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Nonlinear shallow water equations are employed to model the inviscid slumping of
fluid along an inclined plane and analytical solutions for the motion are derived using
the hodograph transformation to reveal the run-up and the inception of a bore on
the backwash. Starting from rest, the fluid slumps along the inclined plane, attaining
a maximum run-up, before receding and forming a relatively thin and fast moving
backwash. This interacts with the less rapidly moving fluid within the interior to form
a bore. The evolution of the bore and the velocity and height fields either side of it
are also calculated to reveal that it initially grows in magnitude before diminishing
and intersecting with the shoreline. This analytical solution reveals features of the
solution, such as the onset of the bore and its growth and decline, previously known
only through numerical computation and the method presented here may be applied
quite widely to the run-up of other initial distributions of fluid.

1. Introduction
Modelling the dynamics of fluid in the swash zone poses many challenges since

the motion is inherently unsteady and turbulent, and has important consequences
for sediment transport and beach morphology, as well as for the hydrodynamics of
the near-shore region in general (Brocchini & Baldock 2008). For example, previous
studies have focused on the run-up of waves along the beach (Shen & Meyer 1963),
the associated movement of sediment (Pritchard & Hogg 2005) and the possibility of
over-topping coastal structures (Peregrine & Williams 2001). Numerical simulations
have attempted to calculate these phenomena, recently employing turbulence closures
to resolve the velocity profiles (Zhang & Liu 2008), but more often these are based
upon the nonlinear shallow water equations (Brocchini & Dodd 2008). Hibberd &
Peregrine (1979) is a particularly notable study in this regard; they were among
the first to compute the run-up resulting from the impact of a bore on a uniformly
sloping beach. They showed that as the bore collapsed, the shoreline moved essentially
ballistically along the beach and at some point during the backwash, a receding bore
formed. These observations verified what had been demonstrated for a restricted
asymptotic model by Shen & Meyer (1963). Pritchard, Guard & Baldock (2008) have
recently extended the analytical treatment to explore the run-up generated by more
realistic incoming waves (Guard & Baldock 2007) and to show the inception of the
backwash bore.
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In this contribution we employ the nonlinear shallow water equations to investigate
fluid motion up an inclined planar beach. Our initial conditions are those of dam-
break: we study the two-dimensional collapse of an initially motionless reservoir
of fluid, generated by the instantaneous removal of the confining dam. This initial
condition is of interest in its own right, having a long history of research within
a horizontal flume (Ritter 1892; Hogg & Pritchard 2004; Hogg 2006). These flows
are readily generated in the laboratory and evolve both spatially and temporally.
Although this precise initial condition is different from that considered by Hibberd &
Peregrine (1979), or from the idealization of Pritchard et al. (2008), the ensuing flow
will feature the same important phenomena of wave run-up and the formation of a
backwash bore.

In this paper we develop an analytical model of the motion that develops as
the dam is removed and the fluid is set into motion. The calculations utilize the
hodograph transformation of the governing equations and follows recent progress by
Hogg (2006), Pritchard et al. (2008) and Antuono, Hogg & Brocchini (2009). We find
that the flow develops a bore at some instant and point within the domain during
the backwash, and by enforcing conditions that preserve mass and momentum fluxes
across the developing discontinuity, we track the evolution of the bore and the velocity
and height fields either side of it. We find that the magnitude of the bore, measured
in terms of the jump in flow depth, initially grows and then diminishes and that it
moves offshore and then onshore before vanishing and intersecting with the retreating
shoreline. We believe that this is the first calculation that has analytically tracked
the behaviour of the backwash bore and that these results, in addition to being of
interest in their own right, yield a challenging test case for algorithms designed to
integrate the shallow water equations numerically. Furthermore, this configuration
could be readily explored in laboratory experiments, which would reveal the accuracy
with which the shallow water equations capture the true fluid motions; however, we
have been unable to find any published results in this configuration. The paper is
structured as follows. First, we formulate the problem and introduce the dimensionless
equations and hodograph transformation (§ 2). We construct the results, first focusing
on the motion before the bore forms (§ 3) and then constructing the evolution of the
bore and the flow fields either side of it (§ 4). Finally, we summarize the results (§ 5).

