
Euro. Jnl of Applied Mathematics (2007), vol. 18, pp. 337–362. c© 2007 Cambridge University Press

doi:10.1017/S0956792507006985 Printed in the United Kingdom
337

Freely draining gravity currents in porous media:
Dipole self-similar solutions with and without

capillary retention

JOCHONIA S. MATHUNJWA and ANDREW J. HOGG

Centre of Environmental and Geophysical Flows School of Mathematics,

University of Bristol University Walk, Bristol BS8 1TW, UK

email: a.j.hogg@bris.ac.uk

(Received 30 March 2007)

We analyse the two-dimensional, gravitationally-driven spreading of fluid through a porous

medium overlying a horizontal impermeable boundary from which fluid can drain freely at

one end. Under the assumption that none of the intruding fluid is retained within the pores

in the trail of the current, the motion of the current is described by the dipole self-similar

solution of the first kind derived by Barenblatt and Zel’dovich (1957). We show that small

perturbations of arbitrary shape imposed on this solution decay in time, indicating that

the self-similar solution is linearly stable. We use the connection between the perturbation

eigenfunctions and symmetry transformations of the self-similar solution to demonstrate that

variables can always be specified in terms of which the rate of decay of the perturbations is

maximised. Unsaturated flow can be modelled by assuming that a constant fraction of the

fluid is retained within the pores by capillary action in the trail of the current. It has been

shown (Barenblatt and Zel’dovich, 1998; Ingerman and Shvets, 1999) that in this case, the

motion of the current is described by a self-similar solution of the second kind characterised

by an anomalous exponent. We derive leading-order analytic expressions for the anomalous

exponent and the self-similar quantities valid for small values of the fraction of fluid retained

using direct asymptotic analysis and by using a novel application of the method of multiple

scales. The latter offers a number of advantages and permits the evolution of the current

to be clearly connected with its initial conditions in a way not possible with conventional

approaches. We demonstrate that the theoretical predictions provided by these expressions

are in excellent agreement with results from the numerical integration of the governing

equations.

1 Introduction

Gravity-driven motion through porous media occurs in numerous environmental and

industrial settings, driven by density gradients between the intruding and ambient fluids.

Often in situations where the porous medium is of semi-infinite lateral extent, as the

current spreads into the medium, part of the fluid freely drains out from the ends of the

domain. Examples of such situations include groundwater flows that border rivers and

oceans where, after flooding during high tide, water freely drains back at low tide, and the

borders of a reservoir that may become contaminated when the reservoir is flooded and
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bursts, but, as it spreads into the porous formation, the contaminated fluid also drains

back when the reservoir level returns to normal.

In this paper, we study the two-dimensional motion of a gravity current that flows

through a porous medium over an impenetrable horizontal boundary and drains freely

from one end, subsequent to a finite release of dense fluid. We first consider a model

for saturated flow in which it is assumed that there is no capillary retention of fluid

within the pores wetted by the intruding fluid. Although the volume of the current is not

constant in time, it has been shown by Barenblatt and Zel’dovich (1957) that provided the

volume flux of the fluid draining out remains finite, a quantity termed the dipole moment

of the current and defined below is conserved in time. Then the intermediate asymptotic

development of current is described by a self-similar solution of the first kind (SS1).

This dipole self-similar solution models the flow of currents through saturated porous

media and its theoretical predictions have been found to be in excellent agreement with

experimental results (King and Woods, 2003). Dipole moment preserving solutions have

also been constructed in the rather different physical context of capillary-driven spreading

of fluid droplets (see, for example, Bernis et al., 2000; and Bowen and Witelski, 2006).

The purpose of the first part of this paper is to analyse the linear stability properties

of the self-similar solution to the dipole-preserving flow with a porous domain. We

impose a disturbance (perturbation) of arbitrary shape on the self-similar solution and

perform a linearised analysis to determine the subsequent development of the system. The

analysis reveals that all disturbance eigenfunctions decay in time at rates that may be

calculated analytically and this establishes that the dipole self-similar solution is linearly

stable. We then demonstrate the connection between the disturbance eigenfunctions and

the symmetry transformations of the dipole self-similar solution, and show that optimal

variables can always be found in terms of which the leading-order rate of decay of the

disturbance is maximised.

When fluid flows through an unsaturated porous domain, a proportion of it may

be retained in the wetted pores due to capillary action (see, for example, Bear, 1988;

Barenblatt, 1996). The retention affects the motion − and, in particular, this implies

that the dipole moment is no longer constant in time. Under the assumption that the

fraction of fluid retained is constant (see, for example, Barenblatt, 1996), the intermediate

asymptotic behaviour of the current is given by a dipole self-similar solution of the second

kind (SS2). The fundamental governing equations of this fluid motion have been proposed

by Barenblatt and Vazquez (1998), calculated numerically by Ingerman and Shvets (1999)

and analysed in the regime of small retention by Wagner (2005). We remark that in

general, while SS1 describes the intermediate asymptotics of problems that satisfy certain

integral conservation laws, SS2 describes the intermediate asymptotics of problems for

which these integral conservation laws no longer hold − and this is the situation for

these flows. Furthermore, a characteristic trait of problems described by SS1 is that their

intermediate asymptotic behaviour is independent of the precise initial conditions. Thus

for this case, in the absence of retention, gravity currents with equal dipole moments

but different initial height profiles will be indistinguishable in the intermediate regime.

The self-similar exponents are determined by the use of dimensional analysis and the

integral conservation law of the dipole moment. For problems described by SS2, the

intermediate asymptotic behaviour is not completely independent of the initial conditions.
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The use of dimensional analysis partially determines the similarity exponents in terms of

a non-trivial anomalous exponent. The standard procedure of obtaining the remaining

similarity parameters involves numerically solving an eigenvalue problem to determine the

anomalous exponent, and matching with a numerical solution of the particular problem

to specify the rest of the parameters. Thus for a given initial condition, although the

similarity exponent may be calculated directly or by asymptotic means such as those

developed by Goldenfeld et al. (1990) and Wagner (2005), it has not been possible to

develop a complete description of the flow without recourse to numerical integration of

the governing partial differential equations. In this paper, we suggest a means for avoiding

these numerical calculations and yet still capturing the anomalous exponent that is the

key feature of SS2.

In the second part of the paper, we study currents described by dipole SS2. We first

calculate the similarity solutions numerically and obtain results similar to those found by

Ingerman and Shvets (1999). We demonstrate that it is possible to evaluate the anomalous

exponents in the regimes of weak and strong capillary retention, using direct asymptotic

techniques that in the regime of weak retention recover results identical to those of

Wagner (2005) without the need for more elaborate asymptotic strategies. Weak capillary

retention modifies the motion over very long time scale relative to the inherent time

scale of the flow. We exploit this separation by using the method of multiple scales to

obtain the leading-order analytical expression for the anomalous similarity exponents,

which is in accord with that calculated using other techniques, and the other similarity

parameters. This approach improves on previous procedures of finding SS2 because it

permits the evolution of the current in the self-similar regime to be related to the initial

conditions in a way not possible with these techniques. Thus, it fully determines the

similarity parameters and does not need to be supplemented by numerical calculations.

