting the number of triangles in each
graph. Then,

N∆ =
∑
i,j,k

χi,j,k, (1)

where the sum is taken over all unordered triplets of nodes. Clearly, there
are

(
n
3

)
such triplets. Hence, by the linearity of expectation,

E[N∆] =
∑
i,j,k

E[χi,j,k] =
∑
i,j,k

P(χi,jk, = 1) =

(
n

3

)
p3 =

n3−3α

3!
.

Thus, the expected number of triangles in a random graph drawn according
to G(n, p) tends to zero if α > 1, and tends to infinity if α < 1. There is
thus a sharp change in the expected number of triangles at α = 1.

Next, what we can say about the probability that there is a triangle in a
random graph G drawn according to G(n, p)? If α > 1, we see that

P(G contains ∆) = P(N∆ ≥ 1) ≤ E[N∆]

1
→ 0 as n→∞.

The inequality above follows from Markov’s inequality for the non-negative
random variable N∆. Thus, in this case, we can say that with high probabil-
ity, the random graph G(n, n−α) does not contain a triangle if α > 1. The
term “with high probability” applies to an event that can be defined on a
sequence of graphs, and says that the probability of this event tends to 1 as
the index of the graph tends to infinity.
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What happens if α < 1? In this case, the expected number of triangles in
the random graph, E[N∆], tends to infinity. Thus, it is natural to expect
that, with high probability, the random graph G(n, n−α) contains at least
one triangle. While this turns out to be true for triangles, the following
counter-example shows that this intuition can fail.

Counterexample We shall consider two graphs H and H ′ defined as fol-
lows. H ′ consists of a square with one of its diagonals present. Thus, it has
4 nodes and 5 edges. H is obtained from H ′ by adding one more node, and
one more edge, say from that node to either one of the two nodes of degree
2 in H ′. Thus, H has 5 nodes and 6 edges. (It might help to draw H and
H ′ for yourself.)

We shall proceed as above to calculate the expected number of copies of H
and H ′ in the random graph G(n, p). Denote these random variables by
NH and NH′ respectively. To estimate E[NH ] for example, we first choose
5 nodes, which can be done in any of

(
n
5

)
ways. Earlier, there was only one

way to site a triangle on 3 nodes. Now, there are many ways to site a copy
of H on 5 nodes.

The exact number of ways we can do this is given by 5! divided by the size
of the automorphism group of H (the number of ways we can relabel the 5
vertices such that there is an edge between the relabelled vertices if and only
if there is an edge between the original ones). However, this exact number
is not going to be important to us. Let us denote it by cH , and note that
cH is a combinatorial constant that only depends on H, and not on n. As
n tends to infinity, cH will not play an important role; in particular, it will
not change the threshold value of α (where p = n−α) at which E[NH ] jumps
from nearly zero to nearly infinity.

Let us continue with the calculations. For each of the
(
n
5

)
cH ways in which H

could have appeared in the random graph G(n, p), the probability of each
appearance is p6, as six edges need to be present. (Note that additional
edges are allowed to be present. Even if both diagonals of the square are
present, for instance, we still count the graph as containing an instance of
H.) Hence, by the linearity of expectation, we have

E[NH ] =

(
n

5

)
cHp

6 = c̃Hn
5−6α, (2)

where we have absorbed the constant 5! into cH to get another constant c̃H ,
and substituted n−α for p. A similar calcuation for H ′, which has 4 nodes
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and 5 edges, gives

E[NH′ ] =

(
n

4

)
cH′p

5 = c̃H′n
4−5α. (3)

Now, taking α = 9/11, it is easy to see that, as n tends to infinity,

E[NH ] = c̃Hn
1/11 →∞,

whereas
E[NH′ ] = c̃H′n

−1/11 → 0.

Hence, Markov’s inequality tells us that the probability of the random graph
G(n, p) containing a copy of H ′ tends to zero as n tends to infinity. But
H ′ is a subgraph of H, so if G(n, p) doesn’t contain H ′, it cannot possibly
contain H. Hence, with high probability G(n, n−9/11) contains no copy of
H. Nevertheless, the expected number of copies of H it contains tends to
infinity!

How is this possible? The resolution of this paradox comes from the fact
that, whenever G(n, p) contains a copy of H, it contains lots of copies of H.
More precisely, conditional on G(n, p) containing a copy of H ′, let us work
out the expected number of copies of H it contains. Given a copy of H ′, it
can belong to a copy of H in 2(n− 4) ways: choose any of the n− 4 vertices
not in H ′, and join it to one of the two degree-2 nodes in H ′ with an edge.
The probability that any such copy of H is present in the random graph is
p, the probability that the additional edge needed to get from H ′ to H is
present. Hence, each copy of H ′ ‘gives rise to’ approximately 2np = 2n2/11

copies of H in G(n, n−9/11). Thus, even though the probability that there
is a copy of H ′ in G(n, n−9/11) scales as n−1/11 (and the same holds for the
probability that there is a copy of H), the expected number of copies of H
scales as n+1/11. �

The above counterexample tells us that it is not sufficient to look at the
expected number of copies of a subgraph in order to conclude whether or
not it is likely to be present in the random graph G(n, p). We shall return
to this question for triangles first, before extending the result to general
subgraphs.

