
Lecture 1

1 Probability axioms

Example 1: Roll a die. Suppose the outcomes 1, . . . , 6, have probabilities
1/4, 1/4, 1/8, 1/8, 1/8, 1/8 respectively. What is the probability of (a) an
even number, (b) a prime number?

Example 2: Same experiment but we are now given the following informa-
tion:

P ({1, 2}) = P ({3, 4}) = P ({5, 6}) = 1/3, P ({1, 2, 3}) = 1/2.

What is (a) P ({3}), (b) P({ 4 }), (c) P({ 6 })?

Example 3: Same experiment but we are now given the following informa-
tion:

P ({1, 2}) = P ({3, 4}) = P ({5, 6}) = 1/2, P ({1}) = 1/4.

What is P ({2})?

Formalise this intuition.

The sample space Ω is an arbitrary set, thought of as the set ofpossible
outcomes. Events are subsets of the sample space, and probabilities are
numbers assigned to events. The collection of events, F , to which we assign
probabilities has a certain structure:

1. Ω ∈ F

2. If A ∈ F , then Ac ∈ F .

3. If An ∈ F for n = 1, 2, 3, ..., then ∪∞n=1An ∈ F .
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A collection of subsets of Ω having these properties is called a σ-algebra.

Probability axioms: A function P : F → IR is called a probability if

1. 0 ≤ P (A) ≤ 1 for all A ∈ F , and P (Ω) = 1.

2. If A1, A2, . . . are disjoint sets, then P (∪∞n=1An =
∑∞

n=1 P (An).

Example 4: A dart is thrown at a circular dartboard of radius 1m and is
equally likely to land anywhere on it. (What does this mean?) How likely
is it to land in (a) the top half, (b) the bull’s eye, which is a central circle of
radius 1cm, (c) the point with co-ordinates (+0.2,−0.3), (d) the horizontal
diameter?

The point of this example is to illustrate why it is not possible to extend
the axioms to uncountable sums.

2 Conditional probability and independence

Example: Let’s go back to the example of rolling a die, where the outcomes
1, . . . , 6, have probabilities 1/4, 1/4, 1/8, 1/8, 1/8, 1/8 respectively. Given
that an even number was rolled, how likely are the events (a) {2}, (b)
{3, 4, 5}?

Definitions: For events A and B, if P (B) > 0, then P (A|B) := P (A ∩
B)/P (B). Note: P (·|B) is a probability.

We say that events A and B are independent of each other if P (A ∩ B) =
P (A)P (B). If P (B) > 0, this is the same as saying that P (A|B) = P (A).

Events A1, . . . , An are mutually independent if

P (∩n
i=1Ai) =

n∏
i=1

P (Ai). (1)

An infinite sequence of events is said to be mutually independent if every
finite subcollection of them is mutually independent. (Why would it be a
bad idea to define it analogous to (1)?)

Total probability formula and Bayes’ formula: Let A1, A2 . . . , An be
a partition of Ω, i.e., the sets are mutually disjoint and their union is Ω.
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(I mean measurable partition, but I’ll omit the qualifier henceforth on the
grounds that we will only consider measurable sets.) Then, for any event B,

P (B) =
n∑

i=1

P (Ai ∩B).

Therefore,

P (Ai|B) =
P (Ai ∩B)

P (B)
=

P (Ai ∩B)∑n
j=1 P (Aj ∩B)

.

This formula can be used to compute all the P (Ai|B) if we are given all the
P (Ai) and P (B|Ai).

We can define conditional independence just like independence. We say
that A and B are conditionally independent given C if P (A ∩ B|C) =
P (A|C)P (B|C).

3 Random variables

Definition A random variable is a (measurable) function from the sample
space to the real numbers.

Example: Ω = {1, 2, 3, 4, 5, 6}, F = all subsets,

X(ω) =
{

1, if ω ∈ {2, 4, 6},
0, if ω ∈ {1, 3, 5}.