Taken together, the two parts of this paper show how, if the capillary retention is weak

and from given initial conditions, the motion first approaches that described by an SS1,

defined solely by the initial dipole moment and then over much longer timescales is

modified by retention entering a new spreading regime. This process is illustrated by

the numerical integration of the governing partial differential equation from a particular

initial condition and it is shown that the numerically calculated values are in excellent

agreement with the theoretical predictions.

The paper is organised as follows. We consider currents with no capillary retention in

section 2. The dipole SS1 is presented and generalised in section 2.1 for a current through

a porous medium with permeability that is constant or varies with vertical distance. In

section 2.2, we perform a new linear stability analysis and show that the dipole SS1 is

linearly stable. The connection between the disturbance eigenfunctions and the symmetry

transformations of the dipole SS1 is shown in section 2.3, where an estimate of the leading-

order rate of decay of the disturbance is also made. Currents with capillary retention

are considered in section 3. A numerical solution of the eigenvalue problem for the

anomalous exponent and the dipole SS2 is presented in section 3.1. Then, in section 3.2,

the leading-order analytic expressions for the anomalous exponent and the dipole SS2 are

derived using the method of multiple scales. In section 4, we present a comparison between

the theoretical predictions and numerical integration of the governing partial differential

equations. A summary of the main findings of the paper is presented in section 5. We also
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Figure 1. The configuration of the flow. The gravity current spreads through the porous medium,

over the horizontal impermeable boundary and drains freely at x = 0.

include an appendix that applies direct asymptotic analysis of the equation governing the

form of SS2 in the regimes of weak and strong retention of fluid to reveal the dependence

of the anomalous exponent upon the fraction of fluid retained.

2 Currents with no capillary retention

We analyse the lateral spreading of a two-dimensional gravity current produced by

the finite release of fluid in a semi-infinite porous medium overlying an impermeable

horizontal boundary from which fluid can drain freely at one end. We assume that the

porous medium is initially saturated with fluid of density ρ while the intruding fluid

has density ρ + ∆ρ. The geometry of the flow is illustrated in Figure 1. Thus, as the

current spreads into the porous medium (x > 0), it simultaneously drains freely at x = 0.

We also assume that the porous medium is homogeneous in horizontal directions, but

varies vertically according to K0z
α−1, where K0 > 0 and α > 0 are constants and z is

the dimensionless vertical distance from the lower boundary. We consider the case where

none of the fluid is retained within the pores by capillary action as the current flows and

when the current is sufficiently shallow that the pressure adopts hydrostatic balance in

the vertical direction.

Then, the motion of the shallow gravity current is governed by the porous medium

equation,

∂th = κ∂x(h
α∂xh), (2.1)

where h is the height of the current, κ = K0∆ρg/µ, g is the gravitational acceleration and

µ is the dynamic viscosity (see, for example, Huppert & Woods, 1995; Barenblatt, 1996;

King & Woods, 2003). We introduce a dimensionless time τ = t/t0 and nondimensionalise

lengths with respect to (κt0)
1/(2−α), where t= t0 is some reference initial time. The governing

equation then becomes

∂τh = ∂x(h
α∂xh), (2.2)

and the boundary conditions are given by

h(0, τ) = 0, (2.3)

h(xF, τ) = 0, (2.4)

where xF(τ) is the dimensionless position of the front of the current. These conditions
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indicate that the height vanishes at the origin and at the front of the current, respectively.

In addition, the volume flux per unit width, q = hα∂xh, is assumed to remain finite at the

origin (x = 0) and vanish at the front (x = xF).

The problem defined by equations (2.2)–(2.4) and the condition of vanishing flux at

the front does not conserve the volume per unit width of the current as the fluid flows,

because fluid drains out of the domain at x = 0. However, for the case α = 1 corresponding

to a porous medium with constant permeability, it has been shown by Barenblatt and

Zel’dovich (1957) that the dipole moment M defined by

M =

∫ xF

0

xh(x, τ) dx (2.5)

remains constant in time for these flows provided q(0, τ) is finite. It is straightforward to

show that this property is satisfied by the problem for general values of α> 0. Differenti-

ating (2.5) with respect to τ and combining it with (2.2) yields

d

dτ

∫ xF

0

xh(x, τ) dx =
dxF

dτ
xFh(xF, τ) +

∫ xF

0

x∂τh dx

=

∫ xF

0

x∂x(h
α∂xh) dx

= [x(hα∂xh) − hα+1/(α+ 1)]xF

0 = 0,

which is valid provided that the volume flux per unit width vanishes at the front and

remains finite at the origin.

2.1 Dipole self-similar solution of the first kind

The constancy of the dipole moment throughout the motion suggests that it is possible

to find a similarity solution for the motion. This we construct as follows to recover the

similarity scalings developed by Barenblatt and Zel’dovich (1957): based on (2.2) and

(2.5), scaling arguments indicate that hα ∼ x2/τ and x2h ∼ M, respectively. Eliminating h

yields the scale of the length of the current to be

x ∼ (Mατ)
1

2(α+1) . (2.6)

Guided by these scalings, we look for a similarity solution of the form

h =

(
M
τ

) 1
α+1

Ψ (ξ), where ξ = x/(Mατ)
1

2(α+1) , (2.7)

and where the position of the front is given by xF = ξF0(M
ατ)1/(2α+2). Substituting this

into the governing equation (2.2) yields an ordinary differential equation for Ψ

(α+ 1)(ΨαΨ ′)′ + 1
2
ξΨ ′ +Ψ = 0, (2.8)
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Figure 2. The height profiles of the similarity solutions for dipole gravity currents moving through

a porous domain, Ψ , plotted as a function of the rescaled similarity variable η = ξ/ξF0 for α = 1/3, 1

and 3.

where prime denotes differentiation with respect to ξ. The boundary conditions (2.3)–(2.5)

now become

Ψ (0) = 0, Ψ (ξF0) = 0 and

∫ ξF0

0

ξΨ (ξ) dξ = 1. (2.9)

Multiplying the equation (2.8) by ξ, integrating by parts, and applying the boundary

condition (2.9, first condition) give

(α+ 1)ξ(Ψα)′ − αΨα + 1
2
αξ2 = 0, (2.10)

which is a first-order differential equation in Ψα. After a further integration and use of

the boundary condition (2.9, second condition), we obtain

Ψα =
α

2(α+ 2)