2. Governing equations and the hodograph transformation
We consider motion up an inclined planar surface when fluid is instantaneously

released from a state of rest within a reservoir behind a dam. The two-dimensional
motion that ensues is assumed to be predominantly parallel to the underlying
boundary, so that fluid accelerations perpendicular to the plane are negligible and the
pressure adopts a hydrostatic distribution. We adopt x and z coordinates axes that
are parallel and perpendicular to the plane, respectively, with the origin located at the
base of the dam; the inclination of the plane is denoted by θ . Then the dimensionless
shallow water equations that govern the evolution of the depth of the flow, d(x, t)
and its velocity, u(x, t) are given by (see Peregrine 1972)

∂d

∂t
+

∂

∂x
(ud) = 0 and

∂u

∂t
+ u

∂u

∂x
+

∂d

∂x
= −1. (2.1)

In these equations, length scales parallel and perpendicular to the plane have been
rendered dimensionless with respect to h0/ tan θ and h0, respectively, where h0 denotes
the height of fluid immediately behind the dam. Times are non-dimensionalized
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by (h0 cos θ/g)1/2/ sin θ , where g denotes gravitational acceleration. With these
dimensional scales, we find that there is one remaining dimensionless parameter,
L ≡ tan θL∗/h0, that essentially measures the length of the reservoir (L∗). The initial
conditions are that u(x, t) = 0 and

d =

{
1 − x, −L � x � 0,

0, x > 0,
(2.2)

while at the end of the reservoir, we impose the condition of no flow, u(−L, t) = 0.
The shallow-layer model (2.1) neglects hydraulic resistance, an assumption that may
become invalid close to the front of the motion where the fluid depths become very
small (see Hogg & Pritchard 2004). However dissipation is implicitly included through
the development of the backwash bore.

The governing equations (2.1) can be rewritten in characteristic form as follows:

α ≡ u + t + 2c =constant along curves such that ẋ = u + c, (2.3)

β ≡ u + t − 2c = constant along curves such that ẋ = u − c, (2.4)

where c =
√

d , where a dot denotes differentiation with respect to time. Using α and
β as independent variables instead of x and t (the hodograph transformation), we
obtain the following relations:

u =
α + β

2
− t, c =

α − β

4
, (2.5)

while (2.3) and (2.4) become

∂x

∂β
=

(
3 α + β

4
− t

)
∂t

∂β
along curves such that α = constant, (2.6)

∂x

∂α
=

(
α + 3 β

4
− t

)
∂t

∂α
along curves such that β = constant. (2.7)

Combining (2.6) and (2.7), we find

∂2t

∂α∂β
=

3

2(α − β)

(
∂t

∂α
− ∂t

∂β

)
. (2.8)

The hodograph transformation remains invertible provided the Jacobian of the
transformation J remains finite and non-vanishing. By using (2.6) and (2.7), it is
possible to show that

J ≡ ∂t

∂α

∂x

∂β
− ∂t

∂β

∂x

∂α
= 2c

∂t

∂α

∂t

∂β
. (2.9)

3. The dam-break problem
We study the motion that ensues when the fluid is instantaneously released. To

solve this problem, we use the theoretical scheme described in Hogg (2006), which
employs the linear differential form given by ω = − V da + U db, in which

V =
3 t B

2 (a − b)
+

B

2

∂t

∂a
− t

2

∂B

∂a
and U = − 3 t B

2 (a − b)
+

B

2

∂t

∂b
− t

2

∂B

∂b
. (3.1)
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In these expressions B = B(a, b; α, β) is the Riemann function that satisfies the partial
differential equation adjoint to (2.8), which is given by

∂2B

∂a∂b
+

3

2 (a − b)

(
∂B

∂a
− ∂B

∂b

)
− 3 B

(a − b)2
= 0, (3.2)

subject to the boundary conditions

∂B

∂b
=

−3 B

2(a−b)
along a = α,

∂B

∂a
=

3 B

2(a−b)
along b = β and B(α, β; α, β) = 1.

(3.3)

In this case, the Riemann function is given by Garabedian (1986):

B(a, b; α, β) =
(a − b)3

(a − β)3/2 (α − b)3/2
F

[
3

2
,
3

2
; 1;

(a − α)(β − b)

(a − β)(α − b)

]
, (3.4)

where F is the hypergeometric function. According to the Riemann method, a function
t(α, β) satisfies (2.8) if and only if the linear differential form ω is exact, that is, if for
all regular domains D in the (α, β) plane, we require∫

∂D

ω = 0, (3.5)

where ∂D represents the boundary of D.
Now we are in a position to solve the problem. When the right rigid wall is removed

(t = 0+), a front curve x = xN (t) is generated, which is defined as the curve separating
the wet and dry parts of the sloping plane. This interface is advected with the fluid
velocity and so satisfies the kinematic condition dxN/dt = u. Furthermore, at the front
the height vanishes (c = 0) and so we can rewrite the kinematic condition as ẋN = α−t .
Note also that along the front curve α = β .

