
Introduction to Queueing Networks

Solutions to Problem Sheet 1

1. (a) The number of balls in each urn at the next time step depends only on the numbers in each
in the current time step, and not on the previous history. The states are {0, 1, . . . , n} and the
transition probabilities are given by

pi,i−1 =
i

n
, pi,i+1 =

n− i
n

, i = 0, 1, . . . , n. (1)

(b) All states are recurrent and belong to a single communicating class, i.e., the Markov chain is
irreducible.

(c) As the Markov chain is irreducible and has finitely many states, there is a unique invariant
distribution π, which satisfies the global balance equations:

πi = πi+1pi+1,i + πi−1pi−1,i, , i = 1, 2, . . . , n, (2)

(where we take π−1 = 0 and πn+1 = 0), as well as the normalisation condition

n∑
i=0

πi = 1. (3)

It is not easy to solve these equations, but if you can guess a solution, it is easy to verify it. The
intuition is that each ball is doing a random walk between the two urns, (almost) independent
of other balls; the only dependence is that, if one ball is picked at a time step, no other ball
is picked in the same step. Moreover, balls are chosen at random, not more or less likely
based on which urn they are in, or their own or any other ball’s past history. This intuition
says that each ball is equally likely to be in either urn, and the positions of different balls are
independent. This suggests that the number of balls in either urn should be a Binomial(n, 1/2)
random variable, and hence that

πi =

(
n

i

)
1

2n
.

It is easy to verify that these πi satisfy (2) as well as the normalisation condition.

2. (a) Nt is a Markov chain because the number of alleles of each type in generation t suffices to
determine the probability distribution for the number of alleles of each type in generation
t+ 1; no further knowledge of the past is required.

(b) The state space is {0, 1, 2, . . . , N}. The states 0 and N are absorbing because, if there are no
alleles of one type in some generation, then there can be no alleles of that type in any future
generation. All other states belong to a single communicating class since it is possible to go
from any number j of alleles of type A to any other number k of such alleles, so long as j isn’t
0 or N . Note that k can be 0 or N .
The states 0 and N are obviously recurrent since, if you are ever in one of them, you re-visit
them infinitely many times - in fact, you never leave them. All other states are transient. Take
state 1 for example. You can’t visit it infinitely many times because, on each visit, you have a
non-zero chance of hitting state 0 orN in the next step and becoming absorbed. So, after some
finite number of visits, this is bound to happen.
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(c) The invariant distribution has to be zero outside the set of recurrent states. So, if π is invariant,
then πi = 0 for all i ∈ {1, 2, . . . , N − 1}. Moreover, p00 = 1 and pNN = 1, so it is clear that
if we take π0 = α and πN = 1 − α for any α ∈ [0, 1], then π is invariant. These are all the
invariant distributions.

3. (a) The states are S, C and R (for sunny, cloudy and rainy), and the transition probabilities are
specified by the matrix

P =

0.5 0.5 0

0.4 0.4 0.2

0 0.5 0.5


with the states in that order (the first row and column refer to the state S, and so on).

(b) All states form a single communicating class, since there is non-zero probability of going from
any state to any other eventually (though not necessarily in one-step: it takes two steps to go
from S to R or R to S). All states are also recurrent. Indeed, since there are only finitely many
states, not all of them can be transient. (It is not possible that each of the states is only visited
finitely many times.) But states in the same communicating class have to all be transient or all
be recurrent. As all states of this Markov chain form a single communicating class, they must
all be recurrent.
Since there is a single communicating class, the Markov chain is irreducible, and so the invari-
ant distribution is unique. By solving the global balance equations πP = π, together with the
normalisation condition πS + πC + πR = 1, we find that the invariant distribution is given by
π =

(
4
11

5
11

2
11

)
.

(c) If Alice carried an umbrella with her yesterday, then yesterday was either cloudy or rainy.
For her to carry an umbrella today, today must be rainy or cloudy. We’ll denote the four
possibilities for yesterday’s and today’s joint weather by CC, CR, RC and RR (with the first
letter denoting yesterday’s weather) and the two possibilities for yesterday’s weather by C and
R. We want to compute P (CC ∪ CR ∪ RC ∪ RR|C ∪ R). Using the invariant distribution
calculated in the last part and Bayes’ theorem, we have

P (CC ∪ CR ∪RC ∪RR|C ∪R) =
P (CC ∪ CR ∪RC ∪RR)

P (C ∪R)

=
πCpCC + πCpCR + πRpRC + πRpRR

πC + πR

=
2/11 + 1/11 + 1/11 + 1/11

5/11 + 2/11
=

5

7
.