(
Kξ

α
α+1 − ξ2

)
+
, (2.11)

where Kα+1 = ξα+2
F0 and ξ+ ≡ max(ξ, 0) (Barenblatt and Zel’dovich, 1957). The form of

this self-similar solution is shown in Figure 2 for different values of α. The position of the

front can now be found by substituting the solution into the integral condition (2.9, third

condition), and it is given by

ξ
2+2/α
F0 B

(
1 +

1

α
,
2α+ 3

α+ 2

)
=

(
α+ 2

α+ 1

) [
2

(
1 +

2

α

)]1/α

, (2.12)
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where B denotes the Beta function. Under the similarity solution, the volume per unit

width of the current, V (τ), and the volume flux per unit width of fluid that drains out at

x = 0, q(0, τ) are given by

V (τ) =

∫ xF

0

h(x, τ) dx = 2ξ
1+2/α
F0

(
α

2(α+ 2)

) 1
α
+1 (

Mα+2

τ

) 1
2(α+1)

, (2.13)

q(0, τ) = [hα∂xh]x=0 =
1

α+ 1

(
αK

2(α+ 2)

) 1
α
+1 (

Mα+2

τ3α+2

) 1
2(α+1)

. (2.14)

The role of the dipole self-similar solution (2.11) as an intermediate asymptotic has been

confirmed in laboratory experiments by King and Woods (2003) for flows characterised

by α = 1 and α = 3. They showed that the dipole moment of the flow is conserved and

the height profile has the self-similar shape given by (2.11) in the intermediate asymptotic

regime. They have also found the predictions given by the analytical expressions for

the length of the current, xF(t), and the volume flux at x = 0 (2.14), to be in excellent

agreement with their experimental results.

2.2 Linear stability analysis

We study the evolution of the self-similar solution (2.11) subsequent to the introduction

of a small perturbation of arbitrary shape. The gradient of the self-similar solution at

the moving front is infinite for α > 1, and this leads to singular terms in the governing

equations of the perturbation function (e.g., Grundy and McLaughlin, 1982; Fowler, 1997).

We avoid this problem by employing an approach that was used by Kath and Cohen (1982)

to study waiting time properties of non-linear diffusion equations and recently deployed

by Mathunjwa and Hogg (2006) to study the stability of other similarity solutions. The

dependent variable is transformed so that the height gradient at the moving front remains

finite even for α > 1. Thus we write

hα

α
=

(
M
τ

) α
α+1

Φ (ξ, τ), (2.15)

where Φ is a rescaled height function in the new system. We note that the gradient of

the profile at ξ= 0 is singular even in terms of the new variables but this does not

present any difficulties in the analysis that follows because this end of the current is

stationary.

Substituting (2.15) into the governing equation (2.2) gives an evolution equation for Φ,

τ∂τΦ = αΦ∂ξ∂ξΦ+ (∂ξΦ)2 +
(

1
2
ξ∂ξΦ+ αΦ

)
/(α+ 1). (2.16)

The boundary conditions now take the form

Φ(0, τ) = 0, Φ(ξF, τ) = 0 and

∫ ξF

0

ξ(αΦ)
1
α dξ = 1. (2.17)

We assume that a small disturbance of arbitrary shape is imposed on the self-similar
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solution at some reference time τ = 1. To investigate the evolution of the disturbance for

times τ > 1, we introduce the expansions

Φ(ξ, τ) = Φ0(ξ) + δΦ1(ξ, τ) + · · · , (2.18)

ξF(τ) = ξF0 + δξF1(τ) + · · · , (2.19)

where the indices 0 and 1 denote self-similar and leading-order disturbance variables,

respectively, and δ� 1 is the dimensionless amplitude of the disturbance. These expan-

sions are then substituted into (2.16)–(2.17) and equations governing the self-similar and

disturbance quantities are obtained by balancing powers of δ. The governing equation at

O(1) is given by

αΦ0Φ
′′
0 + Φ′2

0 +
(
αΦ0 + 1

2
ξΦ′

0

)/
(α+ 1) = 0, (2.20)

and the boundary conditions are Φ0(0) = 0, Φ0(ξF0) = 0, and
∫ ξF0

0
ξ(αΦ0)

1
α dξ = 1. It is

straightforward to show that this yields the self-similar solution,

Φ0(ξ) =
1

2(α+ 2)

(
Kξ

α
α+1 − ξ2

)
+
. (2.21)

At O(δ), the perturbation quantity Φ1 is found to satisfy the partial differential equation,

τ∂τΦ1 = αΦ0∂ξ∂ξΦ1 +

(
2Φ′

0 +
1

2(α+ 1)
ξ

)
∂ξΦ1 +

(
αΦ′′

0 +
α

α+ 1

)
Φ1. (2.22)

This equation must be solved subject to the boundary conditions,

Φ1(0, τ) = 0, Φ1(ξF0, τ) =
ξF0ξF1

2(α+ 1)
and

∫ ξF0

0

ξΦ
1
α

−1

0 Φ1 dξ = 0, (2.23)

where (2.23, first condition) states that the disturbance vanishes at the stationary end,

(2.23, second condition) expresses the variation in the position of the moving front caused

by the disturbance, and (2.23, third condition) is an expression of conservation of the

dipole moment of the perturbation.

Since the governing equation (2.22) is a linear homogeneous PDE of Φ1, we look for a

solution in separable form

Φ1(η, S) =

∞∑
n=0

ane
−λnSZn(η; λn), (2.24)

ηF1(S) =

∞∑
n=0

bne
−λnS , (2.25)

where an and bn are constants to be determined, η = ξ/ξF0, S = ln τ and λn are the

eigenvalues of the system. Thus, showing that none of the eigenvalues are negative would

prove that the similarity solution (2.11) is linearly stable, provided that the functions Zn

form a complete set.
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The eigenfunctions Zn satisfy the ordinary differential equation,

η2
(
η

α
α+1 − η2

)
Z′′

n +
2

α+ 1
η

(
η

α
α+1 −

(
3

2
+

1

α

)
η2

)
Z′

n

+
2

α+ 1

([
1 +

(
1 +

1

α

)
(α+ 2)λn

]
η2 − α

2(α+ 1)
η

α
α+1

)
Zn = 0. (2.26)

By making the substitutions ζ̂ = η
α+2
α+1 , Zn = ζ̂

α
α+2 Υn(ζ̂) and 2ζ̂ = ζ + 1 in succession,

this equation is transformed into a Jacobi differential equation (Abramowitz and Stegun,

1965),

(1 − ζ2)Υ ′′
n +

2

α(α+ 2)
[(α2 + α− 1) − (α+ 1)2ζ]Υ ′

n +
2(α+ 1)2

α(α+ 2)
λnΥn = 0, (2.27)

defined in −1 � ζ � 1, where the end points are regular singular points and correspond

to ξ = 0 and ξ = ξF0. Solutions of this equation that are continuous in the whole interval

−1 � ζ � 1 are given by

Υn(ζ) = P (a,b)
n (ζ), (2.28)

where P (a,b)
n stands for the Jacobi polynomial of degree n, and a = (1 − α)/α, b =

(α+ 1)/(α+ 2). These solutions form a complete set and are characterised by the discrete

set of eigenvalues

λn =
n

2(α+ 1)2
[α(α+ 2)(n+ 1) + 2], n = 0, 1, 2, . . . . (2.29)

For positive values of α, all eigenvalues λn are nonnegative, indicating that all terms in

the disturbance eigenfunction expansion (2.24) decay in time, and hence the self-similar

solution (2.11) is stable to small disturbances. The term involving Z0, for which λ0 = 0,

corresponds to disturbances that alter the dipole moment of the current. We demonstrate

below that this term does not invalidate the stability result.