The last equality implies that, similarly to the dam break on a horizontal plane, a
rarefaction fan is generated just after the right rigid wall is removed. Indeed, at t = 0−

and x = 0, the values of the characteristic variables are α = 2 and β = −2. When the
right rigid wall is removed (t =0+), a front curve is generated along which β = α =2.
This means that at t = 0+ and x =0 the Riemann invariant β has to vary continuously
between −2 and 2 and consequently a fan of β-characteristic curves is generated at
x = 0. However, in contrast to the solution for the horizontal plane, such a fan is not
associated with a simple wave region, because the adjoining region associated with
the initial conditions does not feature constant values of the characteristic variables,
α and β .

3.1. Region U1

Within U1 the characteristics originate from −L � x < 0 and because the initial state
is one of no flow, then β(x, 0) = −α(x, 0) and 2 � α(x, 0) � 2(1 + L)1/2. The region is
bounded by the rear wall at x = −L and the rearmost β-characteristic from the origin
(denoted by δ1 in figure 1). Throughout U1 we have u =0, d = 1 − x and the α- and
β-characteristic curves (hereinafter denoted by the symbols γ and δ respectively) are
given by

γ : x(t) = 1 − (t − 2
√

1 − x0)
2

4
, α = t + 2

√
1 − x,

δ : x(t) = 1 − (t + 2
√

1 − x0)
2

4
, β = t − 2

√
1 − x,



Run-up and backwash bore formation from dam-break flow 155

0–0.5–1.0 0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

2.0

2.5

U1

FAN

x

xN (t)

t

A

B

C

D
δ1

Figure 1. Characteristics in the (x, t) plane, including the region U1 and the fan, generated
from x = 0 (α-characteristics are plotted with a dashed line and β-characteristics with a solid
line). Also depicted is the integration contour ABCD and the bounding characteristic δ1

between U1 and the fan.

with −L � x0 � 0. The characteristic curve on which β = −2 (curve δ1) is of
fundamental importance for the analysis that follows because it represents the
rearmost boundary of the fan. Using (2.3) and (2.4), it is straightforward to establish
that δ1 is given by

t(α, −2) =
α

2
− 1 and x(α, −2) = 1 − (α + 2)2

16
. (3.6)

Thus we deduce that the δ1 characteristic intersects the rear wall at t = tw ≡ 2
√

1 + L−
2, when α = αw ≡ 4

√
1 + L − 2. Thereafter a forward propagating characteristic is

generated from (0, tw) and this modifies the solution within the fan; this means that
the solution developed below is appropriate only for 2 <α <αw . However it is possible
to construct the solution affected by the no-flow condition at the back of the lock
using Riemann’s method (see Kerswell 2005; Antuono et al. 2009 for details), but this
is not the focus of the current study.

3.2. The fan region

We construct the solution using Riemann’s method applied to the region ABCD

bounded by characteristic curves and depicted in figure 1. The curve AD is made by
the β-characteristic δ1 while the curve BC is a β-characteristic inside the fan. The
curves AB and CD are α-characteristics within the fan. The coordinates of the points
A, B, C, D in the hodograph plane are given by

A = (α1, −2), B = (α1, β), C = (α, β), D = (α, −2), (3.7)

where α1 is the value carried by the α-characteristic curve along the line AB . Now,
we apply the Riemann construction in (3.5) with B =B(a, b; α, β). We find

0 =

∫
ABCD

ω =

∫ β

−2

U |
a=α1

db −
∫ α

α1

V |
b=β

da +

∫ −2

β

U |
a=α

db −
∫ α1

α

V |
b=−2 da. (3.8)
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We now consider the limit α1 → 2 and use the conditions that t(2, β) = x(2, β) = 0 to
show that

lim
α1→2

∫
AB

ω = 0. (3.9)

The second integral of (3.8) may be computed using the boundary condition (3.3),
integration by parts and subsequent evaluation as α1 → 2, to give

lim
α1→2

∫
BC

ω = − lim
α1→2

1

2
(t(α, β) − B(α1, β; α, β) t(α1, β)) = − t(α, β)

2
. (3.10)

