
Lecture 2

1 Expectation and variance

Intuitively, the average of a data set is one way of describing the “centre”
of the data set. It is not the only way; the median is another example. The
average, or mean, is defined for a data set x1, . . . , xn as

x =
1
n

n∑
i=1

xi.

There is a related quantity defined for random variables, called their expec-
tation. It is defined as

E[X] =
∑
n∈IN

xnP (X = xn),

if X is discrete and takes values in the set {x1, x2, . . .}. It is defined as

E[X] =
∫ ∞

−∞
xf(x)dx,

if X is continuous. (Both cases can be combined by defining it as E[X] =∫∞
−∞ xdF (x), using the Riemann-Stieltjes integral.)

What is the connection between the mean of a data set and the expectation
of a random variable? If the random variable were defined as a uniform
random sample from the data set, they would be the same.

Alternatively, if we were to generate a large data set by considering repeated,
independent realisations of the random variable, then the mean of this data
set would be close to the expectation of the random variable. This statement
is called the Law of Large Numbers.

Expectation of functions of a random variable: Let X be a random
variable and g a function. Then, Y = g(X) is another random variable (it is
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a function on the sample space defined by Y (ω) = (g ◦X)(ω)). To compute
its expectation as above, we would first have to compute the distribution of
the random variable Y . In fact, it turns out that there is an easier way:

E[Y ] =
∫ ∞

−∞
g(x)dF (x).

This should be intuitively obvious, at least in the discrete case.

Example: Let X be the outcome of the roll of a fair die, and define

Y = g(X) =
{

1, if X is even,
0, if X is odd.

Then, it is clear that P (Y = 1) = 1/2 and P (Y = 0) = 1/2, so E[Y ] = 0.5.
Alternatively, we have

E[Y ] =
6∑

n=1

g(n)P (X = n) = (0 + 1 + 0 + 1 + 0 + 1)
1
6

=
1
2
.

Properties of the expectation:

1. Expectation is linear: For any two random variables X and Y defined
on the same sample space, and any constants a and b, E[aX + bY ] =
aE[X] + bE[Y ]. This is a very important property of expectations.
Again, it is pretty easy to see in the discrete case. The result extends
in the obvious way to sums of finitely many random variables.

2. The expectation of a constant is equal to that constant. (Think of
a constant as a random variable which takes only one value, with
probability 1).

Variance: Let X be a random variable and let us denote E[X] by µ. The
variance of X is defined as Var(X) = E[(X − µ)2]. Another way to write
this is

Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2]
= E[X2]− 2µE[X] + µ2 = E[X2]− (E[X])2.

Note that the variance has to be non-negative, because it is the expectation
of a non-negative random variable. Thus, we have shown that E[X2] ≥
(EX)2 for any random variable X. It is also clear from the definition that,
for any real numbers a and b,

Var(aX + b) = a2Var(X),

and that the variance of a constant is zero.
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2 Joint and marginal distributions

Let us build up our intuition starting with discrete random variables. Roll
two “independent” fair dice. (We haven’t yet defined independence for ran-
dom variables but just use your intuition.) Let X be the number shown on
the first die, Y on the second and Z their sum. (Note that all three random
variables are defined on the same sample space, {1, . . . , 6}×{1, . . . , 6}.) The
joint distribution of (X, Y ) can be specified by writing down the probability
of each of the 36 possible outcomes (i, j), 1 ≤ i, j ≤ 6. Likewise, the joint
distribution of (X, Z) can be specified by specifying probabilities of 36 dif-
ferent events of the form (i, j), 1 ≤ i ≤ 6, i + 1 ≤ j ≤ i + 6. In both cases,
the function (i, j) 7→ p(i, j) is called the probability mass function.