In terms of the rescaled similarity variable η, the eigenfunctions are given by

Zn(η) = η
α
α+1P (a,b)

n

(
2η

α+2
α+1 − 1

)
, (2.30)

and their structure is illustrated in Figure 3. The boundary condition (2.23, first condition)

is automatically satisfied by all eigenfunctions Zn. An application of the condition (2.23,

second condition) gives

bn = 2an(α+ 1)P (a,b)
n (1)/ξ2

F0. (2.31)

The integral condition (2.23, third condition) is also satisfied by all eigenfunctions Zn

automatically except Z0. In the next section, we show that this term is equivalent to the

coefficient of the infinitesimal symmetry transformation whose action alters the value of

the dipole moment of the problem. It will also be shown that the eigenfunction Z1 is

associated with time-shift transformations.

The solution of the perturbed problem is then given by

Φ(η, τ) =
ξ2

F0

2(α+ 2)

(
η

α
α+1 − η2

)
+ δη

α
α+1

∞∑
n=0

anτ
−λnP (a,b)

n

(
2η

α+2
α+1 − 1

)
+ O(δ2), (2.32)
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Figure 3. The first four eigenfunctions of the disturbance function Φ1 plotted against

η = ξ/ξF0 for α = 1.

where the constants an can be determined from the form of Φ1(η, 1) by using the properties

of orthogonality and completeness of the eigenfunctions.

2.3 Connection with symmetry transformations

The height profiles of currents with different values of M and currents that evolve from

different initial times will all have the same structure in the intermediate regime, given by

the self-similar solution (2.11). This is because the solution (2.11) is invariant under the

action of transformations that alter the dipole moment M and shift the origin in time. We

demonstrate that the eigenvalues λ0 = 0 and λ1 = 1 are associated with transformations

that alter M and shift time, respectively. Thus when assessing to which ‘target’ similarity

solution a current evolves from non-similarity initial conditions, it is possible to identify

a value of the dipole moment and origin in time such that the difference between the

solution and the similarity form decays as τ−λ2 .

The height profile of the disturbed system is given by

h(η, τ) =

(
M
τ

) 1
α+1

[
(αΦ0)

1
α + δ(αΦ0)

1
α

−1
∞∑
n=0

anτ
−λnZn(η) + O(δ2)

]
. (2.33)

The first two eigenfunctions, with their respective eigenvalues, are given by

Z0(η) = η
α
α+1 , λ0 = 0

Z1(η) = (2 + a+ b)η2 − (1 + b)η
α
α+1 , λ1 = 1,

where a and b are the parameters of the Jacobi polynomials, defined in equation (2.28).

We demonstrate that these eigenfunctions are equivalent to the coefficients of dipole-

moment-altering and time-shifting infinitesimal transformations.
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Figure 4. The dipole self-similar profile Φ0 (dashed line) plotted as a function of the rescaled

similarity variable η. The perturbed profiles Φ0 + 0.08Zn (solid line) for n = 0 and 1, respectively,

are superimposed for comparison. In both cases, α = 1.

It is convenient first to write the self-similar solution (2.11) in terms of the primitive

variables, as

h(x, τ) =

[
α

2(α+ 2)

[
Kx

α
α+1

(
Mα(α+2)

τα(2α+3)

) 1

2(α+1)2

− x2

τ

]
+

] 1
α

. (2.34)

Transformations that cause a change in the dipole moment of the current are defined

by M �−→ M + δ. The image of the self-similar solution (2.34) under the action of such

transformations is given by

hδ(x, τ; δ) =

[
α

2(α+ 2)

[
Kx

α
α+1

(
(M + δ)α(α+2)

τα(2α+3)

) 1

2(α+1)2

− x2

τ

]
+

] 1
α

. (2.35)

The coefficient of the infinitesimal transformation is given by

Tδ =

[
∂hδ
∂δ

]
δ=0

=
α

4(α+ 1)2M

(
M
τ

) 1
α+1

(αΦ0)
1
α

−1η
α
α+1 (2.36)

and this is equivalent to the first term in the eigenfunction expansion (2.33) of the

disturbance function. The effect of adding this eigenfunction onto the self-similar solution

is shown in Figure 4 for positive δ, and it resembles that of a transformation that increases

the dipole moment of the current.

Time-shift transformations are defined by τ �−→ τ + δ and the image of the similarity

solution under the action of these transformations is given by

hδ(x, τ) =

[
α

2(α+ 2)

[
Kx

α
α+1

(
Mα(α+2)

(τ+ δ)α(2α+3)

) 1

2(α+1)2

− x2

τ+ δ

]
+

] 1
α

. (2.37)
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The coefficient of the infinitesimal transformation can now be calculated, and we find

Tδ =
α

4(α+ 1)2

(
M
τ

) 1
α+1

(αΦ0)
1
α

−1 · 1

τ

[
(2 + a+ b)η2 − (1 + b)η

α
α+1

]
. (2.38)

This expression is equivalent to the second term of the eigenfunction expansion of the

disturbance function. In Figure 4, the changes caused by the second eigenfunction on the

self-similar profile are shown to resemble those undergone by h(x, τ) as it evolves in time,

characterised by a decrease in height and an increase in length as the profile flattens out.

We have thus shown that the first two eigenfunctions of the disturbance function are

equivalent to the coefficients of the infinitesimal transformations that alter the dipole

moment of the current and shift the origin in time, respectively. Under the action of these

transformations, the problem (2.2)–(2.5) is invariant. Hence, the form of the self-similar

solution (2.11) remains the same for different choices of the value of M and the origin in

time. The presence of the first two eigenfunctions in the eigenfunction expansion of Φ1 is

an indication that the inappropriate values of M and the origin in time have been used.

It is always possible to find values of M and the origin in time (that is, optimal similarity

variables) such that the eigenfunction expansion of Φ1 does not involve Z0 and Z1. This

effectively means that the leading-order term of the disturbance function is the Z2 term

for which the rate of decay is τ−3+1/(α+1)2 .

