Lecture 3

1 Transformation of random variables

Example: Consider the probability space $\Omega=\{1, \ldots, 6\}, \mathcal{F}=$ all subsets of Ω, with probabilities $P(\omega)=1 / 6$ for all $\omega \in \Omega$.
(a) On this space, define the random variable $X(\omega)=\omega$. Then the pmf of X is $\{1 / 6, \ldots, 1 / 6\}$ on the set $\{1, \ldots, 6\}$. Suppose $Y=X^{2}$. Then what is the pmf of Y ?
(b) On the same space, suppose that X is defined instead as $X(\omega)=\omega-2$, and that again $Y=X^{2}$. What are the pmfs of X and Y ?

The idea can be extended to continuous random variables, but there is one subtlety involved.

Example: Suppose X is Uniform $([0,1])$ and $Y=2 X$. What are the cdf and pdf of Y ? We first compute the cdf. It is obvious that $F_{Y}(y)=0$ for $y<0$. Also,

$$
P(Y \leq y)=P(2 X \leq y)=P(X \leq y / 2)=y / 2 \text { for } y \in[0,2) .
$$

Finally, $F_{Y}(y)=1$ for $y \geq 2$. Differentiating the above cdf, we get $f_{Y}(y)=$ $1 / 2$ for $y \in(0,1)$ and $f_{Y}(y)=0$ otherwise.

Could we have guessed this? Intuitively, for an infinitesimal $d y$,

$$
P(Y \in(y, y+d y))=P(2 X \in(y, y+d y))=P\left(X \in\left(\frac{y}{2}, \frac{y}{2}+d y 2\right),\right.
$$

so that

$$
f_{Y}(y) d y=f_{X}\left(\frac{y}{2}\right) \frac{1}{2} d y
$$

which gives the same answer. This intuition can be extended.

Let X be a random variable, g be a differentiable and strictly monotone function, and let $Y=g(X)$. Then, by the same reasoning as above,

$$
f_{Y}(y) d y=f_{X}(x) d x
$$

where $y=g(x)$. How are $d y$ and $d x$ related? We want $y+d y=g(x+d x)$, so we must have $d y=g^{\prime}(x) d x$. We are almost there, except that the sign of $g^{\prime}(x)$ doesn't matter. (It may be the interval $(x-d x, x)$ that gets mapped to $(y, y+d y)$.) So, we have

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{1}{\mid g^{\prime}\left(g^{-1}(y) \mid\right.}, \tag{1}
\end{equation*}
$$

where the inverse g^{-1} of the function g is well-defined by the assumption that g is strictly monotone. (The domain of g^{-1} is the range of g.)

What if g isn't monotone? Then the equation $y=g(x)$ may have many solutions for x, and we have to add up the probability contributions from all of them. If there are only countably many solutions, then (1) changes to

$$
\begin{equation*}
f_{Y}(y)=\sum_{x: g(x)=y} f_{X}(x) \frac{1}{\left|g^{\prime}(x)\right|} \tag{2}
\end{equation*}
$$

The same idea extends to joint distributions. Suppose X_{1}, \ldots, X_{n} are random variables on the same sample space and $\left(Y_{1}, \ldots, Y_{n}\right)=g\left(X_{1}, \ldots, X_{n}\right)$ for some differentiable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then, using boldface to denote vectors,

$$
\begin{equation*}
f_{\mathbf{Y}}(\mathbf{y})=\sum_{\mathbf{x}: g(\mathbf{x})=\mathbf{y}} f_{\mathbf{X}}(\mathbf{x}) \frac{1}{\left|\operatorname{det}\left(J_{g}(\mathbf{x})\right)\right|} \tag{3}
\end{equation*}
$$

Here, $\operatorname{det}\left(J_{g}(\mathbf{x})\right)$ denotes the determinant of the Jacobian matrix

$$
J_{g}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial g_{n}}{\partial x_{1}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{1}}{\partial x_{n}}(\mathbf{x}) & \cdots & \frac{\partial g_{n}}{\partial x_{n}}(\mathbf{x})
\end{array}\right)
$$

2 Sums of independent random variables

Example: Suppose X and Y are the numbers obtained by rolling two dice, and suppose $Z=X+Y$. What is $P(Z=4)$?