We saw above that the mean number of triangles is given by E[N∆] =
(
n
3

)
p3,

which tends to infinity as n tends to infinity if p = n−α for α < 1. We want
to show that, in this case, the random graph contains at least one triangle
with high probability. We can show this by showing that the probability
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that it contains no triangles vanishes as n tends to infinity. We shall do this
using Chebyshev’s inequality. We have

P(N∆ = 0) = P(N∆ ≤ 0) ≤ P(|N∆ − E[N∆]| ≥ E[N∆]) ≤ Var(N∆)

(E[N∆])2
. (4)

If we can show that Var(N∆)/(E[N∆])2 tends to zero as n tends to infinity,
then it follows that the probability of no trianges tends to zero, and hence
that the probability that there is at least one triange tends to 1, which is
what we want to show.

We already know E[N∆], so it remains to estimate the variance of the number
of triangles in G(n, p). To do this, let us first write the random variable N∆

as the sum of indicator random variables:

N∆ =
∑

A⊂V :|A|=3

χA, (5)

where χA is the indicator of the event that G(n, p) contains a triangle sitting
on the three vertices making up the set A. This is just a rewriting of equation
(1) in more convenient notation. Now, if we can express any random variable
as a sum of random variables, this yields an expression for its variance.
If Y = X1 + X2 + . . . + Xm, then Var(Y ) =

∑m
i,j=1 Cov(Xi, Xj), where

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] denotes the covariance of Xi and Xj ,
and in particular, Cov(Xi, Xi) = Var(Xi). Thus, it follows from (5) that

Var(N∆) =
∑

A1,A2⊂V
|A1|=3,|A2|=3

Cov(χA1 , χA2). (6)

We shall now evaluate this covariance in the different scenarios possible.

If A is a set of 3 vertices, we shall write ∆(A) to denote the set of 3 edges
making up the triangle on these vertices. If A1 and A2 are 3-vertex subsets
of V , then the possible values of |∆(A1)∩∆(A2)| are 0, 1 or 3. In words, the
vertices might be such that the triangles on them don’t have any edges in
common (because A1 and A2 have either zero or one vertices in common),
have one edge in common (|A1∩A2| = 2) or all 3 edges in common (A1 = A2).
Now, because edges in an ER random graph are mutually independent, it
is clear that triangles on A1 and A2 are independent if these triangles have
no edges in common. Hence, in this case, the indicator random variables
denoting their presence are also independent, and Cov(χA1 , χA2) = 0. Next,
if |∆(A1) ∩∆(A2)| = 1, then

Cov(χA1 , χA2) = E[χA1χA2 ]− E[χA1 ]E[χA2 ] = p5 − p6. (7)
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To see the second equality note that χ(A1)χ(A2) is the indicator that two
(specific) triangles with one common edge are present; this corresponds to
five edges being present, which has probability p5. (The expectation of an
indicator random variable is simply the probability of the indicated event.)
On the other hand, each of χ(A1) and χ(A2) have expectation p3.

Finally, if A1 = A2, then χ(A1)χ(A2) = χ(A1), and we have

Cov(χA1 , χA2) = E[χA1 ]− E[χA1 ]E[χA2 ] = p3 − p6. (8)

We now put these results together to compute the variance of N∆. First
we count the number of node triples A1 and A2 such that ∆(A1) ∩ ∆(A2)
consists of a single edge. For this to happen A1 ∩ A2 should consist of just
4 nodes. This can be done in

(
n
4

)
ways, and these 4 nodes can be split into

triples A1 and A2 in 4 ways. Any such split uniquely defines the common
edge. Being sloppy about constants as usual, the number of ways this can
happen is c1n

4. Likewise, the number of ways we can choose node triples A1

and A2 that coincide exactly is simply the number of ways we can choose A1,
which is

(
n
3

)
= c2n

3. Combining these counts with the covariance estimates
in (7) and (8), and substituting in (6), we get

Var(N∆) = c1n
4(p5 − p6) + c2n

3(p3 − p6) = c1n
4p5(1− p) + c2n

3p3(1− p3).

Substituting p = n−α, and recalling that E[N∆] =
(
n
3

)
p3, we see that

Var(N∆)

(EN∆)2
= c̃1n

−2+α(1− p) + c̃2n
−3(1−α)(1− p3).

Now p is going to zero, so 1 − p and 1 − p3 are close to 1. Also, α < 1 by
assumption, so the exponents on n in the terms on the RHS are both strictly
negative, so the RHS is tending to zero as n tends to infinity. Hence, we
have shown that Var(N∆)/(EN∆)2 tends to zero, as we set out to do. By
Chebyshev’s inequality, it follows that the probability of G(n, p) containing
no triangles tends to zero, and hence that it contains at least one triangle
with high probability.