We note that since the similarity solution (2.11) develops in a semi-infinite spatial

domain, it is not invariant under the action of spatial translations and hence there is no

eigenvalue associated with these transformations.

3 Currents with capillary retention

We now consider the case where the current develops within an unsaturated porous

medium. Then, a fraction of the fluid may be retained within the pores by capillary

action in the trail of the current (e.g., Bear, 1988). The retention implies that the dipole

moment will no longer be conserved and hence the evolution of the height profile will

be qualitatively different from that of the case without retention. We assume that the

fraction retained, σ, is constant and independent of spatial position. This assumption is

reasonable for flows through porous media that possess isotropic homogeneous properties

(see, for example, Barenblatt, 1996; Woods, 1988). Thus we consider currents through

porous media of constant permeability, that is, the exponent α = 1 in this case.

The governing equation now takes the form

∂x∂x
(

1
2
h2

)
=

{
(1 − σ)∂τh, ∂τh < 0,

∂τh, ∂τh > 0,
(3.1)

subject to the boundary conditions

h(0, τ) = 0 and h(xF, τ) = 0. (3.2)

The dipole moment M of the current is no longer conserved in time because, in addition

to the fluid lost at the origin, fluid loss also occurs because of retention. Thus we write
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the dipole moment as M(τ; σ), with the initial condition that M(1; σ) = M̂. If we assume

that the dipole moment decays according to a power-law dependence on time, then we

may write M(τ; σ) = M̂τ−γ – and this is what is done in section 3.1, where the similarity

solution of the second kind is constructed and γ is determined as a function of σ.

The basic formulation of the problem presented here was first proposed by Barenblatt

and Vazquez (1998). It has also been studied by Ingerman and Shvets (1999), who

performed numerical calculations and demonstrated that the intermediate asymptotics

of the current are described by a dipole SS2 and by Wagner (2005), who presented an

asymptotic means for evaluating γ in the regime σ � 1. We carry out similar calculations

here and then, and in section 3.2, use the method of multiple scales to derive leading-order

analytic expressions for the dipole SS2.

3.1 Dipole self-similar solution of the second kind

Scaling arguments indicate that the length of the current grows according to x4 ∼ M̂τ1−γ

and the height decreases according to h2 ∼ M̂τ−(1+γ). Thus we write xF = Λτ(1−γ)/4 and

look for a self-similar solution of the form

h(x, τ; σ) = Πτ−(1+γ)/2Φ(η), (3.3)

where the similarity variable η = x/xF, and the constants Π and Λ, to be determined, will

typically depend on M̂ and the retention parameter σ. We note that the exponents in the

similarity variables have been specified as functions of the parameter γ. This parameter is

termed the anomalous exponent and it may not be determined by scaling arguments only.

This is a hallmark feature of the self-similar solution of the second kind. Substituting into

the governing equation (3.1) gives the following ordinary differential equation:

(Φ2)′′ =

⎧⎨⎩(σ − 1)
[
(1 + γ)Φ+ 1

2
(1 − γ)ηΦ′], 0 < η � ηS ,

−
[
(1 + γ)Φ+ 1

2
(1 − γ)ηΦ′], ηS < η � 1,

(3.4)

where ηS is the point where (1+ γ)Φ+ 1
2
(1− γ)ηΦ′ = 0 and we have assumed that Π = Λ2

without loss of generality. Equation (3.4) must be solved in the interval 0 � η � 1 subject

to the boundary conditions,

Φ(0; σ) = 0 and Φ(1; σ) = 0. (3.5)

In addition, since equation (3.4) is degenerate at η = 1, this implies that

Φ′(1; σ) = − 1
4
(1 − γ). (3.6)

It is generally impossible to find solutions of the second-order equation (3.4) that satisfy

all three boundary conditions (3.5, first and second conditions) and (3.6). There exists,

however, a particular value of γ for each σ, at which solutions that satisfy all three bound-

ary conditions may be constructed. We have solved this eigenvalue problem numerically

and the variation of the eigenvalues as a function of the level of retention, σ, is shown

in Figure 5. Here we plot the exponent 1
4
(1 − γ) as a function of σ; this exponent occurs
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Figure 5. The exponent 1
4
(1 − γ) as a function of the retained fraction, σ, calculated numerically

(circles) and using asymptotic formulae (dashed curves).
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Figure 6. Height profiles Φ(η; σ) plotted as functions of η for retention levels σ = 0, 0.3, 0.5

and 0.8.

in the power-law relationship between xF and τ. These computations reveal that when

none of the fluid is retained (σ = 0), the anomalous exponent is γ = 0, yielding xF ∼ τ1/4,

in agreement with the SS1 theory (section 2.1). As the fraction retained increases, the

exponent (1 − γ)/4 decreases monotonically reaching 0 at σ = 1, implying that as more

fluid is retained, the rate of advance of xF decreases, as expected. Figure 6 illustrates the

shape of the similarity height function Φ for different retention levels. The shape of Φ(η)

is found to become progressively flatter as the fraction retained increases.
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It is also possible to analsye the system of equations and boundary conditions (3.4),

(3.5, first and second conditions) and (3.6), asymptotically in the regimes of weak retention

(0 < σ � 1) and strong retention (|1 − σ| � 1), to determine the anomalous exponent, γ.

Using straightforward asymptotic techniques, this yields

γ =

(
5

8

)8/3

σ + · · · , when 0 < σ � 1, (3.7)

γ = 1 − 2.494(1 − σ)2/3 + · · · , when |1 − σ| � 1 (3.8)

(see the Appendix for this derivation). These asymptotic formulae are plotted in Figure 5,

where it can be noted that there is excellent agreement with the numerically calculated

values. We note that the result for σ � 1 is identical to that of Wagner (2005), but its

calculation here is by a straightforward regular perturbation. We believe that the analysis

for |1 − σ| � 1 is new and emerges as a singular perturbation, analysed using matched

asymptotic expansions.

It is important to observe that the constants Λ and Π still remain undetermined. In the

problem with no capillary retention (section 2), these constants were evaluated from the

integral condition expressing the constancy of the dipole moment. For the present case,

the dipole moment of the current is not conserved and so there is no means for generally

evaluating Λ and Π . Rather they are usually found by matching with a numerically

calculated solution of the partial differential equations in the transition period from the

non-self-similar to the self-similar regime. The behaviour of the system in the transition

period is influenced by the details of the initial conditions and, hence in contrast to the

SS1 of section 2.1, these constants will depend on the initial conditions of the current.

In the following section we develop a technique that avoids the need for this use of

numerical solutions and permits the solution to be fully evaluated and related to the

initial conditions.