Thus, the probability that Alice carries an umbrella today given that she carried one yesterday
is 5/7.
Similarly, if Alice carried an umbrella the last two days, then the weather on these days must
have been CC, CR, RC or RR. Hence, the probability that Alice carries an umbrella today
given that she did so on the last two days is given by

P (CCC ∪ CCR ∪ CRC ∪ CRR ∪RCC ∪RCR ∪RRC ∪RRR|CC ∪ CR ∪RC ∪RR)

=
P (CCC ∪ CCR ∪ CRC ∪ CRR ∪RCC ∪RCR ∪RRC ∪RRR)

P (CC ∪ CR ∪RC ∪RR)
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The numerator of the above expression can be evaluated as

πC

(
p2CC + pCCpCR + pCRpRC + pCRpRR

)
+πR

(
pRCpCC + pRCpCR + pRRpRC + p2RR

)
=

5

11
(0.16 + 0.08 + 0.1 + 0.1) +

2

11
(0.2 + 0.1 + 0.25 + 0.25)

=
19

55
.

The denominator can be evaluated as

πCpCC + πCpCR + πRpRC + πRpRR =
2

11
+

1

11
+

1

11
+

1

11
=

5

11
.

Hence, the probability that Alice carries an umbrella today, given that she did so on the last
two days, is given by 19

55/
5
11 = 19/25.

(d) From the answer to the previous part,

P (Yt = 1|Yt−1 = 1) =
5

7
, whereas P (Yt = 1|Yt−1 = 1, Yt−2 = 1) =

19

25
.

In other words, the probability distribution of Yt conditioned on the infinite past (or even two
time periods in the past) is not the same as its probability distribution conditioned only on the
last time period. Hence, (Yt, t ≥ 0) cannot be a Markov chain.

4. The generating function of X1 is given by

G1(z) = E
[
zX1

]
=

∞∑
n=0

P (X1 = n)zn.

But X1 is Poisson with parameter λ1, so P (X1 = n) = λn1e
−λ1/n!. Substituting this above, we get

G1(z) =

∞∑
n=0

(λ1z)
n

n!
e−λ1 = eλ1ze−λ1 = eλ1(z−1).

Similarly, X2 has generating function G2(z) = eλ2(z−1).

Now, we have for the generating function of X = X1 +X2 that

G(z) = E
[
zX
]
= E

[
zX1zX2

]
= E

[
zX1

]
E
[
zX2

]
= G1(z)G2(z),

since X1 and X2 are independent random variables (and hence so are zX1 and zX2). Substituting
for G1 and G2, we find that G(z) = e(λ1+λ2)(z−1), which we recognise as the generating function
of a Poisson random variable with parameter λ1 + λ2. This completes the proof.

5. (a) By the conditional probability formula, we have for all t, u ≥ 0 that

P (T > t+ u|T > u) =
P ({T > t+ u} ∩ {T > u})

T > u
=
P (T > t+ u)

T > u
,

since the event T > t + u is a subset of the event T > u, and hence their intersection is
the event T > t + u. Now, recall that since T is exponentially distributed with parameter µ,
P (T > t) = e−µt for all t ≥ 0. Substituting this above,

P (T > t+ u|T > u) =
exp(−µ(t+ u))

exp(−µu)
= e−µt = P (T > t).
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(b) i. Since T1 and T2 are independent, we have for arbitrary t > 0 that

P (T > t) = P (min{T1, T2} > t) = P (T1 > t and T2 > t)

= P (T1 > t)P (T2 > t).

Now, using the fact that T1 and T2 are exponentially distributed with parameters λ1 and
λ2, we get

P (T > t) = e−λ1te−λ2t = e−(λ1+λ2)t,

from which we recognise that T is exponentially distributed with parameter λ1 + λ2.
ii. It is fairly easy to calculate the probability that T = T1. We have

P (T = T1) = P (T2 ≥ T1) =
∫ ∞
0

fT1(x)P (T2 ≥ x)dx.

While this calculation yields P (T = T1) = λ1/(λ1 + λ2), it doesn’t tell us that this
probability doesn’t depend on the value t taken by this random variable.
It may not be immediately obvious why we are making an issue of this point. Consider,
for example, that λ1 = 1 and λ2 = 999, 999. So the chance that T = T1 is 1 in a million.
Moreover, T1 typically takes values around 1, whereas T2 typically takes values around
10−6. The statement that we are asked to prove is that, even if we are told, say, that
T = 1.3, then conditional on this information, the probability that T = T1 is still 1 in a
million. Hopefully, you find that claim counter-intuitive, and see that there is something
to be proved here!
In order to get to the result we want, let us compute the conditional probability

P
(
{T = T1} ∩ {T ≥ t}

)
= P (t ≤ T1 ≤ T2) =

∫ ∞
x=t

∫ ∞
y=x

fT1(x)fT2(y)dydx

=

∫ ∞
x=t

λ1e
−λ1x

(∫ ∞
y=x

λ2e
−λ2ydy

)
dx

=

∫ ∞
x=t

λ1e
−(λ1+λ2)xdx

=
λ1

λ1 + λ2
e−(λ1+λ2)t = P (T = T1)P (T ≥ t),

since T is exponentially distributed with parameter λ1 + λ2. This shows that these two
events are independent, for any value of t. In other words, the probability that T = T1 is
independent of the value of T .
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