We are now ready to move on to the general case. But we need to restrict the
class of graphs we consider in order to rule out ones like the counterexample
described above. Given a graph H, denote by vH and eH the number of
nodes and edges it has. Recall that a subgraph of H is a graph made up of
a subset of the vertices and edges of H. For example, one of the subgraphs
of a triangle is a V made up of all 3 nodes and any two edges; another is two
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nodes and the edge between them; a third is all 3 nodes but just one edge;
and there are many others. For a subgraph H ′ of H, we define vH′ and eH′

analogously. We define the density of a graph H as the ratio eH/vH .

Definition: A graph H is said to be balanced if it is at least as dense as
every one of its subgraphs, i.e.,

eH
vH
≥ eH′

vH′
for all subgraphs H ′ of H.

We will state and prove a result that applies to balanced graphs, and then
explain how to use it for unbalanced graphs, without giving a proof.

Theorem 1 Let H be a balanced graph with vH nodes and eH edges. Con-
sider a sequence of Erdős-Rényi random graphs G(n, n−alpha), indexed by n,
the number of nodes, and with fixed parameter α. Then,

P(G(n, n−α) contains a copy of H)→

{
0, if α > vH/eH ,

1, if α < vH/eH .

Proof. We shall estimate the mean and variance of NH , the number of
copies of H in G(n, p), and then use Markov’s and Chebyshev’s inequalities
as we did for the triangle. First, the mean is easy. Every subset of nodes A
consisting of vH nodes can support some constant number of copies of H.
Let us denote this constant by cH . (The constant is vH ! divided by the size
of the automorphism group of H.) Now, there are

(
n
vH

)
ways of choosing vH

nodes, and the probability that a particular copy of H appears is peH , since
H has eH edges, each of which is independently present with probability p.
Hence, we have

E[NH ] =

(
n

vH

)
cHp

eH = c′Hn
vHpeH . (9)

Next, we compute the variance of NH . For each possible copy Hi that
could appear in G(n, p), let χHi denote the indicator that all edges of Hi are
present in G(n, p). Clearly E[χHi ] = peH , since Hi is present only if eH edges
are present. For two copies, Hi and Hj , we need to compute the covariance
of the indicators of Hi and Hj . If the copies have no edges in common, then
the covariance is zero. Otherwise, it depends on how many edges they have
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in common. Suppose Hi ∩Hj = H ′, where H ′ is necessarily a subgraph of
H (possibly empty, and possibly all of H). Then,

Cov(χHi , χHj ) = E[χHiχHj ]− E[χHi ]E[χHj ]

= p2eH−eH′ − (peH )2 = p2eH−eH′ (1− peH′ ). (10)

Next, we need to count the number of ways in which subgraphs H1 and
H2 overlapping in H ′ could appear. The number of nodes required for this
pattern is vH1 + vH2 − vH′ = 2vH − vH′ , where vH is the number of nodes in
H (and also in H1 and H2, which are copies of H), and vH′ the number of
nodes in H ′. (These are common nodes in H1 and H2 and have been counted
twice in summing vH1 and vH2 , so we need to subtract this number from
the sum.) The number of ways we can choose this many nodes is

(
n

2vH−vH′
)
.

Now, having chosen these nodes, there are a number of possible ways that
a pattern consisting of two copies of H intersecting in a copy of H ′ could
appear on these nodes. Let us denote the number of ways by cH,H′ . While
it is hard to calculate this number, it is clearly just a constant that does not
depend on n or p. So, in our usual sloppy way, we won’t bother calculating
it. Putting together the expression for the covariance of indicators in (10)
with our estimate for the number of ways such a term could occur, we obtain
the following for the variance of NH :

Var(NH) =
∑
H′⊆H

c̃H,H′n
2vH−vH′p2eH−eH′ ,

where the sum is taken over all subgraphs H ′ of H. This equation has been
obtained by thinking of NH as a sum of indicator random variables for the
occurence of copies of H at different locations in G(n, p), and then writing
its variance as the sum of covariances for all pairs of indicators. The idea is
exactly the same as for triangles, but we skipped writing this intermediate
step explicitly.

Now, combining the above expression for the variance of NH with the ex-
pression in (9) for its mean, we get

Var(NH)

(ENH)2
=
∑
H′⊆H

ĉH′,Hn
−vH′p−eH′ , (11)

where ĉH,H′ is some constant that does not depend on n or p.

