
Lecture 3

1 Transformation of random variables

Example: Consider the probability space Ω = {1, . . . , 6}, F = all subsets
of Ω, with probabilities P (ω) = 1/6 for all ω ∈ Ω.
(a) On this space, define the random variable X(ω) = ω. Then the pmf of
X is {1/6, . . . , 1/6} on the set {1, . . . , 6}. Suppose Y = X2. Then what is
the pmf of Y ?
(b) On the same space, suppose that X is defined instead as X(ω) = ω− 2,
and that again Y = X2. What are the pmfs of X and Y ?

The idea can be extended to continuous random variables, but there is one
subtlety involved.

Example: Suppose X is Uniform([0, 1]) and Y = 2X. What are the cdf
and pdf of Y ? We first compute the cdf. It is obvious that FY (y) = 0 for
y < 0. Also,

P (Y ≤ y) = P (2X ≤ y) = P (X ≤ y/2) = y/2 for y ∈ [0, 2).

Finally, FY (y) = 1 for y ≥ 2. Differentiating the above cdf, we get fY (y) =
1/2 for y ∈ (0, 1) and fY (y) = 0 otherwise.

Could we have guessed this? Intuitively, for an infinitesimal dy,

P (Y ∈ (y, y + dy)) = P (2X ∈ (y, y + dy)) = P
(
X ∈

(y
2
,
y

2
+ dy2

)
,

so that
fY (y)dy = fX

(y
2

)1
2
dy,

which gives the same answer. This intuition can be extended.
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Let X be a random variable, g be a differentiable and strictly monotone
function, and let Y = g(X). Then, by the same reasoning as above,

fY (y)dy = fX(x)dx,

where y = g(x). How are dy and dx related? We want y + dy = g(x+ dx),
so we must have dy = g′(x)dx. We are almost there, except that the sign of
g′(x) doesn’t matter. (It may be the interval (x− dx, x) that gets mapped
to (y, y + dy).) So, we have

fY (y) = fX(g−1(y))
1

|g′(g−1(y)|
, (1)

where the inverse g−1 of the function g is well-defined by the assumption
that g is strictly monotone. (The domain of g−1 is the range of g.)

What if g isn’t monotone? Then the equation y = g(x) may have many
solutions for x, and we have to add up the probability contributions from
all of them. If there are only countably many solutions, then (1) changes to

fY (y) =
∑

x:g(x)=y

fX(x)
1

|g′(x)|
. (2)

The same idea extends to joint distributions. Suppose X1, . . . , Xn are ran-
dom variables on the same sample space and (Y1, . . . , Yn) = g(X1, . . . , Xn)
for some differentiable function g : IRn → IRn. Then, using boldface to
denote vectors,

fY(y) =
∑

x:g(x)=y

fX(x)
1

|det(Jg(x))|
. (3)

Here, det(Jg(x)) denotes the determinant of the Jacobian matrix

Jg(x) =


∂g1

∂x1
(x) · · · ∂gn

∂x1
(x)

...
. . .

...
∂g1

∂xn
(x) · · · ∂gn

∂xn
(x)



2 Sums of independent random variables

Example: Suppose X and Y are the numbers obtained by rolling two dice,
and suppose Z = X + Y . What is P (Z = 4)?
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If you have written that out in full, then you will see that for arbitrary
discrete random variables X and Y taking only integer values, if we define
Z as X + Y , then

P (Z = n) =
∞∑

k=−∞
P (X = k, Y = n− k).

If, moreover, X and Y are independent, then we can rewrite this as

P (Z = n) =
∞∑

k=−∞
P (X = k)P (Y = n− k). (4)

If X and Y are continuous random variables, we get an analogous equation
for the density of Z = X + Y :

fZ(z) =
∫ ∞

−∞
fX(x)fY (z − x)dx. (5)

The expressions on the RHS of (4) and (5) are called convolutions.

3 Generating functions and characteristic functions

Let X be a discrete random variable. Its generating function GX is defined
as

GX(z) = E[zX ] =
∑
x

zxP (X = x).

If X only takes values in {0, 1, 2, . . . , }, then the above is a power series in z
and always converges for all z (real or complex) such that |z| ≤ 1. The radius
of convergence of a power series is defined as the largest value of r such that
the power series converges whenever |z| ≤ r. Thus, for generating functions,
the radius of convergence is at least 1, and could be bigger (possibly infinite).

Generating functions have the following properties:

1. GX(1) = E[1X ] = 1.

2. If |z| < r, where r is the radius of convergence, thenG′X(z) = E[XzX−1],
G′′X(z) = E[X(X − 1)zX−2], and so on. In particular, G′X(1) = E[X],
G′′X(1) = E[X(X − 1)] etc., provided that GX is twice differentiable
at 1; this will be the case if the radius of convergence is strictly bigger
than one. If not, we need to take a limit as z increases to 1.
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3. If X and Y are independent, and Z = X + Y , then

GZ(z) = E[zZ ] = E[zX+Y ] = E[zXzY ] = E[zX ]E[zY ] = GX(z)GY (z).