The third integral of (3.8) is also evaluated using the boundary condition (3.3) and
integration by parts to yield∫

CD

ω =
1

2
(B(α, −2; α, β)t(α, −2) − t(α, β)) =

(
α + 2

α − β

)3/2
t(α, −2)

2
− t(α, β)

2
. (3.11)

This expression includes a contribution from the curve δ1, along which t(α, −2) is
given by (3.6). This also permits evaluation of the final contribution in (3.8)∫

DA

ω =
B(α, −2; α, β) t(α, −2)

2
−

∫ 2

α

(
t

[
3B

2(a − b)
− ∂B

∂a

]) ∣∣∣∣
b=−2

da. (3.12)

Collecting together all the contributions and one further integration by parts yields
the following result for the time field within the fan

t(α, β) =

∫ α

2

B(a, −2; α, β)

[
3(a − 2)

4(a + 2)
+

1

2

]
da. (3.13)

We note that this expression is a special case of the wave-like solutions derived by
Pritchard et al. (2008). Given this parametric expression for the time t as a function of
the hodograph variables α and β , it is straightforward to find x(α, β) by integrating
the equation along characteristic curves (2.6) and (2.7). Then using the conditions
t(2, β) = 0 and x(2, β) = 0, we obtain

x(α, β) =

(
α + 3β

4
− t

2

)
t(α, β) − 1

4

∫ α

2

t(a, β) da. (3.14)

Figure 1 shows the α- and β-characteristic curves inside the fan region. It is evident
that the two families of characteristic curves coincide when α → 2+ and β → 2−, that
is, as the front is approached.

The point (α, β) = (2, 2) is a singular point for the solution in the fan region and
therefore it is not possible to get an explicit expression for xN (t) from (3.13). This is to
be anticipated, because the Jacobian of the hodograph transformation vanishes when
the depth of the fluid vanishes (see (2.9)). However the position of the front may be
readily calculated by noting that α = β = 2 and consequently ẋN = α − t = 2 − t . Thus
we find that

xN (t) = 2 t − t2

2
. (3.15)

Figure 1 clearly shows the analytical solution given by (3.13) matching with the front
curve in (3.15). From (3.15), we note that maximum run-up occurs at t = 2 and that
xN (2) = 2. For t > 2 the run-down of the front wave starts. Profiles of the velocity
and depth of fluid are plotted in figure 2 at various times from initiation until the
solution breaks down, including the time of maximum run-up. It is noteworthy that
non-vanishing offshore velocity develops at some interior location before maximum
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Figure 2. The profiles of the velocity u(x, t) and the free surface elevation of fluid d(x, t)+x at
t =0, 0.5, 1.0.1.5, 2.0, 2.5, 2.916. At the latest time, the solution first develops infinite gradients
and thereafter an internal shock develops. In (b) the dotted line depicts the underlying rigid
boundary and the depth of the fluid vanishes when d(x, t) + x intersects this line.

run-up is attained, as is often found in nonlinear shallow water models of swash
(Shen & Meyer 1963; Pritchard et al. 2008).

3.3. Breakdown of solution

The hodograph transformation becomes non-invertible whenever the Jacobian J

vanishes or becomes unbounded. For this solution (3.13), the earliest time at which
the Jacobian vanishes is given by the conditions

∂t

∂α
= 0 and

∂2t

∂α2
= 0, (3.16)

which corresponds to the first instance at which α-characteristics intersect. The
conditions (3.16) are satisfied at (α, β) ≡ (α∗, β∗) = (2.622, 1.791), while t(α∗, β∗) ≡
t∗ = 2.916 and x(α∗, β∗) ≡ x∗ = 1.181. Thereafter it is no longer appropriate to describe
the entire domain by (3.13), but rather a bore must be inserted to join the seaward
and landward regions and render the multivalued region as single-valued. However
the solution (3.13) does remain appropriate for β-characteristics with β <β∗ and the
limiting β = β∗ characteristic bounds the multivalued region. The profiles of the height
and velocity fields are plotted in figure 2 at the instant when the solution breaks down
(u(x, t∗) and d(x, t∗)).