Given the joint pmf for (X, Z), we can compute the “marginal” pmf for
one of them, say Z. For example, suppose we are given the following joint
probabilities:

pX,Z(1, 4) = pX,Z(2, 4) = pX,Z(3, 4) =
1
36

,

pX,Z(4, 4) = pX,Z(5, 4) = pX,Z(6, 4) = 0,

where pX,Z(i, j) denotes P (X = i, Z = j). Then we can compute

pZ(4) := P (Z = 4) =
6∑

i=1

pX,Z(i, 4) =
3
36

.

Definitions: Let X1, . . . , Xn be random variables defined on the same sam-
ple space. Their joint distribution function (or joint cdf) is defined as

FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)
= P ({ω ∈ Ω : (X1(ω), . . . , Xn(ω)) ∈ (−∞, x1]× · · · × (−∞, xn]}).

(What properties should F satisfy?) Note that the cdf is defined for both
discrete and continuous random variables.

We say that X1, . . . , Xn have joint density f if f is a non-negative function
such that

FX1,...,Xn(x1, . . . , xn) =
∫ x1

−∞
· · ·

∫ xn

−∞
f(u1, . . . , un)du1 · · · dun.

Likewise, we can find the probability that (X1, . . . , Xn) lie in a (measurable)
subset of IRn by integrating the joint density over this set.
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Covariance: Let X and Y be random variables on the same sample space.
Their covariance is defined as

Cov(X, Y ) = E[(X − EX)(Y − EY )].

Since EX and EY are numbers, (X−EX)(Y −EY ) is a function of (X, Y ),
i.e., it is also a random variable. Its expectation can be computed as

E[(X − EX)(Y − EY )] =
∫ ∞

−∞

∫ ∞

−∞
(x− EX)(y − EY )f(x, y)dxdy,

assuming that (X, Y ) have a joint density f .

The covariance can also be expressed as follows:

Cov(X, Y ) = E[XY −X · (EY )− Y · (EX) + (EX) · (EY )]
= E[XY ]− E[X · (EY )]− E[Y · (EX)] + E[(EX) · (EY )]
= E[XY ]− (EY ) · (EX)]− (EX) · (EY )] + (EX) · (EY )
= E[XY ]− (EX)(EY ).

The covariance of any two random variables has the following property:

(Cov(X, Y ))2 ≤ Var(X)Var(Y ).

This will follow from the fact that, for any two random variables,

(E[XY ])2 ≤ (E[X2])(E[Y 2]), (1)

for which we now give a proof. Note that

0 ≤ E[(X + aY )2] = E[X2] + 2aE[XY ] + a2E[Y 2] (2)

for all a ∈ IR. The minimum of the RHS is attained at a = −E[XY ]/E[Y 2].
Substituting this for a above, we get

0 ≤ E[X2]− 2
(E[XY ])2

E[Y 2]
+

(E[XY ])2

E[Y 2]
.

Re-arranging this yields (1) provided E[Y 2] 6= 0. If E[Y 2] = 0 but E[X2] 6=
0, the proof still works with X and Y interchanged. If E[X2] and E[Y 2] are
both zero, then (2) tells us that 2aE[XY ] ≥ 0 for all a ∈ IR, which is only
possible if E[XY ] = 0.
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Independence: We discussed earlier what it means for events to be in-
dependent. What does it mean for two or more random variables defined
on the same sample space to be independent? Loosely speaking, random
variables X1, . . . , Xn are mutually independent if any events involving each
of them individually are independent. More precisely, they are mutually
independent if, for any measurable subsets B1, . . . , Bn of IR, we have

P (X1 ∈ B1, . . . , Xn ∈ Bn) =
n∏

i=1

P (Xi ∈ Bi).

This is not an operationally useful definition (at least for continuous random
variables) because it is not feasible to check this equality for all measurable
subsets!

We have the following alternative characterisation of independence. Random
variables X1, . . . , Xn are mutually independent if, and only if,

FX1,...,Xn(x1, . . . , xn) = FX1(x1) · · ·FXn(xn), ∀x1, . . . , xn ∈ IR.