3.2 Weak retention (σ � 1) and the method of multiple scales

It is convenient to express the governing equation (3.1) in the form

∂τh = ∂x∂x
(

1
2
h2

)
+

{
ε∂x∂x

(
1
2
h2

)
, 0 � x � xS ,

0, xS � x � xF,
(3.9)

where ε = σ/(1 − σ) and xS (τ; ε) is the point where ∂τh = 0. In the regime ε � 1, it is

reasonable to expect the shape of the height profile h(x, τ; ε) not to deviate much from

that of the ε = 0 (SS1) case. The dipole moment of the current is no longer constant in

time but, with ε � 1, its rate of temporal variation will be much slower than that of other

quantities. In particular, from arbitrary initial conditions, we anticipate that the motion

rapidly converges to a similarity solution of the first kind, specified by the dipole moment.

Thereafter it progressively evolves away from this state as the effects of retention become

significant. To account for the variation of the dipole moment, we introduce a slow

time scale T = τε, so that T remains of order unity when τ=O(exp(1/ε)). We write the

dependent variables as functions of this new slow time; importantly, the dipole moment
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is now given by M(τ, T ; ε), where M = M̂ at the initial time τ = 1. In terms of the

similarity variable ζ = x/τ1/4, equation (3.9) now becomes

∂τh+
εT

τ
∂Th =

ζ

4τ
∂ζh+

1

τ1/2
∂ζ∂ζ

(
1
2
h2

)
+

⎧⎨⎩
ε

τ1/2
∂ζ∂ζ

(
1
2
h2

)
, 0 � ζ � ζS ,

0, ζS � ζ � ζF.

(3.10)

We introduce the expansions

h(ζ, τ, T ; ε) = h0(ζ, τ, T ) + ε h1(ζ, τ, T ) + · · · , (3.11)

xS (τ, T ; ε) = τ1/4[ζS0(T ) + ε ζS1(T ) + · · ·], (3.12)

xF(τ, T ; ε) = τ1/4[ζF0(T ) + εζF1(T ) + · · ·], (3.13)

while the dipole moment is given by

M(τ, T ; ε) ≡
∫ xF

0

xh dx = M0(T ) + εM1(τ, T ) + · · · . (3.14)

In this expression, we allow the dipole moment formally to be a function of τ and T .

However, in anticipation of the leading-order terms in the expansion being the similarity

solution for a constant dipole moment, we pose M0 as a function of T only.

The multiple scales expansion that follows is based upon preserving the asymptotic

ordering of M, an approach that shares some general features with Wagner (2005).

Substituting these expressions into the governing equation (3.10) and balancing powers of

ε yields, at O(1), the SS1 given by

h0(ζ, τ, T ) =
1

6τ1/2

[
ζ

3/2
F0

√
ζ − ζ2

]
, (3.15)

where the front is determined from the dipole moment, given by ζF0(T ) = [40M0(T )]1/4

(see section 2.1). This similarity solution (SS1) may not be an appropriate initial condition

for the flow. However, we have demonstrated that the similarity solution is linearly stable

and thus we anticipate that from given initial conditions, the solution will converge

rapidly to this similarity form before appreciable volumes are retained in the pores. This

is confirmed through the numerical experimentation reported below (section 4).

At O(ε), the governing equation for h1 is given by

6τ∂τh1 − 3
2
ζ∂ζh1 − ∂ζ∂ζ

[(
ζ

3/2
F0

√
ζ − ζ2

)
h1

]
= −6R

√
ζ

τ1/2

+

⎧⎪⎨⎪⎩
1

τ1/2

(
ζ2 − 5

8
ζ

3/2
F0

√
ζ
)
, 0 � ζ � ζS0,

0, ζS0 � ζ � ζF0,

(3.16)

where R = 5T (dM0/dT )/[2(40M0)
5/8] and ζS0 = ζF0�/4, where � = 51/3. We may integrate

(3.16) to deduce the following equation for the first-order perturbation to the dipole
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moment:

∂τM1 =
1

6τ

[∫ ζF0

0

−6Rζ3/2 dζ +

∫ ζS0

0

ζ3 − 5
8
ζ

3/2
F0 ζ

3/2 dζ

]
. (3.17)

Thus, to ensure that M1 does not grow as log τ, we require that the right-hand side of

(3.17) vanishes and thus M1 is a function only of T . This yields

R = − 25

4096
�2ζ

3/2
F0 . (3.18)

We may construct the complete solution to (3.16) by writing h1 =
√
ζF(ζ, T )/τ1/2 and

changing the dependent variable so that X2 = ζ/ζF0, noting that X2
S0 = �2/4. The solution

of this equation in the region 0 � X � XS0 that remains bounded at X = 0 is given by

FR(X, T ) =
1

6
ζ

3/2
F0 X3 − 8R

5
ln(1 − X3) + C1. (3.19)

In the frontal region XS0 � X � 1, the solution that remains bounded at X = 1 is given

by

FF(X, T ) =
12R
5X2

− 12R
5

[
ln(1 + X + X2) +

2√
3

tan−1

(
2X + 1√

3

)]
+ C2. (3.20)

The unknowns, C1 and C2, are determined by requiring that the height of the fluid layer

and the volume flux are continuous at X = XS0. These two conditions yield

C1 = −125

768
ζ

3/2
F0 +

5�2

512
ζ

3/2
F0

[√
3 tan−1

(
1 + �√

3

)
+

3

2
ln

(
4 + 2�+ �2

32/3

)]
+ C2,

C2 = − 5�2

512
ζ

3/2
F0

[
π

2
√

3
+ ln(72) − 507

120

]
.

Notice that the solution F(η, T ) has the form [ζF0(T )]3/2G(η), where η = ζ/ζF0 and the

function G is determined from (3.19) and (3.20). Thus the deviation of the height field

from the leading-order similarity solution (SS1) is given by

h1(η, τ, T ) =
[ζF0(T )]2

τ1/2
√
ηG(η) =

[
40M0(T )

τ

] 1
2

Ω(η), (3.21)

where Ω(η) =
√
ηG(η), and its form is plotted in Figure 7.