(Which equality in the chain above uses independence?)

There is a closely related function called the moment generating function
(mgf), which we’ll denote φ. It is defined as

φX(s) = E[esX ].

If X has a density fX , then

φX(s) =
∫ ∞

−∞
esxfX(x)dx.

(The integral is well-defined for all real s but could take the value +∞.)

We can obtain the properties of mgfs analogous to those of generating func-
tions. In particular,

1. φX(0) = 1.

2. If φX is finite in a neighbourhood of zero, then

φ
(k)
X (0) = E[Xk].

3. If X and Y are independent and Z = X + Y , then

φZ(s) = φX(s)φY (s).

Finally, characteristic functions are just like generating functions, expect
that they are defined on the imaginary axis instead of the real axis. We’ll
use ψ to denote the characteristic function, defined for a random variable X
as ψX(θ) = E[eiθX ]. If X has a density fX , this implies that

ψX(θ) =
∫ ∞

−∞
eiθxfX(x)dx.

You might recognise this as the Fourier transform of fX . It can be inverted
to obtain the density of X:

fX(x) =
1
2π

∫ ∞

−∞
e−iθxψX(θ)dθ.
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4 Probability inequalities

Markov’s inequality: SupposeX is a positive random variable, i.e., P (X ≥
0) = 1. Then, for any a > 0,

P (X > a) ≤ E[X]
a

.

This follows from the fact that

X ≥ X · 1(X > a) ≥ a1(X > a),

and so the expectations of these random variables obey the same inequalities.
Here 1(X > a) denotes the random variable which takes the value 1 on {ω ∈
Ω : X(ω) > a} and takes the value 0 on {ω ∈ Ω : X(ω) ≤ a}. It is called
the indicator of the event {X > a}. Note that E[1(X > a)] = P (X > a).
In general, the expectation of the indicator of an event is the probability of
that event.

Chebyshev’s inequality: LetX be any random variable. Take Y to be the
random variable Y = (X−E[X])2. Then Y is positive and E[Y ] = Var(X).
Applying Markov’s inequality to Y (and then restating it in terms of X),
we get

P (|X − E[X]| > a) ≤ Var(X)
a2

.

Chernoff’s inequality: Let X be any random variable and take Y = eθX ,
which is positive for all real θ. Applying Markov’s inequality to Y yields

P (X > a) ≤ e−θaE[eθX ] = e−θaφ(θ) ∀ θ ≥ 0.

Why only for θ ≥ 0 and not all real θ? Can you state a corresponding
inequality for P (X < a)?

5 Laws of large numbers and the central limit the-
orem

Convergence of random variables Let X and X1, X2, . . . be random
variables defined on the same sample space. We say that the sequence Xn

converges to X in probability if

P (|Xn −X| > δ) → 0 ∀δ > 0. (6)
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Go back to thinking of random variables as functions on the sample space.
We say that the functions Xn converge pointwise to X if Xn(ω) converges to
X(ω) for all ω ∈ Omega. Is convergence in probability the same as pointwise
convergence? The answer is no. But there is a notion of convergence which
is closely related to pointwise convergence.

We say that the sequence Xn converges to X almost surely (a.s.) if

P ({ω : Xn(ω) → X(ω)}) = 1. (7)

Almost sure convergence implies convergence in probability but not the other
way round.

Suppose now that the random variables X1, X2, . . . are independent and
identically distributed (iid), and also that they have finite mean µ. Define
Sn = X1 + . . .+Xn. Then,

Sn

n
→ µ in probability (weak law of large numbers)

Sn

n
→ µ almost surely (strong law of large numbers)

We now give a proof of the WLLN under the stronger assumption that the
Xi have finite variance, denoted σ2. First observe that

Var
(Sn

n

)
=

1
n2

(Var(X1) + . . .+ Var(Xn)) =
σ2

n
.

On the other hand, E[Sn/n] = µ. Hence, by Chebyshev’s inequality,

P
(∣∣∣ Sb

n
− µ

∣∣∣> δ
)
≤ σ2

nδ
,

which tends to zero as n tends to infinity.

Central Limit Theorem: Suppose as before that X1, X2, . . . are iid ran-
dom variables, and assume that they have both finite mean µ and finite vari-
ance σ2. Define Sn as before, and Zn as (Sn−nµ)/σ2. Then the sequence of
random variables Zn converges in distribution to a standard normal random
variable Z.

I haven’t defined convergence in distribution. A formal definition is that,
for all bounded continuous functions g, E[g(Zn)] converges to E[g(Z)]. In
the context of the CLT, it means that for all intervals (a, b), P (Zn ∈ (a, b))
converges to P (Z ∈ (a, b)). (If the limiting distribution was not continuous,
then we’d have to be careful about points of discontinuity of the cdf. The
definition in terms of bounded continuous functions avoids this technicality.)
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