Here, FXi the marginal distribution of Xi. (Given the joint distribution,
how do you compute the marginal distribution?) Equivalently, if the random
variables possess a joint density, then they are mutually independent if, and
only if,

fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn), ∀x1, . . . , xn ∈ IR.

Note that the existence of marginal densities is guaranteed if there is a joint
density. (How do you compute the marginal densities from the joint?)

Examples:

1. Suppose U1 and U2 are uniform on [0, 1], and independent of each
other. Let X1 = min{U1, U2} and X2 = max{U1, U2}. Let us compute
the joint distribution of (X1, X2), denoted F . First, it is clear that
F (x1, x2) is equal to zero if either x1 or x2 is negative, and equal to 1
if both are bigger than 1.

Let us consider the case where both are between 0 and 1. (You might
want to work out the other cases for yourself.) First, if x1 > x2, it is
clear that F (x1, x2) = F (x2, x2), so it suffices to consider x1 ≤ x2. In
that case, we have

P (X1 ≤ x1, X2 ≤ x2) = P (U1 ≤ x1, U2 ≤ x1)
+P (U1 ≤ x1, x1 < U2 ≤ x2) + P (U2 ≤ x1, x1 < U1 ≤ x2)

= x2
1 + 2x1(x2 − x1) = 2x1x2 − x2

1).
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From this, we can calculate the density. On the region 0 ≤ x1 ≤ x2 ≤
1, the density is given by

f(x1, x2) =
∂2F (x, y)

∂x∂y
= 2.

The density is zero outside this region.

2. Let us return to the example of a dart thrown at a circular dartboard
of unit radius, and equally likely to fall anywhere on it. In this case,
it is easy to see that the dart’s position has density

f(x, y) =
1
π

1(x2 + y2 ≤ 1).

Are the co-ordinates X and Y independent? Can you compute the
marginal densities of X and Y ?

3. Multivariate normal distribution: The random variables X1, . . . , Xn

are said to be jointly normally distributed with mean vector µ =
(µ1, . . . , µn) and covariance matrix C if C is a positive definite ma-
trix, and they have the joint density function

f(x) =
1√

2π|det(C)|
exp

(
−1

2
(x− µ)T C−1(x− µ)

)
,

where x = (x1, . . . , xn)T .

3 Conditional distributions and conditional expec-
tations

Let us go back to the example of rolling two fair dice. Let X and Y denote
the number showing on the individual dice, and Z their sum. What do
we mean by the conditional distribution of X given Z? Earlier, we defined
conditional probability for events. What it means to specify the above is
to specify the conditional probability of every event involving X given any
event involving Z. How would this work in the above example?

Consider first the event Z = 2. Conditioning on this, we have

P (X = 1|Z = 2) =
P (X = 1, Z = 2)

P (Z = 2)
=

P (X = 1, Y = 1)
P (X = 1, Y = 1)

= 1.
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Also, it is clear that P (X = j|Z = 2) = 0 for all j ∈ {2, . . . , 6}. Likewise,
conditioning on Z = 3, we have P (X = 1|Z = 3) = P (X = 2|Z = 3) = 1/2
and P (X = j|Z = 3) = 0 for j /∈ {1, 2}. Similarly, we can compute
conditional probabilities conditioning on each of the “elementary” events
Z = k. We shall use the notation pX|Z(·|k) to denote the probability mass
function of X conditional on the event Z = k. (Recall that a conditional
probability is also a probability, hence this is a probability mass function.)

To complete the description, we also have to specify probabilities conditional
on events of the form Z ∈ {1, 2}, Z ∈ {2, 3, 5} etc. But this is not necessary,
because we can compute all such conditional probabilities from the marginal
distribution of Z, and the conditional pmf described above, using Bayes’
formula. For example,

P (X = 1|Z ∈ {2, 3}) =
P (X = 1, Z ∈ {2, 3})

P (Z ∈ {2, 3})

=
P (X = 1, Z = 2) + P (X = 1, Z = 3)

P (Z ∈ {2, 3})

=
pZ(2)pX|Z(1|2) + pZ(3)pX|Z(1|3)

pZ(2) + pZ(3)
.

