Problem set 2

1. Show that the expectation, $E[X]$, of a random variable X has the following optimality property: For any real number $a, E\left[(X-a)^{2}\right] \geq E[(X-$ $E X)^{2}$], with equality only if $a=E X$. What does this say, in words?
2. (a) For any two random variables X and Y defined on the same probability space, show that

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

(b) If X and Y are independent of each other, then show that $\operatorname{Cov}(X, Y)=0$ and, consequently, that $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. (c) If $\operatorname{Cov}(X, Y)=$ 0 , does it follow that X and Y are independent?
3. (a) Let U_{1} and U_{2} be independent random variables, uniformly distributed on $[0,1]$. Compute $P\left(U_{1}+U_{2}<1\right)$ by integrating their joint density over an appropriate region. (b) Alice and Bob agree to meet in front of the Wills Building at 12.30 pm . Neither is very punctual, and is equally likely to turn up anytime between 12 noon and 1 pm . Assuming that whoever comes first waits for the other, what is the probability that neither of them will have to wait longer than 10 minutes? (Hint: Draw a picture representing their respective arrival times on a graph. What is the region corresponding to the event of interest?)
4. Coupon collector problem: In order to increase sales of boxes of cereal, they are sold containing pictures of sports stars, and purchasers try to collect a complete set of these pictures. Suppose there are n pictures, and each box is equally likely to contain any of them. How many boxes (approximately) do you need to buy in order to collect all n pictures? Ignore trading of pictures.

Let N be the number of boxes you need to buy to collect all n coupons, and N_{i} the number of boxes you need to buy to get the $i^{\text {th }}$ distinct picture after
you already have $i-1$ distinct pictures.
(a) It is clear that $N=N_{1}+N_{2}+\ldots+N_{n}$. Use this to compute $E[N]$ and $\operatorname{Var}(N)$. (b) If n is large, show using Chebyshev's inequality that the random variable N lies close to $E[N]$ with high probability. (Coming up with a "mathematical" statement of the above is part of what you are being asked to do.)
5. Given a set of positive real numbers x_{1}, \ldots, x_{n}, their arithmetic, geometric and harmonic means are defined as follows:

$$
A M=\frac{1}{n} \sum_{i=1}^{n} x_{i}, G M=\exp \left(\frac{1}{n} \sum_{i=1}^{n} \log \left(x_{i}\right)\right), H M=\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{-1} .
$$

Show using Jensen's inequality that $H M \leq G M \leq A M$.
6. (a) Suppose X is Uniform $([0,1])$ and $Y=-\lambda \log X$ for some given $\lambda>0$. Compute the cdf of Y, and thereby obtain the pdf.
(b) Suppose R is an $\operatorname{Exp}(1)$ random variable and Θ is uniform on $[0,2 \pi]$. Define $X=R \cos (\Theta), Y=R \sin (\Theta)$. What is the joint pdf of (X, Y) ? What are the marginal pdfs, and are X and Y independent? Do you recognise this joint distribution? (c) Suppose X is $\operatorname{Normal}(0,1)$, and we want to obtain a random variable Y which is $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Can you guess how to get Y as a function of X ? Can you prove that your guess is correct?
7. Simulation of random variables. Method of inversion:

Computers are programmed to generate iid random variables uniformly distributed on $[0,1]$. (That statement needs qualification, but let's accept it.) But in many applications, we need random variables with other distributions. How can we obtain (samples of) them from iid samples of a uniform random variable?

Suppose we are given a sample X of a Uniform $([0,1])$ random variable, but want a sample of a random variable Y with a specified cdf F. We could ask whether there is some transformation $g(X)$ that will yield the cdf F. It turns out that the answer is yes, always. (But it is only in special cases that g will have a nice expression that makes it easy to compute.)
(a) Can you find the relationship between g and F ?
(b) The Cauchy distribution has density

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad-\infty<x<\infty .
$$

How would you generate a sample of a Cauchy random variable? (Hint: $\int_{-\infty}^{y} \frac{1}{1+x^{2}} d x=\tan ^{-1}(y)+\frac{\pi}{2}$.)
(c) The Pareto distribution with parameter $\alpha>1$ has density

$$
f(x)=(\alpha-1)(1+x)^{-\alpha}, x \geq 0 .
$$

How would you generate a $\operatorname{Pareto}(\alpha)$ random variable?
8. Simulation of random variables: Rejection sampling The inversion method isn't always practical because F may not be easy to invert. Suppose we want to simulate (samples of) a random variable X with density f_{X}, and we know how to simulate a random variable Y with density f_{Y}. Suppose moreover that there is a constant $c>0$ such that $f_{X}(x) \leq c f_{Y}(x)$ for all x. We then use the following procedure.

Generate a random sample of Y. Say it has the value y. Accept this sample with probability $f_{X}(y) /\left(c f_{Y}(y)\right)$ (e.g., by generating an auxiliary random sample U uniformly distributed on $[0,1]$ and accepting y only if $\left.U<f_{X}(y) /\left(c f_{Y}(y)\right)\right)$. Repeat this procedure until a sample is accepted.
(a) Show that this procedure yields samples with the desired density f_{X}.
(b) Explain how to use it to obtain a sample from the density $x e^{-x}$ on the positive real line, given samples of an $\operatorname{Exp}(1)$ random variable, which has density e^{-x} on the positive real line.
9. (a) Suppose X is $\operatorname{Binomial}(n, p), Y$ is $\operatorname{Binomial}(m, p)$, and X and Y are independent of each other. What is the distribution of $X+Y$? (If you can guess the answer without calculating it, that's fine, but explain your reasons in words.)
(b) Suppose X is $\operatorname{Poisson}(\lambda)$ and independent of Y which is $\operatorname{Poisson}(\mu)$. Calculate the distribution of $Z=X+Y$ using a method of your choice. Do you recognise this distribution? Can you provide an intuitive explanation? (Hint: Recall that the Poisson distribution is a limit of Binomial distributions.)
10. (a) Suppose N is $\operatorname{Binomial}(n, p)$ and X_{1}, X_{2}, \ldots are iid $\operatorname{Bernoulli}(q)$. Let $Y=X_{1}+\ldots+X_{N}$ (with an empty set being defined to be zero). Use generating functions to find the distribution of Y. Explain the answer.
(b) Repeat if N is Poisson (λ).