If you have written that out in full, then you will see that for arbitrary discrete random variables X and Y taking only integer values, if we define Z as $X+Y$, then

$$
P(Z=n)=\sum_{k=-\infty}^{\infty} P(X=k, Y=n-k)
$$

If, moreover, X and Y are independent, then we can rewrite this as

$$
\begin{equation*}
P(Z=n)=\sum_{k=-\infty}^{\infty} P(X=k) P(Y=n-k) . \tag{4}
\end{equation*}
$$

If X and Y are continuous random variables, we get an analogous equation for the density of $Z=X+Y$:

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x \tag{5}
\end{equation*}
$$

The expressions on the RHS of (4) and (5) are called convolutions.

3 Generating functions and characteristic functions

Let X be a discrete random variable. Its generating function G_{X} is defined as

$$
G_{X}(z)=E\left[z^{X}\right]=\sum_{x} z^{x} P(X=x) .
$$

If X only takes values in $\{0,1,2, \ldots$,$\} , then the above is a power series in z$ and always converges for all z (real or complex) such that $|z| \leq 1$. The radius of convergence of a power series is defined as the largest value of r such that the power series converges whenever $|z| \leq r$. Thus, for generating functions, the radius of convergence is at least 1 , and could be bigger (possibly infinite).

Generating functions have the following properties:

1. $G_{X}(1)=E\left[1^{X}\right]=1$.
2. If $|z|<r$, where r is the radius of convergence, then $G_{X}^{\prime}(z)=E\left[X z^{X-1}\right]$, $G_{X}^{\prime \prime}(z)=E\left[X(X-1) z^{X-2}\right]$, and so on. In particular, $G_{X}^{\prime}(1)=E[X]$, $G_{X}^{\prime \prime}(1)=E[X(X-1)]$ etc., provided that G_{X} is twice differentiable at 1 ; this will be the case if the radius of convergence is strictly bigger than one. If not, we need to take a limit as z increases to 1 .
3. If X and Y are independent, and $Z=X+Y$, then

$$
G_{Z}(z)=E\left[z^{Z}\right]=E\left[z^{X+Y}\right]=E\left[z^{X} z^{Y}\right]=E\left[z^{X}\right] E\left[z^{Y}\right]=G_{X}(z) G_{Y}(z) .
$$

(Which equality in the chain above uses independence?)
There is a closely related function called the moment generating function (mgf), which we'll denote ϕ. It is defined as

$$
\phi_{X}(s)=E\left[e^{s X}\right] .
$$

If X has a density f_{X}, then

$$
\phi_{X}(s)=\int_{-\infty}^{\infty} e^{s x} f_{X}(x) d x
$$

(The integral is well-defined for all real s but could take the value $+\infty$.)
We can obtain the properties of mgfs analogous to those of generating functions. In particular,

1. $\phi_{X}(0)=1$.
2. If ϕ_{X} is finite in a neighbourhood of zero, then

$$
\phi_{X}^{(k)}(0)=E\left[X^{k}\right] .
$$

3. If X and Y are independent and $Z=X+Y$, then

$$
\phi_{Z}(s)=\phi_{X}(s) \phi_{Y}(s) .
$$

Finally, characteristic functions are just like generating functions, expect that they are defined on the imaginary axis instead of the real axis. We'll use ψ to denote the characteristic function, defined for a random variable X as $\psi_{X}(\theta)=E\left[e^{i \theta X}\right]$. If X has a density f_{X}, this implies that

$$
\psi_{X}(\theta)=\int_{-\infty}^{\infty} e^{i \theta x} f_{X}(x) d x
$$

You might recognise this as the Fourier transform of f_{X}. It can be inverted to obtain the density of X :

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \theta x} \psi_{X}(\theta) d \theta
$$

4 Probability inequalities

Markov's inequality: Suppose X is a positive random variable, i.e., $P(X \geq$ $0)=1$. Then, for any $a>0$,

$$
P(X>a) \leq \frac{E[X]}{a}
$$

This follows from the fact that

$$
X \geq X \cdot 1(X>a) \geq a 1(X>a)
$$

and so the expectations of these random variables obey the same inequalities. Here $1(X>a)$ denotes the random variable which takes the value 1 on $\{\omega \in$ $\Omega: X(\omega)>a\}$ and takes the value 0 on $\{\omega \in \Omega: X(\omega) \leq a\}$. It is called the indicator of the event $\{X>a\}$. Note that $E[1(X>a)]=P(X>a)$. In general, the expectation of the indicator of an event is the probability of that event.