We now take p = n−α. Suppose first that α > vH/eH . Then, by (9),
E[NH ] = c′Hn

vH−αeH tends to zero as n tends to infinity, because the expo-
nent on n is strictly negative. Hence, by Markov’s inequality, P(NH ≥ 1)
tends to zero, which yields the first claim of the theorem.
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Suppose next that α < vH/eH . By the assumption that H is balanced, we
have eH′/vH′ ≤ eH/vH for all subgraphs H ′ of H; in words, H is at least as
dense (where density is defined as the ratio of edges to vertices) as any of
its subgraphs. Hence, we also have α < vH′/eH′ for any subgraph H ′ of H.
Hence, it follows from (11) that

Var(NH)

(ENH)2
=
∑
H′⊆H

ĉH′,Hn
−(vH′−αeH′ )

tends to zero as n tends to infinity, as the exponent on n is strictly negative.
Consequently, by Chebyshev’s inequality, P(NH = 0) tends to zero, i.e.,
P(NH ≥ 1) tends to 1. This completes the proof of the theorem. �

Remark. If H is not a balanced graph, then the value of α at which H
appears in G(n, n−α) is determined by the densest subgraphs of H. If H ′

is one such densest subgraph (H could have more than one), then take
αc = vH′/eH′ . Even if the densest subgraph is not unique, the value of αc
is well defined because, by definition, all densest subgraphs have the same
value for this ratio. The theorem applies to H ′, and says that the probability
of H ′ appearing in G(n, n−α) is close to zero for α > αc and close to 1 for
α < αc. It turns out that the same is true for H. The appearance of the
densest subgraphs is the ‘bottleneck’ for the appearance of H. As soon as
α < αc, copies of H ′ appear, and so do copies of H (possibly many more
than of H ′). On the other hand, if α > αc, then H ′ doesn’t appear in the
random graph, and so H can’t possibly appear.

2 The giant component

We have so far looked at “local properties” of Erdős-Rényi random graphs,
by which we mean properties determined by a small number of vertices (a
constant number, whereas the total number of vertices, n, tends to infinity).
Now, we turn our attention to “global properties”. Fix n large and a con-
sider a sequence of Erdős-Rényi random graphs G(n, p) indexed by p. As
p increases from 0 to 1, the random graph evolves from the empty graph,
consisting of isolated vertices, to the complete graph, in which all edges are
present.

In previous sections, we looked at when certain subgraphs, such as triangles,
appear in the random graph. Now, we want to ask how the size of the
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largest connected component evolves with p. In the next section, we will ask
when the whole graph becomes connected (i.e., there is a single connected
component consisting of all n vertices).

It would be natural to expect that the size of the largest connected compo-
nent increases smoothly from 1 to n as p increases from 0 to 1. However,
this is not what happens. Instead, most components remain small, consist-
ing only of a constant number of vertices (not growing with n) if p is smaller
than 1/n. But there is an abrupt change at 1/n, when a component of
size proportional to n (i.e., consisting of a fraction of all vertices) suddenly
emerges. We now give a more careful statement of this result.

Theorem 2 Consider a sequence of Erdős-Rényi random graphs G(n, pn),
with pn = λ/n. Let Cn denote the size of the largest connected component
in G(n, pn). Then, the following holds with high probability (whp):

• If λ ∈ [0, 1), then Cn = O(log n).

• If λ > 1, then Cn ∼ ρλn, where ρλ is the unique solution in (0, 1) of
the equation e−λx = 1− x.

Recall that the notation an ∼ bn denotes that the ratio an/bn tends to 1
as n tends to infinity. We won’t give a full proof of this theorem, but will
provide the intuition behind it, which comes from branching processes.

2.1 Review of branching processes

Branching processes are a model of stochastic population growth. Time
is discrete, and time steps are called generations. We denote by Zn the
population size in the nth generation. Each individual in the population in
generation n has a random number of offspring and dies at the end of this
generation. We can give a precise probabilistic description of this model as
follows.

Let ξi,j , i, j ∈ N be iid random variables, taking values in Z+ = {0, 1, 2, . . .}.
Here, ξi,j denotes the random number of offspring that the jth individual in
the ith generation has (or would have, if this individual existed). Thus, we
have

Zn+1 = ξn,1 + ξn,2 + . . .+ ξn,Zn , (12)
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with the usual convention that an empty sum is equal to zero. The discrete
time stochastic process Zn, n ∈ N is called a Galton-Watson branching
process. It is easy to see that Zn is a (time homogeneous) Markov chain on
the state space Z+ = {0, 1, 2, . . .}.

We would like to know how Zn behaves as n tends to infinity, and in partic-
ular whether or not it is non-zero, i.e., whether the population has become
extinct by the nth generation or not. The answer depends on the mean of
the offspring distribution, which we denote by µ, i.e., µ =

∑∞
k=0 kP(ξ1,1 = k)

.

Lemma 1 Consider a branching process Zn, n ∈ N, with some fixed initial
condition Z1 = m. Suppose that the offspring distribution has mean µ < 1.
Then, with probability one, the branching process eventually becomes extinct;
in other words, Zn tends to zero almost surely ( a.s.) as n tends to infinity.

Proof. We first compute the expectation of Zn using (12). Using the fact
that the ξi,j are iid, and hence that ξn,j , j ∈ N are independent of Zn, we
have

E[Zn+1|Zn] =

Zn∑
i=1

E[ξn,i] = µZn.

