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34 Chap. 1  Introduction

10n® = 107 x 1000 yields » = 1000, indicating that the polynomial time algorithm
allows us to solve much larger problems.

The point of view emerging from the above discussion is that, as a first
cut, it is useful to juxtapose polynomial and exponential time algorithms,
the former being viewed as relatively fast and efficient, and the latter as
relatively slow. This point of view is justified in many — but not all -
contexts and we will be returning to it later in this book.

1.7 Exercises

Exercise 1.1* Suppose that a function f : ™ — R is both concave and convex.
Prove that f is an affine function.

Exercise 1.2 Suppose that f1,..., fm are convex functions from R" into & and
let £(x) = 30", £i(x).
(a) Show that if each f; is convex, so is f.

(b) Show that if each f; is piecewise linear and convex, so is f.

Exercise 1.3 Consider the problem of minimizing a cost function of the form
c¢’x + f(d'x), subject to the linear constraints Ax > b. Here, Q. is a m?ob
vector and the function f : R — R is as specified in Figure 1.8. Provide a linear
programming formulation of this problem.

f(=)

-
L
i

Figure 1.8: The function f of Exercise 1.3.

Exercise 1.4 Consider the problem

minimize 2z; + 3|z2 — 10|
subject to |z1 + 2|+ |z2| < 5,

and reformulate it as a linear programming problem.
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Exercise 1.5 Consider a linear optimization problem, with absolute values, of
the following form:

minimize c¢'x+d'y
subject to Ax+ By <b
Yi = |zif, Vi

Assume that all entries of B and d are nonnegative.

(a) Provide two different linear programming formulations, along the lines dis-
cussed in Section 1.3.

(b) Show that the original problem and the two reformulations are equivalent
in the sense that either all three are infeasible, or all three have the same
optimal cost.

(c) Provide an example to show that if B has negative entries, the problem
may have a local minimum that is not a global minimum. (It will be seen
in Chapter 2 that this is never the case in linear programming problems.
Hence, in the presence of such negative entries, a linear programming re-
formulation is implausible.)

Exercise 1.6 Provide linear programming formulations of the two variants of
the rocket control problem discussed at the end of Section 1.3.

Exercise 1.7 (The moment problem) Suppose that Z is a random variable
taking values in the set 0,1,..., K, with probabilities P0:P1, .. -, PK, Tespectively.
We are given the values of the first two moments E 2] = Mﬁna kpy and E[Z*] =
MMHQ kpi of Z and we would like to obtain upper and lower bounds on the value

of the fourth moment E[Z%] = MMAHO k*pr of Z. Show how linear programming
can be used to approach this problem.

Exercise 1.8 (Road lighting) Consider a road divided into n segments that is
illuminated by m lamps. Let p; be the power of the Jth lamp. The illumination I;
of the ith segment is assumed to be "~ 1 @i;pj, where a;; are known coefficients.
Let I7 be the desired illumination of road i.

We are interested in choosing the lamp powers P; so that the illuminations
I; are close to the desired illuminations I7. Provide a reasonable linear program-
ming formulation of this problem. Note that the wording of the problem is loose
and there is more than one possible formulation,

Exercise 1.9 Consider a school district with 7 neighborhoods, J schools, and
G grades at each school. Each school J has a capacity of Cj, for grade g. In each
neighborhood 4, the student population of grade ¢ is Sy,. Finally, the distance
of school j from neighborhood i is di;. Formulate a linear programming problem
whose objective is to assign all students to schools, while minimizing the total
distance traveled by all students. (You may ignore the fact that numbers of
students must be integer.)

Exercise 1.10 (Production and inventory planning) A company must de-
liver d; units of its product at the end of the ith month. Material produced during
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a month can be delivered either at the end of the same month or can be stored
as inventory and delivered at the end of a subsequent month; however, there is
a storage cost of ¢1 dollars per month for each unit of product held in inventory.
The year begins with zero inventory. If the company produces z; units in month
i and z;y1 units in month i + 1, it incurs a cost of ¢a|z;+1 — x;| dollars, reflecting
the cost of switching to a new production level. Formulate a linear programming
problem whose objective is to minimize the total cost of the production and in-
ventory schedule over a period of twelve months. Assume that inventory left at
the end of the year has no value and does not incur any storage costs.