As a final step we use the expression for R(T ) to find the evolution of the dipole

moment in terms of the slow timescale. This yields

dM0

dT
= −25�2

256

M0

T
. (3.22)

Thus, we find that the dipole moment is given by

M0(T ; ε) = M̂T−25�2/(256), (3.23)

and by combining this with the formula (2.13) for the volume in the current yields the
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Figure 7. The function Ω(η) (which characterises the structure of the first-order deviation term

h1 from the SS1 height profile for a gravity current with retention parameter ε � 1) plotted as a

function of η.

following leading-order expression

V (τ; ε) =
(40M̂ )

3
4

18
τ− 1

4 (1+75�2ε/(256)). (3.24)

Comparing the formula (3.23) with the power-law relation M(τ; ε) = M̂τ−γ indicates that

the anomalous exponent γ is given by

γ =
25�2

256
ε+ O(ε2). (3.25)

The values of the exponent 1
4
(1 − γ) generated by this formula are compared with

numerically calculated values in Figure 5. The plots show that the asymptotic estimates

are in good agreement with the numerical values in the regime σ � 1. Indeed this estimate

derived using a multiple-scales analysis of the governing partial differential equation is

equal to that derived from direct asymptotic analysis of the ordinary differential that

governs the form of the similarity solution (see the Appendix and Wagner, 2005). The

advantage with the multiple-scales approach is that it is possible to make a connection

with initial conditions, rather than patching to the solutions numerically.

We now calculate the leading-order expression for the position of the front of the SS2

current. Expanding (3.23) in powers of ε and substituting into the expression for ζF0 give

xF(τ; ε) = τ
1
4

[
ζ̂F0 + ε

(
ζF1 − 25�2

1024
ζ̂F0 ln τ

)]
+ O(ε2), (3.26)

where ζ̂F0 = (40M0)
1/4. Then, evaluating the height at x = xF using the expressions (3.15)
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and (3.20) for h0 and h1, respectively, gives, at O(ε),

ζF1 =
5�2

256
ζ̂F0

(
π√
3

+
507

60
− ln(576) − 3

)
. (3.27)

The leading-order expression for the position of the front of the current is thus given by

xF(τ; ε) = ζ̂F0τ
1
4 (1−25�2ε/(256))

[
1 +

5�2

256
ε

(
π√
3

+
507

60
− ln(576) − 3

)]
+ · · · . (3.28)

The exponent of τ in this expression is less than 1
4
, indicating that the rate of advance of the

front is slower for the SS2 current than for the SS1 current. We remark that the expansion

(3.26) remains asymptotic, and hence (3.28) is valid, only for times τ < exp
(

1024
25�2ε

)
.

4 Numerical solution

We have performed numerical integrations of the governing partial differential equations

with and without retention, having first re-mapped them onto a stretched spatial domain,

x/xF(t), which ranged between 0 and 1. To this end we adopted a forward-in-time,

centred-in-space finite difference scheme. This scheme was validated using the similarity

solution presented in section 2.1 and for other initial conditions without retention it was

found that the dipole moment was conserved to within 10−4 for computations with 100

grid points and over times that led to the results presented below. The scheme is explicit

and so there is a need to take a relatively small time step in order to maintain numerical

stability, but this did not lead to prohibitively long computations.

In all calculations reported here, the parameter α = 1 and the initial height profile were

given by

h(η, 1) =

(
45

8

)1/2 (
η1/2 − η

)
and xF(1) = 401/4, (4.1)

where η = x/xF. This initial condition was chosen so that the initial dipole moment is

unity (M(1; ε) = 1). Moreover, the form of the initial distribution in the regime η � 1

was chosen so that the volume flux at the origin was initially finite, but nonzero. Other

forms of initial profile close to the origin lead to either a delay before the current starts

draining from x = 0 or very rapid initial drainage. The chosen initial profile was used

to examine convergence to the similarity solution in the case of no retention and to the

solution developed in section 3.2 when there is retention. Our numerical experimentation

found that the presented results are typical of those for a wide range of initial conditions.

We first consider the behaviour in the absence of capillary retention. In Figure 8(a) and

(b), we plot the numerically computed position of the front and the volume of the current

as functions of time. In these figures, we have also plotted the similarity solution and

we note that the computed solution rapidly converged to the similarity expression. We

confirm this observation by considering the decay of the difference between the computed

and similarity positions of the front. We define

DF(τ) =

⏐⏐⏐⏐⏐1 − xF(τ)

(40M̂τ)1/4

⏐⏐⏐⏐⏐ , (4.2)
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Figure 8. (a) The position of the front, xF, and (b) the volume of the fluid per unit width, V (τ) as

a function of time, τ. The numerically calculated position is plotted with a solid line; the similarity

solution is plotted with a dashed line.

and plot the evolution of DF(τ) in Figure 9. We observe that the difference between the

the similarity solution and the computed solution decays in proportion to 1/τ in accord

with the linear stability calculation of section 2.3, which reveals that this is the most

slowly decaying eigenfunction. Moreover we may write the initial condition in terms of

the eigenfunctions,

(
45

8

)1/2 (
η1/2 − η

)
=

(40)1/2

6

(
η1/2 − η2

)
+

∞∑
n=1

anη
1/2P (0,2/3)

n

(
2η3/2 − 1

)
, (4.3)
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Figure 9. The normalised difference in length of the current, arising from the non-similarity initial

condition, and the similarity solution for the position of the front, DF(τ) as a function of time, τ.

The solid line shows the numerically computed value, and the dashed line shows the prediction of

the long-term decay on the basis of linear stability analysis.

and find that a1 = (10)1/2/36. Thus, on the basis of the linear stability analysis, we expect

DF(τ) =
1

18τ
+ · · · when τ 
 1. (4.4)

We note from Figure 9 that this prediction shows reasonably good agreement with the

computations, even though the initial difference between the profile and the similarity

solution is not small.

We now consider the evolution of the current when there is retention and for this

computation we set ε = 0.1. In Figure 10, we plot the evolution of length, volume and

dipole moment of the current, noting that in contrast to the currents without retention,

the dipole moment is progressively reducing. We also plot the asymptotic expressions for

these quantities derived in section 3.2, and we note that there is very close correspondence

between them. In these asymptotic expressions, there are no adjustable parameters. The

computed solution, although not initially in similarity form, rapidly approaches the

similarity form before significant volumes of fluid are lost through retention. Thereafter

the flow evolves, losing fluid through drainage at x = 0 and through retention – and the

asymptotic predictions of the form of solution are shown to work well.

5 Concluding remarks

We have analysed the two-dimensional motion of finite-volume gravity currents that

propagate through porous media with and without capillary retention, while fluid simul-

taneously drains out freely from one end. The intermediate asymptotic development of

currents that flow without retention through porous media with permeability that may
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Figure 10. (a) The position of the front, xF (τ; ε); (b) the volume of the fluid per unit width, V (τ; ε);

and (c) the dipole moment of the current, M(τ; ε), as functions of time, τ, when there is capillary

retention (ε = 0.1). The numerically calculated values are plotted with a solid line; the asymptotic

solutions are plotted with a dashed line.
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vary with height is described by a family of dipole similarity solutions of the first kind. We

have shown that small perturbations of arbitrary shape, imposed on the dipole SS1, decay

in time, and therefore the dipole SS1 are linearly stable. By demonstrating the relationship

between the perturbation eigenfunctions and symmetry transformations of the dipole SS1,

we have shown that variables can always be found in terms of which the leading-order

rate of decay of the perturbation is maximised. These results complement the work of

King and Woods (2003), in which the theoretical predictions of the dipole SS1 are shown

to be in excellent agreement with experimental evidence, and thus firmly establish the role

of dipole SS1 as intermediate asymptotics for the currents under consideration.