We have used the linearity of expectation to obtain the first equality, and
the independence of ξn,i from Zn to get the second. Taking expectations
again, we have

E[Zn+1] = E(E[Zn+1|Zn]) = µE[Zn].

Applying this equality recursively, we get E[Zn] = mµn−1. Now, it follows
from Markov’s inequality that

P(Zn 6= 0) = P(Zn ≥ 1) ≤ E[Zn]

1
= mµn−1.

Since µ < 1, it is clear that P(Zn 6= 0) tends to zero as n tends to infinity.

Now, the events {Zn 6= 0} are decreasing, as their complements are increas-
ing: Zn = 0 implies that Zn+1 = 0, or equivalently, {Zn = 0} ⊆ {Zn+1 = 0}.
The event that the branching process eventually becomes extinct is the
event {∃n : Zn = 0} = ∪∞n=1{Zn = 0}. Consequently, the probability of
non-extinction is bounded by

P
(
∩∞n=0{Zn ≥ 1}

)
= lim

n→∞
P(Zn ≥ 1) ≤ lim

n→∞
mµn−1 = 0.

13



This completes the proof of the lemma. �

Suppose Z1 = 1, i.e., we start with a single individual. Denote the generating
function of the offspring distribution by

G(u) = E[uξ1,1 ] =
∞∑
k=0

ukP(ξ1,1 = k). (13)

Clearly, this is also the generating function of Z2, the population size in the
second generation, as

Z2 =

Z1∑
j=1

ξ1,j = ξ1,1.

Using the fact that the ξi,j are iid, and hence that ξn,j , j ∈ N are independent
of Zn, we can recursively compute the generating function of Zn+1 as follows:

Gn+1(u) := E[uZn+1 ] = E(E[uZn+1 |Zn])

=
( ∞∑
k=0

P(Zn = k)E
[
u
∑Zn

j=1 ξn,j

∣∣∣ Zn = k
])

=
( ∞∑
k=0

P(Zn = k)G(u)k
)

= Gn(G(u)).

In other words, the generating function of Zn is Gn(·) = G(n)(·) := G ◦
G ◦ · · · ◦ G(·), the n-fold composition of the generating function G of the
offspring distribution. We shall use this fact to prove the next result about
when branching processes survive forever with positive probability.

Theorem 3 Consider a branching process Zn, n ∈ N, with initial condition
Z1 = 1, and let G(·) denote the generating function of the offspring distribu-
tion. Then, the branching process eventually becomes extinct with probability
pe which is the smallest root in [0, 1] of the equation G(x) = x; it survives
forever with the residual probability, 1−pe. Moreover, pe = 1 if µ = E[ξ] < 1
and pe < 1 if µ > 1.

Proof. Let us begin by recalling some properties of generating functions.
By definition,

G(x) =
∞∑

n=−∞
P(ξ = n)xn.

14



Now, x 7→ xn is a convex function on R+ = [0,∞) for all n ∈ Z. Since G(·)
is a linear combination of convex functions with non-negative coefficients,
it is also a convex function. (We have not used the fact that P(ξ = n) = 0
for n < 0. Generating functions of all discrete random variables are convex,
whether or not the random variables are non-negative.) It is easy to see
that G(1) = 1 and, using the non-negativity of ξ, that G(0) = P(ξ = 0). In
particular, G(0) ≥ 0.

We shall also use the fact that G(·) is continuous on [0, 1] (which follows
from its convexity), and that E[ξ] = G′(1) if G(·) has a finite left derivative
at 1, and E[ξ] = +∞ otherwise. Now, it is not hard to see that the equation
G(x) = x has a unique solution in [0, 1) if G′(1) > 1, and no solution
in [0, 1) if G′(1) < 1. (It might be useful to draw a picture.) Thus, the
smallest solution of G(x) = x on [0, 1], which we denote x∗, satisfies x∗ < 1
in the former case, and x∗ = 1 in the latter. Also G(x) > x on (0, x∗) and
G(x) < x on (x∗, 1); if x∗ = 1, the latter interval is empty, and the claim is
vacuous.

Suppose first that G′(1) < 1, and consequently that µ := E[ξ] < 1. Then,
x∗ = 1. Moreover, we showed in Lemma 1 that extinction is certain if µ < 1.
Thus, pe = 1, and the theorem is proved in this case.

Suppose next that G′(1) > 1. We saw above that the generating function
of Zn is given by G(n), the n-fold composition of G with itself. Suppose
x ∈ [0, x∗). Then, G(x) > x. Also, G(x) < x∗ because G is a monotone
increasing function, as ξ is non-negative. Hence, G(x) ∈ (x, x∗). Repeating
this argument, the sequence G(n)(x), n = 1, 2, 3, . . . is a monotone increasing
sequence, bounded above by x∗. Hence, it converges to a limit, and we claim
that the limit must be x∗. If it were some y < x∗, then we would have that
G(y) = y (by continuinty of G), which violates the definition of x∗ as the
smallest root of G(x) = x on [0, 1]. In particular, G(n)(0) tends to x∗. But
G(n) = P(Zn = 0). Thus, we have shown that P(Zn = 0) tends to x∗.
Consequently, the extinction probability is given by

pe = P
(
∪∞n=0{Zn = 0}

)
= lim

n→∞
P(Zn = 0) = x∗.