The last quantity above can be computed given the marginal pmf of Z and
the conditional pmf of X conditioned on elementary events for Z.

It is not obvious how to extend this idea to continuous distributions because,
if X and Z are continuous random variables, then P (Z = z) will be zero
for any z. Hence, we can’t compute conditional probabilities conditional on
this event. But let’s do it heuristically anyway. Suppose (X, Z) have a joint
density fX,Z and marginals fX and fZ . Thus, for an infinitesimal dz, the
probability that Z is in (z, z +dz) is f(z)dz. Now, conditional on this, what
is the probability that X lies in (x, x + dx). We can compute this using
Bayes’ formula:

P (X ∈ (x, x + dx)|Z ∈ (z, z + dz)) =
P ((X, Z) ∈ (x, x + dx)× (z, z + dz))

P (Z ∈ (z, z + dz))
=

f(x, z)dxdz

f(z)dz
.

This motivates us to define the conditional density as follows:

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
.
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Note that, for each fixed z, this defines a density function. We can use it to
define the conditional cdf

FX|Z(x|z) =
∫ x

−∞
fX|Z(u|z)du.

Having defined conditional distributions, we can define the property of con-
ditional independence. We say that random variables X and Y are condi-
tionally independent given Z if

FX,Y |Z(x, y|z) = FX|Z(x|z)FY |Z(y|z) for all x, y, z.

Next, we turn to conditional expectations. Their definition is very similar to
that of conditional distributions. As usual, we start with the discrete space.
Let us go back to the example of the two dice, where X and Y denote the
outcomes on the individual dice, and Z their sum. Say we are interested
in the expectation of X conditional on Z. As in the case of conditional
distributions, it suffices to specify E[X|Z = z] for each possible value of z.
Thus, for example,

E[X|Z = 3] = 1 · P (X = 1|Z = 3) + 2 · P (X = 2|Z = 3) =
1
2

+
2
2

=
3
2
.

In general, in the discrete case,

E[X|Z = z] =
∑

xP (X = x|Z = z) =
∑

xP (X = x,Z = z)
P (Z = z)

.

This is a number, one for each possible value of Z. We can think of these
numbers as describing a function of Z. In other words, E[X|Z] = g(Z),
where g is the function defined by g(z) = E[X|Z = z]. Thus, E[X|Z] is
itself a random variable.

The definition of conditional expectations in the continuous case is anal-
ogous. We shall only be interested in cases where the joint (and hence,
conditional) densities exist. If that is so, we can define

E[X|Y = y] =
∫ ∞

−∞
xfX|Y (x|y)dx =

∫ ∞

−∞
x

fX,Y (x, y)
fY (y)

dx,

and think of E[X|Y ] as a function of Y , whose value at y is specified by the
equation above.
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Conditional expectation satisfies the same linearity property as expectation,
i.e., E[aX + bY |Z] = aE[X]+ bE[Y ]. The analogue of the second property,
namely that the expectation of a constant is constant, is somewhat different.
It is that the expectation of any function of Z, conditional on Z, behaves like
a constant. In particular, it is conditionally independent of every random
variable. In other words,

E[Xh(Z)|Z] = E[X|Z]E[h(Z)|Z] = h(Z)E[X|Z],

for any random variables X and Z, and any measurable function h.

Conditional expectation satisfies one more property, which doesn’t have an
analogue for expectations. Recall that E[X|Z] is itself a random variable.
What is the expected value of this random variable? It turns out that

E[E[X|Z]] = E[X].

This is easy to prove, at least in the discrete case. It can also be extended
in the form of a chain rule, as follows. Observe that E[X|Y, Z] is a function
of (Y, Z) and itself a random variable. If we compute its conditional expec-
tation given Z, then we get another random variable, which is a function of
Z. And we have,

E[E[E[X|Y, Z]|Z]] = E[X].
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