Often, the sample space will be implicit and we’ll just write X instead of
X(ω).

Examples of discrete random variables:

1. Bernoulli(p): Models the outcome of a coin toss. P (X = 1) = p,
P (X = 0) = 1− p.

2. Binomial(n, p): Models the number of heads in n coin tosses.

P (X = k) =

(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n.

(Is this a valid probability distribution/ probability mass function?)
Note: Can construct X as X = Y1 + . . . + Yn, where the Yi are iid
Bernoulli(p).
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3. Poisson(λ):

P (X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

4. Geometric(p): Models the number of coin tosses until seeing the first
head. P (X = k) = (1− p)k−1p, k = 1, 2, 3, . . .

5. Zeta or Zipf distribution: P (X = k) = Ck−(α+1), k = 1, 2, 3, . . ., where
α > 0 is a specified parameter, and C > 0 is a constant chosen so that
the probabilities sum to one. In fact, 1/C = ζ(α+1) where ζ(·) is the
Riemann zeta function, defined for real s > 1 as

ζ(s) = 1 +
(1
2

)s
+
(1
3

)s
+ · · ·

It has been proposed as a model for ranked word frequencies in doc-
uments (Zipf, 1935), number of species in a genus (Yule, 1924), etc.
Suggestion: look up Benford’s law.

Where does the Poisson distribution come from? Consider random variables
X1, X2, . . . where Xn is Binomial(n, λ/n). Fix k ≥ 0 and look at P (Xn = k)
as n tends to infinity. We have

P (Xn = k) =

(
n

k

)(λ

n

)k(
1− λ

n

)n−k

=
n(n− 1) · · · (n− k + 1)

n · n · · ·n
1
k!

λk
(
1− λ

n

)n(
1− λ

n

)−k

→ 1
k!

λke−λ.

Roughly speaking, the Poisson distribution models the number of occurences
of an event which is individually rare but where there is a large population of
individuals where it could occur. An example is the number of life insurance
policy holders of a given age who die in a given year. (This is a bit of a
simplification, a compound Poisson would be a better model.) Another
example is the number of atoms in a sample undergoing radioactive decay
in a given time period. Poisson apparently arrived at this model by studying
the number of deaths in the Prussian army due to being kicked by horses.
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4 Continuous random variables

In the case of discrete random variables, we were able to specify the proba-
bility of each possible outcome. That isn’t possible for continuous random
variables. What we want is to be able to specify the probability of every
“measurable” subset of the real numbers. But I haven’t told you what
measurable is and, anyway, there are too many such subsets. It turns out
that this isn’t necessary. It is enough if we specify the probabilities for all
intervals of the form (−∞, x], say.

To make this precise, let X be a random variable. Now, P (X ∈ (−∞, x]) =
P (X ≤ x) is a function of x. Let us denote it by F (x). What are the
properties that F must have?

Clearly, F must be non-decreasing and right-continuous (why?), and we
must have limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. The function F is
called the distribution function (or cumulative distribution function, cdf) of
the random variable X. We write FX when we want to make it clear which
random variable we are talking about.

What probabilities can we calculate from F? We can calculate probabili-
ties for intervals of the form (x,∞], and of the form (−∞, x) (see Problem
2.) Hence, we can also compute probabilities of all intervals of the form
[x, y] (or open or half-open intervals) where x ≤ y, and all sets obtained
by starting with intervals and performing countably many union and inter-
section operations. It turns out that this is all we need. These are all the
Borel measurable subsets of the real line. Another way of saying this is that
intervals of the form (−∞, x] generate the Borel σ-algebra.

Are there subsets of the real line which cannot be generated by the above
procedure, i.e., are there sets which are not Borel measurable? The answer
is yes, lots of them, but we won’t worry about them in this course.