This completes the proof of the theorem. �
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2.2 Emergence of the giant component

We now return to the study of the component structure of the Erdős-Rényi
random graph, G(n, p). Fix a vertex v and consider a process that explores
expanding neighbourhoods of v. Let S1 denote the set of neighbours of v,
S2 the set of nodes at distance 2 from v, and so on. Here, distance refers
to graph distance: the smallest number of edges on any path between two
nodes. Let Z1, Z2, . . . denote the cardinalities of the sets S1, S2, . . .. As
the edge between v and any other node w is present with probability p,
independent of all other edges, it is clear that Z1 ∼ Bin(n − 1, p). The
notation means that the random variable Z1 has a Binomial distribution
with parameters n−1 and p. Recall the scaling regime we are considering, in
which n tends to infinity and p tends to zero as p = λ/n for a fixed constant
λ > 0 that doesn’t depend on n. In this scaling regime, Bin(n − 1, p) ≈
Pois(λ), i.e., Z1 is approximately Poisson distributed with parameter (mean)
λ.

Next, for each node u in S1, the number of neighbours of u excluding v is
binomially distributed with parameters n− 2 and p, which is also approxi-
mately Pois(λ). Now, not all of these nodes may lie at distance 2 from v as
some of them may already belong to the set S1. However, as there are n− 2
nodes for u to choose from as neighbours, and only about λ of them belong
to S1, the chances of u choosing one of them are negligible. In addition, if u
and w are two different nodes in S1, the chance that both of them will choose
the same node as their neighbour is also negligible. Thus, each node in S1

contributes approximately Pois(λ) nodes to S2. Similar reasoning applies to
S3, S4 and so on, until these sets grow big enough that they contain some
fraction of the total number of nodes, n.

What the above description tells us is that the sequence of random variables
Z1, Z2, . . . behaves approximately like the population size in successive gen-
erations of a Galton-Watson branching process with Poisson(λ) offspring
distribution. (Note: There is a slight change of notation from the previous
subsection. Let S0 = {v} and Z0 = 1. Then, Z0, Z1, Z2 . . . here are the
same as Z1, Z2, Z3, . . . in the previous subsection.) We can be more precise
and provide bounds: the random variables Z0, Z1, Z2, . . . denoting neigh-
bourhood sizes are stochastically dominated by the population sizes in a
branching process with Bin(n, p) offspring distribution. Morever, until the
first generation that Z0 + Z1 + . . . + Zk ≥ εn, where ε > 0 is a given con-
stant, the random variables Zi stochastically dominate the population size

16



in a branching process with Bin(n, (1− ε)p offspring distribution. These ob-
servations can be used to provide a rigorous proof of Theorem 2. However,
we shall confine ourselves to just providing the intuition behind it.

Consider again the exploration process starting from a given vertex v, finding
its successive neighbourhoods S1(v), S2(v), . . ., where we have now made
the dependence of these neighbourhoods on v explicit in the notation. The
process ends if, for some k, Sk+1(v) = ∅. At this point, we have found all the
nodes that can be reached from v, which we call the cluster (or connected
component) containing v, and denote C(v). Thus,

C(v) =
k⋃
i=0

Si(v) and |C(v)| =
k∑
i=0

Zi(v).

Now, we use the intuition that Zi(v) is approximately the population size in
the ith generation of a branching process with Poisson(λ) offspring distribu-
tion. If λ < 1, then this branching process is guaranteed to go extinct, and
|C(v)| has roughly the distribution of the total population size in the branch-
ing process until extinction. This is some random variable parametrised by
λ, and doesn’t depend on n or p directly. Thus, the cluster containing v is
O(1) in size, in probability: given any ε > 0, we can find a constant Mε large
enough (depending only on ε and not on n) such that P(|C(v)| > Mε) < ε,
uniformly in n.

We can repeat this process to find all the connected components of the ran-
dom graph G(n, p). Start from some vertex v1 and identify its cluster C(v1).
If this cluster doesn’t contain all nodes, then choose a vertex v2 /∈ C(v1), and
identify its cluster, C(v2). Repeat the process until ∪ki=1C(vi) = V . Our
reasoning above applies to each of these clusters. In fact, as the exploration
proceeds, the number of nodes left keeps getting smaller, and so do the bi-
nomial random variables denoting the neighbourhood sizes. Consequently, a
Poisson(λ) random variable continues to stochastically dominate them, and
cluster sizes remain O(1) in probability. The upper bound of O(log n) in
the statement of Theorem 2 comes from taking the maximum of the sizes of
the clusters C(v1), C(v2) and so on. Justifying it would require us to derive
bounds on the population size of a subcritical branching process with Pois-
son offspring distribution, showing that the probability of large population
sizes decays exponentially. This can be done using the generating function
approach developed above, but we will not do it here.