4. Shock solution
The multivalued solution that emerges for t > t∗ is resolved by introducing a bore

across which the velocity and height fields are discontinuous. This implies that the
hodograph variables are also discontinuous, and thus the bore opens up a ‘tear’ in
the hodograph plane (cf. Hogg 2006). The solutions either side of the discontinuity
are related by jump conditions that express conservation of mass and momentum.
Thus denoting the shock speed by s, we may write these jump conditions as

[ud] = s [d] and

[
u2d +

1

2
d2

]
= s [ud] , (4.1)

where [. . .] represents the change in value between the landward and seaward sides
of the shock, henceforth denoted by the subscripts 1 and 2, respectively. We note that
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some care must be taken when employing the nonlinear shallow water equations to
model the motion close to bores, because there are non-negligible vertical accelerations
that may render the pressure no longer hydrostatic. However these shock conditions
(4.1) preserve the mass and momentum fluxes, while leading implicitly to dissipation
across the shock. They are the traditional mathematical representations of the steep-
fronted fluid motion associated with bores (see e.g. Hibberd & Peregrine 1979). We
re-write (4.1) in terms of the hodograph variables: at this stage, following Antuono
et al. (2009), it is convenient to introduce λ=α + β and σ = α − β as this permits
the shock equations to be solved analytically. However tracking the shocks under
consideration here is more complicated than those treated by Antuono et al. (2009):
here the flow both sides of the shock are evolving temporally and spatially, whereas
there was a spatially uniform state on one side of the shocks in Antuono et al. (2009),
thus allowing the characteristic variables to be determined straightaway. We find that

λ2 = λ1 −
(
σ 2

1 − σ 2
2

)
4σ1σ2

(
2
(
σ 2

1 + σ 2
2

))1/2
. (4.2)

In this expression, the negative branch of the square root has been chosen, because
the jump results in an increase of height (σ2 >σ1) and a reduction of seaward velocity
(|λ1| > |λ2|). The shock speed is given by

s + t =
λ1

2
+

σ2

8σ1

(
2
(
σ 2

1 + σ 2
2

))1/2
. (4.3)

The location of the shock is written parametrically as (xs(α), ts(α)), where α denotes
the characteristic value on the landward side. The β-characteristic value at the shock
on the landward side is denoted by β(α), while the characteristic values on the seaward
side are denoted by αs(α) and βs(α). The parameter α varies between α∗ and 2. The
evolution of the shock is parametrically expressed by

dxs

dα
= s

dts

dα
. (4.4)

Initially at the inception of the shock σ2 → σ1 and so from (4.3) s → u +
√

h. Thus
the shock is initially tangent to the characteristic on which α = α∗, confirming our
implicit assumption that there is no fan of β-characteristics generated from (α∗, β∗).

On the seaward side of the shock, we may view the shock curve as a function of αs

and βs . Thus

dxs

dα
=

dαs

dα

∂x

∂α
+

dβs

dα

∂x

∂β
. (4.5)

Then using (2.6) and (2.7), we may write this as

dxs

dα
=

(
α + β

2
− ts

)
dts

dα
+

βs − αs

4

(
dαs

dα

∂ts

∂α
− dβs

dα

∂ts

∂β

)
. (4.6)

Thus we deduce that

dts

dα

(
s + ts − αs + βs

2

)
=

βs − αs

4

(
dαs

dα

∂ts

∂α
− dβs

dα

∂ts

∂β

)
, (4.7)

and this identity will be used to simplify the analysis that follows.
The task is now to calculate the trajectory of the shock curve in the hodograph

plane; that is, we must calculate β(α), βs(α) and αs(α). At each value of α we enforce
continuity of x and t across the shock and the remaining shock condition (4.2). Given
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Figure 3. The hodograph plane and the tear that develops across the developing discontinuity.
The onshore side of the shock corresponds to the curve (α, β(α)), while the offshore side
corresponds to the curve (αs(α), βs(α)). Both curves originate from the point at which the
Jacobian of the hodograph transformation first becomes non-invertible. Also depicted are the
integration contours PQR and PQT S.

t(αs, βs), it is straightforward to find x(αs, βs) using (4.4) and (4.3) – and t(αs, βs) is
determined using Riemann’s method in the hodograph plane (3.5), as described in
what follows.