Currents for which a constant fraction of fluid is retained within the homogeneous

porous medium as they spread out are modelled by dipole similarity solutions of the

second kind in the intermediate asymptotic regime. SS2 are characterised by anomalous

exponents that may be found by numerically solving eigenvalue problems, and hence the

conventional procedure of finding SS2 generally involves a combination of analytic and

numerical techniques. We have developed an approach that fully determines the evolution

towards the SS2 through analytic means without the need to supplement with numerical

calculations. Using the method of multiple scales, we have derived leading-order analytic

expressions for the dipole SS2 parameters, including the anomalous exponent, valid in the

regime when the fraction retained is small. The theoretical predictions of the rate of decay

of the volume and the rate of advance of the position of the front of the current obtained

using these expressions have been compared with the results of numerical integration of

the governing equations and have been shown to be very accurate.

We conclude by commenting that the techniques developed here may be more widely

applied to other flows. Firstly we have shown how to determine the linear stability

properties of similarity solutions when there is a moving front at which the solution

exhibits mildly singular behaviour and the governing equation is degenerate. In this case

the gradient of the height of the current diverged as the front was approached and this

was resolved by appropriate transformations of the dependent and independent variables

that then permitted straightforward, and in this case analytical, exploration of the linear

stability.

We have also shown how to analyse systematic gradual divergence from a similarity

solution when a new physical process influences the motion. (In this study, it was capillary

retention within the unsaturated porous medium.) We have analysed this effect by applying

the method of multiple scales, where the time scale of the new physical process is much

longer than that of the rest of the flow. Thus we were able to capture the progressive

divergence from a similarity solution of the first kind to a similarity solution of the second

kind – and we suggest that this technique may be applicable in many other scenarios.

Appendix

In this appendix we analyse the eigenvalue problem that determines the anomalous

exponent, γ, given by (3.4) with boundary conditions (3.5)–(3.6), in the regimes of weak

retention, 0 < σ � 1 and strong retention, 0 < 1 − σ � 1, of fluid within the initially dry

pores of the porous domain. In this analysis, we determine the leading-order expression

for the exponent, γ.
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1 Weak retention: σ � 1

We substitute σ = δ and use δ � 1 as the ordering parameter. We seek a solution of the

form

Φ(η) = Φ0(η) + δΦ1(η) + · · · and γ = δγ1 + · · · , (A1)

where the similarity function, Φ0 = (η1/2 − η2)/6, is the leading-order expression for the

height fields, derived using the constancy of the dipole moment (section 2.1). We substitute

these power series expansions, (A1), into the governing equation (3.4) and at O(δ) find

that

2(Φ0Φ1)
′′ + 1

2
ηΦ′

1 + Φ1 = γ1
(

1
2
ηΦ′

0 − Φ0

)
+

{
Φ0 + 1

2
ηΦ′

0 (Φ2)′′ > 0,

0 (Φ2)′′ < 0,
(A2)

with boundary conditions Φ1(0) = 0, Φ1(1) = 0 and Φ′
1(1) = γ1/4. It is sufficient at this

order to apply these two forms of the governing equation in the domains 0 � η < ηs0 and

ηs0 < η < 1, where ηs0 = 52/3/4. At η = ηs0, we require that the mass flux and pressure

are continuous, which demands that both Φ and Φ′ are continuous at η = ηs0.

We integrate (A2) analytically to find that when η < ηs0

Φ1 =
η2

6
+
γ1η

1/2

10
ln

(
1 − η3/2

)
+ Cη1/2, (A3)

where C is a constant. This expression satisfies Φ1(0) = 0. Also we find that when η > ηs0

Φ1 =
3γ1η

1/2

20

[
−1

η
+ ln

(
1 + η1/2 + η

3e−1

)
+

2√
3

tan−1

(
2η1/2 + 1√

3

)
− 2π

3
√

3

]
, (A4)

where this expression satisfies Φ1(1) = 0. Finally matching the mass flux and pressure at

the interface between the two regions determines the unknown γ1 and C and thence we

deduce that

γ =

(
5

8

)8/3

σ + · · · when σ � 1. (A5)

2 Strong retention: |1 − σ| � 1

We now write δ̃ = 1 − σ and examine the eigenvalue problem in the regime 0 < δ̃ � 1.

We seek a solution for the eigenvalue of the form

γ = 1 − Aδ̃a, (A6)

where A and a are positive constants to be determined.

We first examine the governing equation (3.4) in the region ηs � η � 1. We substitute

Φ = A2δ̃2aΨ and η = 1 − Aδ̃as to find that

d2

ds2
(Ψ 2) = (−2 + Aδ̃a)Ψ + 1

2
(1 − Aδ̃as)

dΨ

ds
, (A7)

subject to Ψ = 0 and dΨ/ds = 1
4

at s = 0. We expand Ψ = Ψ0 + δ̃Ψ1 + · · · and thus to
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leading order

d2Ψ 2
0

ds2
− 1

2

dΨ0

ds
+ 2Ψ0 = 0. (A8)

Integrating this differential equation numerically, we find that 4Ψ0 = dΨ0/ds at s ≡ s∗ =

0.1857 and Φ0(s∗) ≡ Φ∗ = 0.03736 and this evaluates ηs. Therefore, to leading order we

find that

ηs = 1 − 0.1857 Aδ̃a and Φ(ηs) = Φ∗ A
2δ̃2a. (A9)

We now consider the governing equation in the region 0 � η � ηs and substitute

Φ = δ̃
√
ψ to find that

ψ′′ = −(2 − Aδ̃a)
√
ψ − 1

4
Aδ̃aηψ′/

√
ψ, (A10)

subject to ψ(0) = 0, ψ(ηs) = Φ2
∗A

4δ̃4a−2 and ψ′(ηs) = 8Φ2
∗ A

3δ̃3a−2. Thus we deduce the

distinguished scaling a = 2
3

and by writing ψ = ψ0 + δ̃ψ1 + · · ·, find that to leading order

ψ′′
0 + 2

√
ψ0 = 0, (A11)

subject to ψ0(0) = 0 and ψ0(1) = 0. The non-trivial solution to this system has a non-

vanishing gradient at η = 1. Matching this to the conditions derived above determines

the constant A, which is given by

ψ′
0(1) = − 3[

B
(

1
2
, 2

3

)]3
= 8Φ2

∗ A
3. (A12)

Hence we find that

γ = 1 − 2.494 (1 − σ)2/3 + · · · when |1 − σ| � 1. (A13)
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