
Convex Optimisation Homework Solutions

1. (a) Suppose first that x and y are both non-negative. Then f(x) = x, f(y) = y, and it is
straightforward that, for all α ∈ [0, 1],

f(αx+ (1− α)y) = αx+ (1− α)y = αf(x) + (1− α)f(y).

Thus, the condition for convexity is satisfied in this case. The case when x and y are
both negative is also easy. The only case remaining to consider is when one is positive
and the other negative. Suppose that x < 0 and y > 0, and let αin[0, 1]. Now,

f(αx+ (1− α)y) = |αx+ (1− α)y| ≤ |αx|+ |(1− α)y|
= α|x|+ (1− α)|y| = αf(x) + (1− α)f(y).

The inequality in the above equation is called the triangle inequality, and is known to
hold for all real (and complex) numbers.

(b) The function f is defined on a convex domain, the open interval (0,∞), and is twice
differentiable on this domain. So we can check convexity using the criterion that the
second derivative should be non-negative everywhere. We have

f ′(x) = 1 + log x, f ′′(x) =
1

x
> 0 ∀ x > 0.

(c) We again use the second derivative criterion, now in matrix form. The Hessian matrix
of f is

D2f(x, y) = 2

(
y2 2xy

2xy x2

)
,

and so, we obtain for any a, b ∈ R that(
a b

)
D2f(x, y)

(
a

b

)
= 2(a2y2 + 2(a+ b)xy + b2x2) = 2(ay + bx)2 ≥ 0.

Hence, D2f(x, y) is positivie semi-definite for any (x, y), so f is convex.

(d) The approach is the same as for the last part, to compute the Hessian of f . Differen-
tiating once, we get

∇f(x) = 2(Ax− b)TA.

To check this, observe that

f(x + εy)− f(x)− ε∇f(x)y

= (Ax + εAy − b)T (Ax + εAy − b)− (Ax− b)T (Ax− b)− 2ε(Ax− b)TAy

= ε2yTATAy = o(ε).

To obtain the second equality, we have used the fact that yTAT (Ax − b) is a scalar,
and hence equal to its transpose, which is (Ax− b)TAy. Differentiating once more,

Df (x) = ATA ∀ x ∈ Rn.

But this matrix is positive semidefinite because, for all z ∈ Rn, we have

zTATAz = ‖Az‖2 ≥ 0.

Hence, f is convex.
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(e) If x0 and x1 are both strictly positive, or one is positive and the other is zero, then it
is easy to check the condition that

f((1− α)x0 + αx1) ≤ (1− α)f(x0) + αx1;

the condition holds with equality if both are strictly positive, and with strict inequality
if one is positive and the zero. If one of the them is positive and the other negative,
the right hand side of the inequality in the equation above is +∞, so the inequality
holds irrespective of the value of the left hand side.

2. (a) Suppose A,B ∈ S, i.e., A and B are both symmetric matrices. Then aij = aji and
bij = bji for all i, j ∈ {1, 2, . . . , n}. Now, fix αin[0, 1] and let C = αA+(1−α)B. Then,

cij = αaij + (1− α)bij = αaji + (1− α)bji = cji

for all i, j ∈ {1, 2, . . . , n}, i.e., C is symmetric. Thus, we have shown that S is convex.

(b) By part (a), the function f is defined on a convex domain. We now use the hint.
Observe that, for any fixed x ∈ Rn, the map A 7→ xTAx is linear (i.e, if we define
g(A) = xTAx, then g(A + B) = g(A) + g(B) for any two symmetric matrices A and
B, and g(cA) = cg(A) for any symmetric matrix A, and any real number c). But
linear functions are convex, so A 7→ xTAx is convex. Now, by the Rayleigh-Ritz
formula, λmax(A) is simply the maximum of these convex functions indexed by x over
{x : ‖x‖ = 1}, and we know that the maximum of convex functions is convex.

3. Let x0, x1 and xα be as in the hint, and so also for y0, y1 and yα. By definition of these,
we have

g(x0) = f(x0, y0), g(x1) = f(x1, y1), g(xα) = f(xα, y
α) ≤ f(xα), yα). (1)

We also have by the convexity of f that

f(xα, yα) ≤ αf(x0, y0) + (1− α)f(x1, y1).

Substituting the above inequality in equation (1), we obtain g(xα) ≤ αg(x0) + (1−α)g(x1).
Thus, we have shown that g is convex.

4. (a) We have already shown that f is convex in problem 1(d); only the notation has changed.
The first order condition for minimality of a convex function is that its gradient is zero.
So we want

∇f(β) = 2XT (Xβ − y) = 0, i.e., β =
(
XTX

)−1
XTy.