Next, let us turn to the case λ > 1. Theorem 3 tells us that a branching pro-
cess with Poisson(λ) offspring distribution becomes extinct with probability

17



pe which is the smallest root in [0, 1] of the equation

e−λ+λx = x.

It survives forever with the residual probability 1 − pe, which we shall de-
note by ρλ to make its dependence on λ explicit. Now, if we consider the
neighbourhood exploration process started from a vertex v, the comparison
with the branching process tells us that the exploration terminates soon
with probability pe = 1−ρλ, and yields a cluster C(v) which is O(1) in size,
as before. As this reasoning applies to any starting vertex v, it implies that
the expected number of vertices in small components is (1− ρλ)n.

But, with probability ρλ, the branching process survives forever, and the
population size tends to infinity. Obviously, the cluster sizes are bounded
above by n and cannot grow to infinity for any fixed n. What happens
instead is that the cluster gets so large that its growth can no longer be well
approximated by a branching process. With a bit of care, and the bounding
techniques mentioned earlier, this argument can be used to show that the
big clusters grow to size at least εn for some sufficiently small ε > 0.

So, what we have obtained so far (somewhat loosely) is that (1− ρλ)n ver-
tices, on average, belong to small clusters, while ρλn belong to one or more
large clusters. Theorem 2 makes the stronger claim that, in fact, these ρλn
vertices all belong to a single giant cluster. To see this, we argue as fol-
lows. Consider the cluster growth (or neighbourhood exploration) processes
started from two different vertices v1 and v2, and continued until they have
grown to εn nodes (assuming that v1 and v2 belong to big clusters, and hence
these processes don’t become extinct before that). If the two clusters have
already intersected by this time, then v1 and v2 belong to the same cluster,
and we are done. Otherwise, the important point to note is that there some
ε′n nodes which lie on the boundary of each cluster, and whose neighbour-
hoods are still unexplored. Here, ε′ is some constant in (0, ε). The reason
this is true is that cluster sizes (or branching processes in the supercritical
case) grow geometrically, and so the last / most recent generation contains
a non-vanishing fraction of the total population that ever lived. Now, our
claim is that, with high probability, there must be at least one edge between
these boundary nodes. Indeed, as each boundary is of size ε′n, there are
(ε′)2n2 potential edges, each of which is present with probability p = λ/n,
independent of the others. Hence, the probability that all these edges are
absent is given by (

1− λ

n

)(ε′)2n2

≈ exp
(
−λ(ε′)2n

)
.
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This probability tends to zero very quickly; even when we take a union
bound over all pairs of possible starting vertices v1 and v2, the probability
of finding two large clusters that don’t intersect is vanishing. This completes
the (hand-waving) proof of Theorem 3.

3 Connectivity

In this section, we want to answer the following question: how large does p
have to be in order for the random graph G(n, p) to be connected with high
probability, i.e., to consist of a single connected component containing all
the vertices? We saw in the last section that the random graph G(n, λ/n)
possesses a large connected component if λ > 1, and that the number of
nodes in this giant component is approximately ρλn, where ρλ solves the
equation e−λx = 1− x. It is not hard to see that ρλ is strictly smaller than
1 for any fixed λ > 0, however large. What this tells us is that the scaling
regime in which p = O(1/n) is not sufficient to yield full connectivity. We
need to look at a regime in which p doesn’t decrease to zero quite so fast as
n tends to infinity. It turns out that the correct scaling regime to consider
is p of order (log n)/n. We will first state the result and then provide some
intuition about it, and the outline of a proof.

Theorem 4 Consider a sequence of Erdős-Rényi random graphs G(n, p)
indexed by n, with p = (c log n)/n. We then have the following:

P(G(n, p) is connected)→

{
1, if c > 1,

0, if c < 1.

It turns out that connectivity also exhibits a sharp threshold, like the other
properties we studied, namely the emergence of small subgraphs or motifs,
and the emergence of the giant component. In other words, there is not a
gradual increase in the probability that G(n, p) is connected as p increases.
Instead, for values of p slightly smaller than the threshold, the random graph
is disconnected whp, whereas for p slightly larger than the threshold, it is
connected whp.

Before going on to a proof of the theorem, let us describe the intuitive picture
of what happens near the connectivity threshold. It turns out for p close
to, but slightly smaller than, (log n)/n, almost all the nodes belong to a
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single connected component, but there are a small number of isolated nodes
- nodes that have no edges to any other node. The number of isolated nodes
is of order 1, whereas the connected component contains all n nodes except
for this constant number. As p increases further, edges appear between
these isolated nodes and the giant component (this is far more likely than
that one appears between two isolated nodes) until, eventually, no more
isolated nodes are left. This picture suggests the following approach to
tackling the proof. Let us ask how likely it is that the random graph G(n, p)
contains isolated nodes, and how large p needs to be to ensure that with
high probability there are no isolated nodes.