Chebyshev's inequality: Let X be any random variable. Take Y to be the random variable $Y=(X-E[X])^{2}$. Then Y is positive and $E[Y]=\operatorname{Var}(X)$. Applying Markov's inequality to Y (and then restating it in terms of X), we get

$$
P(|X-E[X]|>a) \leq \frac{\operatorname{Var}(X)}{a^{2}}
$$

Chernoff's inequality: Let X be any random variable and take $Y=e^{\theta X}$, which is positive for all real θ. Applying Markov's inequality to Y yields

$$
P(X>a) \leq e^{-\theta a} E\left[e^{\theta X}\right]=e^{-\theta a} \phi(\theta) \quad \forall \theta \geq 0
$$

Why only for $\theta \geq 0$ and not all real θ ? Can you state a corresponding inequality for $P(X<a)$?

5 Laws of large numbers and the central limit theorem

Convergence of random variables Let X and X_{1}, X_{2}, \ldots be random variables defined on the same sample space. We say that the sequence X_{n} converges to X in probability if

$$
\begin{equation*}
P\left(\left|X_{n}-X\right|>\delta\right) \rightarrow 0 \quad \forall \delta>0 \tag{6}
\end{equation*}
$$

Go back to thinking of random variables as functions on the sample space. We say that the functions X_{n} converge pointwise to X if $X_{n}(\omega)$ converges to $X(\omega)$ for all $\omega \in$ Omega. Is convergence in probability the same as pointwise convergence? The answer is no. But there is a notion of convergence which is closely related to pointwise convergence.

We say that the sequence X_{n} converges to X almost surely (a.s.) if

$$
\begin{equation*}
P\left(\left\{\omega: X_{n}(\omega) \rightarrow X(\omega)\right\}\right)=1 . \tag{7}
\end{equation*}
$$

Almost sure convergence implies convergence in probability but not the other way round.

Suppose now that the random variables X_{1}, X_{2}, \ldots are independent and identically distributed (iid), and also that they have finite mean μ. Define $S_{n}=X_{1}+\ldots+X_{n}$. Then,

$$
\begin{array}{ll}
\frac{S_{n}}{n} \rightarrow \mu \text { in probability } & \text { (weak law of large numbers) } \\
\frac{S_{n}}{n} \rightarrow \mu \text { almost surely } & \text { (strong law of large numbers) }
\end{array}
$$

We now give a proof of the WLLN under the stronger assumption that the X_{i} have finite variance, denoted σ^{2}. First observe that

$$
\operatorname{Var}\left(\frac{S_{n}}{n}\right)=\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right)=\frac{\sigma^{2}}{n} .
$$

On the other hand, $E\left[S_{n} / n\right]=\mu$. Hence, by Chebyshev's inequality,

$$
P\left(\left|\frac{S_{b}}{n}-\mu\right|>\delta\right) \leq \frac{\sigma^{2}}{n \delta},
$$

which tends to zero as n tends to infinity.
Central Limit Theorem: Suppose as before that X_{1}, X_{2}, \ldots are iid random variables, and assume that they have both finite mean μ and finite variance σ^{2}. Define S_{n} as before, and Z_{n} as $\left(S_{n}-n \mu\right) / \sigma^{2}$. Then the sequence of random variables Z_{n} converges in distribution to a standard normal random variable Z.

I haven't defined convergence in distribution. A formal definition is that, for all bounded continuous functions $g, E\left[g\left(Z_{n}\right)\right]$ converges to $E[g(Z)]$. In the context of the CLT, it means that for all intervals $(a, b), P\left(Z_{n} \in(a, b)\right)$ converges to $P(Z \in(a, b))$. (If the limiting distribution was not continuous, then we'd have to be careful about points of discontinuity of the cdf. The definition in terms of bounded continuous functions avoids this technicality.)