(b) We showed in 1(a) that |x| is a convex function of x ∈ R. Much the same argument
shows that for any fixed i, |βi| is a convex function of β ∈ Rn; the co-ordinates βj , j 6= i,
play no role. Now, g(β) is a linear combination of the convex functions ‖(Xβ − y‖2
and |βi|, i = 1, 2, . . . , n with positive coefficients 1, λ, λ, . . . , λ. Hence, it is convex.
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5. (a) The objective function is f0(x) = 1
2x

TQx + cTx, and its second derivative matrix is
D2f0(x) = Q. As we are given that Q is p.s.d., it follows that f0 is convex.

Next, suppose that x and y in Rn both satisfy the constraints. Let α ∈ [0, 1]. Then,

A(αx + (1− α)y) = αAx + (1− α)Ay ≤ αb + (1− α)b = b,

i.e., αx+(1−α)y also satisfies the constraints. Thus, the feasible set is convex, and we
are minimising a convex function over a convex set. This is the definition of a convex
optimisation problem.

(b) There are no equality constraints in this problem. Thus, the Lagragian is

L(x, λ) =
1

2
xTQx + cTx + λT (Ax− b), x ∈ Rn, λ ∈ Rm+ .

The dual objective function is given by g(λ) = minx∈Rn L(x, λ). As L is convex in x
for any fixed λ, we can use the first order sufficient conditions for optimality, which
are:

∇xL(x, λ) = xTQ+ cT + λTA = 0.

We will assume that Q is invertible, in which case the above equation has solution
x = −Q−1(c+ATλ). Substituting this in the expression for g, and using the fact that
Q is symmetric, i.e. QT = Q, we obtain that

g(λ) =
1

2
(c +ATλ)TQ−1(c +ATλ)− (c +ATλ)TQ−1(c +ATλ) + λTb

= −1

2
(c +ATλ)TQ−1(c +ATλ) + λTb.

Thus, the dual problem is:

max
λ∈Rm

+

−1

2
(c +ATλ)TQ−1(c +ATλ) + λTb,

or equivalently, ignoring the constant term cTQ−1c,

min
λ∈Rm

1

2
λT

(
AQ−1AT

)
λ+

(
AQ−1c− b

)T
λ, subject to λ ≥ 0,

which we recognise as another QP. Moreover, if Q is positive definite, so is Q−1 and
AQ−1AT is p.s.d. (exercise), so the dual problem is also a convex program.

(c) The KKT conditions for optimality are:

xTQ+ cT + λTA = 0T , λT (Ax− b) = 0,

where the latter are the complementary slackness conditions.

(d) The gradient of the objective function at x0 is

∇f0(x0) = (x0)TQ+ cT .

So, for gradient descent, we are seeking x1 of the form

x1 = x0 − t(Qx0 + c).

With exact line search, we want the value of t that exactly minimises

f0(x
1) = f0(x

0)− t(x0)TQ(Qx0 + c) +
t2

2
(Qx0 + c)TQ(Qx0 + c)− tcT (Qx0 + c).
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Ignoring the term f0(x
0) that does not depend on t, and using the fact that Q is

symmetric, we see that the objective can be rewritten as minimising the following
quadratic function of t:

h(t) =
t2

2
(Qx0 + c)TQ(Qx0 + c)− t(Qx0 + c)T (Qx0 + c).

Now, Q is positive definite, so the coefficient of t2 is non-negative. Hence, the minimum
is attained at

t∗ =
(Qx0 + c)T (Qx0 + c)

(Qx0 + c)TQ(Qx0 + c)
.

If the denominator is zero, the function h(t) is linear, the minimum value of h(t) is −∞.
But, as Q is positive definite, this can only happen if Qx0 + c = 0, i.e., x0 = Q−1c,
which is the solution of the QP. Hence, either x0 is already the solution, or gradient
descent with exact line search takes us to the new value

x1 = x0 − t∗(Qx0 + c),

where t∗ is as above. The update step involves 3 multiplications of an n-vector by an
n × n matrix, as well as some vector additions, which are comparatively cheap. The
matrix multiplication involves n2 scalar multiplications and dominates the cost. Thus,
the computational complexity of each iteration is O(n2).

By comparsion, a step of the Newton algorithm takes us to

x̃1 = x0 −
(
D2f(x0)

)−1∇f(x0)T .

Noting that D2f(x0) = Q, and using the value of ∇f(x0) computed above, we get

x̃1 = x0 −Q−1(Qx0 + c) = −Q−1c.

But the latter is exactly where the minimum is attained, as can be seen by solving
∇f(x) = 0. Hence, for unconstrained quadratic programs, a single step of the Newton
method takes us to the solution, irrespective of the starting condition. This is the
intuition motivating the Newton method, that, in the vicinity of a minimum, a twice-
differentiable convex function looks approximately like a quadratic function.

In terms of computational complexity, solving n equations in n unknowns by any of the
standard algorithms, such as LU or QR decomposition, requires O(n3) computations
in the worst case. This compares with O(n2) for an iteration of gradient descent. So
there are advantages and disadvantages for both methods.
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