Probability density function: The distribution function F is one way
of specifying probabilities for a random variable X. It has the advantage
of being completely general, and applying to both discrete and continuous
random variables (and mixtures of the two).

Definition: A random variable X is said to be continuous if there is a
non-negative function f such that, for any interval (x, y),

P (X ∈ (x, y)) =
∫ y

x
f(u)du.
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The function f is called the probability density function of X.

We write fX if we need to make clear which random variable we are talking
about. Observe that P (X ∈ (x, y)) = P (x ∈ [x, y]) for continuous r.v.s.
How is F related to f?

Examples:

1. Uniform([a, b]), a < b:

f(x) =
{

1
b−a , a ≤ x ≤ b,
0, otherwise.

, F (x) =


0, x < a,
x−a
b−a , a ≤ x ≤ b,
1, x > b.

2. Exponential(λ), λ > 0: f(x) = λe−λx1(x ≥ 0),

F (x) =
{

0, x < 0,
1− e−λx, x ≥ 0.

3. Gamma(α, λ), α, λ > 0:

f(x) =
{

1
Γ(α)λe−λx(λx)α−1, x ≥ 0
0, otherwise,

where Γ(α) :=
∫∞
0 xα−1e−xdx. Here, α is called the shape parameter

and λ is called the scale parameter.

4. Normal(µ, σ2):

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

The parameters µ and σ2 are in fact the mean and variance of this
distribution (to be defined).

The exponential distribution is used to model the lifetime of things whose
“frailty” doesn’t change with age. What do we mean by this? Let X be an
Exp(λ) random variable denoting the lifetime of a light bulb, say. Condi-
tional on the light bulb having survived up to time t, what is the probability
that it will survive until time t + s? We can calculate this using Bayes’ for-
mula. We have

P (X > t + s|X > t) =
P ({X > t + s} ∩ {X > t})

P (X > t)
=

P (X > t + s)
P (X > t)

=
exp(−λ(t + s))

exp(−λt)
= e−λs = P (X > s). (2)
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In other words, the probability that the light bulb will survive for another
s time units is the same no matter how old the light bulb is.

Examples of the exponential distribution in nature include the radioactive
decay of nuclei, where the probability that a nucleus decays in some time
interval (s, t] doesn’t depend on how old the nucleus is at time s. (The
residual lifetime is independent of the age.)

Of course, this is unusual. Humans, for example, have different probabilities
of dying (in a given year, say) at different ages. How do we model this?

Replacing s by an infinitesimal quantity ds in equation (2), we see that,
for exponential X, P (X > t + ds|X > t) = exp(−λds) = 1 − λds, and so
P (X ≤ t+ds|X > t) = λds. In other words, the object has a λds probability
of dying in the next ds time units, conditional on having been alive up to
time t. For this reason, λ is called the hazard rate.

To model a liftetime distribution other than the exponential, we simply
replace the constant λ by a non-negative function λ(t) of the age t (called
the hazard rate function). Thus, λ(t)dt denotes the probability of dying
during (t, t+ dt] conditional on being alive at t. From this, we can work out
that the lifetime Y has cumulative distribution function FY given by

FY (t) =

{
1− exp

(
−
∫ t
0 λ(s)ds

)
, t ≥ 0,

0, t < 0.

(Check that this lifetime distribution indeed has the claimed hazard rate.
What condition on the function λ(·) is needed to make it a valid cdf? What
does it mean if this condition isn’t satisfied?)

Suppose Y is a Gamma random variable with parameter (α, λ) and α is a
whole number. Then, we can obtain Y as

Y = X1 + X2 + . . . + Xα,

where the Xi are iid Exponential random variables with parameter λ.

The normal distribution is possibly the most famous distribution in all
of probability. It is also known as the Gaussian distribution, after Carl
Friedrich Gauss, who used it to model errors in astronomical observations.
It owes its ubiquity in probability and statistics to the Central Limit Theo-
rem, which we’ll see later.
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