Exercise 1.11 (Optimal currency conversion) Suppose that there are N
available currencies, and assume that one unit of currency ¢ can be exchanged for
r;; units of currency j. (Naturally, we assume that r;; > 0.) There also certain
regulations that impose a limit u; on the total amount of currency 4 that can be
exchanged on any given day. Suppose that we start with B units of currency 1 and
that we would like to maximize the number of units of currency N that we end up
with at the end of the day, through a sequence of currency transactions. Provide
a linear programming formulation of this problem. Assume that for any sequence
1,...,15 of currencies, we have 7 i,Tinis - - Te_1i,Tigin < 1, which means that
wealth cannot be multiplied by going through a cycle of currencies.

Exercise 1.12 (Chebychev center) Consider a set P described by linear
inequality constraints, that is, P = {x € R" | ajx < b;, i = 1,...,m}. A ball
with center y and radius r is defined as the set of all points within (Euclidean)
distance r from y. We are interested in finding a ball with the largest possible
radius, which is entirely contained within the set P. (The center of such a ball is
called the Chebychev center of P.} Provide a linear programming formulation of
this problem.

Exercise 1.13 (Linear fractional programming) Consider the problem

. c'x+d

minimize ——

f'x+g

subject to Ax<b
f'x+g>0.

Suppose that we have some prior knowledge that the optimal cost belongs to an
interval [K, L]. Provide a procedure, that uses linear programming as a subrou-
tine, and that allows us to compute the optimal cost within any desired accuracy.
Hint: Consider the problem of deciding whether the optimal cost is less than or
equal to a certain number.

Exercise 1.14 A company produces and sells two different products. The de-
mand for each product is unlimited, but the company is constrained by cash
availability and machine capacity.

Each unit of the first and second product requires 3 and 4 machine hours,
respectively. There are 20,000 machine hours available in the current production
period. The production costs are $3 and $2 per unit of the first and second
product, respectively. The selling prices of the first and second product are $6
and $5.40 per unit, respectively. The available cash is $4,000; furthermore, 45%
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of the sales revenues from the first product and 30% of the sales revenues from the
second product will be made available to finance operations during the current
period.

(a) Formulate a linear programming problem that aims at maximizing net in-
come subject to the cash availability and machine capacity limitations.

(b) Solve the problem graphically to obtain an optimal solution.

(c) Suppose that the company could increase its available machine hours by
2,000, after spending $400 for certain repairs. Should the investment be
made?

Exercise 1.15 A company produces two kinds of products. A product of the
first type requires 1/4 hours of assembly labor, 1/8 hours of testing, and $1.2
worth of raw materials. A product of the second type requires 1/3 hours of
assembly, 1/3 hours of testing, and $0.9 worth of raw materials. Given the current
personnel of the company, there can be at most 90 hours of assembly labor and
80 hours of testing, each day. Products of the first and second type have a market
value of $9 and $8, respectively.

(a) Formulate a linear programming problem that can be used to maximize the
daily profit of the company.

(b) Consider the following two modifications to the original problem:

(i) Suppose that up to 50 hours of overtime assembly labor can be sched-
uled, at a cost of $7 per hour.

(ii) Suppose that the raw material supplier provides a 10% discount if
the daily bill is above $300.

Which of the above two elements can be easily incorporated into the lin-
ear programming formulation and how? If one or both are not easy to
incorporate, indicate how you might nevertheless solve the problem.

Exercise 1.16 A manager of an oil refinery has 8 million barrels of crude oil A
and 5 million barrels of crude oil B allocated for production during the coming
month. These resources can be used to make either gasoline, which sells for $38
per barrel, or home heating oil, which sells for $33 per barrel. There are three
production processes with the following characteristics:

Process 1 Process 2 Process 3
Input crude A 3 1 5
Input crude B 5 1 3
Output gasoline 4 1 3
Output heating oil 3 1 4
Cost $51 $11 $40

All quantities are in barrels. For example, with the first process, 3 barrels of
crude A and 5 barrels of crude B are used to produce 4 barrels of gasoline and
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