Lemma 2 Let N denote the random number of isolated nodes in the random
graph G(n, p). Suppose p = (c log n)/n. Then, N = 0 whp if c > 1, whereas
N ≥ 1 whp if c < 1.

Proof. The proof uses the first and second moment methods, which we
learnt when studying motifs. Letting χv denote the indicator that node v is
isolated, we can express the random variable N as

N =
∑
v∈V

χv. (14)

For a node v to be isolated, all n − 1 possible edges from that node to
the remaining nodes must be absent; this event has probability (1− p)n−1.
Consequently, using the linearity of expectation, we obtain

E[N ] =
∑
v∈V

E[χv] = n
(

1− c log n

n

)n−1
∼ ne−c logn = n1−c, (15)

where f(n) ∼ g(n) denotes that f(n)/g(n) tends to 1 as n tends to infinity.
Hence, if c > 1, then E[N ] tends to zero as n tends to infinity, and so does
P(N ≥ 1) by Markov’s inequality. It follows that N = 0 whp if c > 1. This
proves the first claim of the lemma.

It also follows from equation (15) that the expected number of isolated nodes
tends to infinity as n tends to infinity if c < 1. However, this is not enough
to guarantee that there is at least 1 with high probability. To show that,
we need to compute the variance of the number of isolated nodes and use
the Second Moment Method. Now, the probability that two distinct nodes
u and v are isolated is given by the probability that the edge between them
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is absent and also that all n − 2 possible edges from each of them to the
remaining nodes is absent. In total, it requires 2n − 3 edges to be absent,
which has probability p2n−3. Hence, E[χuχv] = (1− p)2n−3, and

Cov(χu, χv) = E[χuχv]−E[χu]E[χv] = (1−p)2n−3−(1−p)2n−2 = p(1−p)2n−3.

On the other hand, if u = v, then χuχv = χ2
u = χu, and so

Var(χu) = E[χ2
u]− (E[χu])2 = (1− p)n−1 − (1− p)2(n−1).

Since N =
∑

v∈V χv, it follows that

Var(N) =
∑
u,v∈V

Cov(χu, χv)

= n(1− p)n−1
(
1− (1− p)n−1

)
+ n(n− 1)p(1− p)2n−3.

This is because there are n terms in the sum with u = v and n(n − 1)
terms with u and v different. Now, substituting p = c(log n)/n, we get
(1− p)n ∼ e−c logn = n−c, and so

Var(N) ∼ n1−c + nc log nn−2c ∼ n1−c. (16)

Now, using equations (15) and (16), and applying Chebyshev’s inequality,
we get

P(N = 0) ≤ P(|N − E[N ]| ≥ E[N ]) ≤ Var(N)

(EN)2
∼ nc−1. (17)

Hence, if c < 1, then P(N = 0) tends to 0, i.e., N ≥ 1 whp. This proves the
second claim of the lemma. �

The lemma suffices to prove one half of the theorem. If c < 1, then with
high probability there is at least one isolated node. But if there is an iso-
lated node, then the graph can’t be connected. So, with high probability,
G(n, c log n/n) is not connected if c < 1.

In order to prove the other direction, we need to work harder. We need to
show that not only are there no isolated nodes, but that there no connected
components (clusters) of any size up to n/2 that are disconnected from the
rest of the graph. (Why is it enough to show this for clusters of size up to
n/2 and not n− 1?)

Fix k ≥ 2. We will now obtain an upper bound on the probability that there
is a cluster of size k disconnected from the rest of the graph. First, choose

21



k vertices from V . What is the probability that there are no edges between
this subset and the remaining vertices? As there k(n − k) potential edges,
this probability is just

(1− p)k(n−k =
(

1− c log n

n

)k(n−k)
∼ exp

(
−ck(n− k) log n

n

)
.

Next, what is the probability that these k nodes form a connected compo-
nent? If they do, then the connected component must contain a spanning
tree on k nodes, i.e., at least k− 1 edges must be present. Hence, any given
spanning tree has probability pk−1. But we need to consider all possible
spanning trees, which requires knowing how many of them there are. Luck-
ily, there is a famous formula in combinatorics, known as Cayley’s formula,
which enumerates the number of trees on k labelled vertices. The formula
says that there are exactly kk−2 such trees. (Check this for k = 3 and 4.) As
each tree has probability pk−1 of being present, the union bound yields an
upper bound on the probability that the given k-vertex subset is connected;
the probability is no more than kk−2pk−1. As there are

(
n
k

)
ways of choosing

the k-vertex subset, we conclude that the probability of there being a cluster
of size k disconnected from the rest of the graph is bounded above by(

n

k

)
kk−2pk−1(1− p)k(n−k) ∼

(
n

k

)
kk−2pk−1 exp

(
−ck(n− k) log n

n

)
.

If we can show that the sum of the above expression over k ranging between
2 and n/2 tends to zero whenever c > 1, then we have completed the proof
of the theorem. (The case k = 1 has already been dealt with by Lemma 2.)
This calculation is not particularly deep, but it is messy and involved, and
we will skip it.
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