We integrate (3.5) around a closed contour PQR, where

P = (α∗, β∗), Q = (αs(α), βs(α)) and R = (αs(α), β∗)) (4.8)

(see figure 3). On QR and RP , the contributions, denoted by I1 and I2, respectively,
are readily evaluated using integration by parts because these are straight lines in the
hodograph plane. Thus we find that

I1 =

∫ β∗

βs

U db =
1

2
(t(αs, β∗) − B(αs, βs; αs, β∗)t(αs, βs)) (4.9)

and I2 =

∫ α∗

αs

−V da =
1

2
(t(αs, β∗) − B(α∗, β∗; αs, β∗)t∗) . (4.10)

However the contribution from the curved segment PQ, denoted by I3, is more
difficult to evaluate. The segment is given parametrically by a = αs(α) and b = βs(α)
and the form of the curve is to be determined as part of the solution. We find that

I3 =

∫ α

α∗

(
−V

das

dα
+ U

dbs

dα

)
dα,

=

∫ α

α∗

−3tsB

2(as − bs)

(
das

dα
+

dbs

dα

)
+

ts

2

(
∂B

∂a

das

dα
− ∂B

∂b

dbs

dα

)

− B

2

(
∂ts

∂a

das

dα
− ∂ts

∂b

dbs

dα

)
dα, (4.11)

where as and bs are parametric representations of the curve PQ, ts ≡ t(as, bs), and in
this integrand B ≡ B(as, bs; αs, β∗) and likewise for the derivatives of B . Finally, we
use (4.7) to simplify this expression, which replaces the derivatives of t normal to the
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curve by ones tangent to it. Thus we find that

I3 =

∫ α

α∗

−3tsB

2(as − bs)

(
das

dα
+

dbs

dα

)
+

ts

2

(
∂B

∂a

das

dα
− ∂B

∂b

dbs

dα

)

+
2B

as − bs

(
s + ts − (as + bs)

2

)
dts

dα
dα. (4.12)

Substituting for the Riemann function B , we derive the following integral equation
for the variation of the time along the curve PA,

t(αs, βs) = 2

(
αs − β∗

αs − βs

)3/2

t(αs, β∗) −
(

α∗ − β∗

αs − βs

)3/2

t∗ + 2

(
αs − β∗
αs − βs

)3/2

I3. (4.13)

This integral equation is for the time, t(αs, βs), on the seaward side of the shock.
However by continuity this is the same as the time on the landward side, t(α, β(α)),
which is known. Thus (4.13) can be regarded as an equation linking the parametric
form of the shock curves in the hodograph plane on its landward (α, β(α)) and
seaward sides (αs(α), βs(α)).

Our numerical strategy for solving these equations is as follows: for each value of α,
we make an initial guess for the values of αs(α) and β(α). The jump condition, (4.2),
then determines βs(α) and the shock speed s(α). We evaluate t(αs, βs) and x(αs, βs)
from the integral equation and the evolution of the shock speed and iteratively adjust
our initial guess until we attain a converged solution. We tackle this for discrete,
decreasing values of α in the range 2 <α � α∗.

There are some difficulties with this numerical strategy. First, it is necessary to
initiate the calculations with a good initial guess for αs and β . To this end we develop
the following power series expansions for αs , βs and β as functions of ε ≡ α − α∗ � 1.
By substituting these into the governing equation and by balancing in powers of ε,
we find that to leading order

αs = α∗ − ε + · · · and
βs

β

}
= β∗ + ε2 (α∗ − β∗)

9

∂3t

∂α3

(
∂t

∂β

)−1

+ · · · , (4.14)

where the derivatives are evaluated at (α, β) = (α∗, β∗). Further difficulties are
encountered as the moving shoreline approaches the shock. In this limit, α → 2,
β → 2 and αs − βs → 0 and thus the expression (4.13) contains divergent terms that
can strongly influence the computations. We analyse the behaviour in the regime
0 < ε̃ ≡ α − 2 � 1 to deduce the dependence of αs , βs and β upon ε̃. First, we note
that from (3.13),

∂t

∂α

∣∣∣∣
α=2

=
4

(2 − β)3/2
. (4.15)

Thus if t is to remain bounded and non-vanishing in the regime ε̃ � 1, we require
that 2 − β = O(ε̃2/3). Then from the jump condition (4.2), it is possible for the
velocity to change across the discontinuity if σ 2

2 /σ1 =O(1) as σ1 → 0 and σ2 → 0. Thus
αs − βs = O(ε̃1/3). This in turn implies that the shock speed s = u2 to leading order.
These dependencies on ε̃ imply that relatively rapid variation is to be anticipated
as ε̃ → 0. Thus we evaluate the shock at an irregular spacing of α, clustering values
towards α = 2 to resolve the rapid variation in that region. For the results presented
below we employed αi = 2 + (1 − i/N )3(α∗ − 2) with N =4000 and the results were
accurate to 10−3, checked by doubling the number of points. The trajectory of the
shock in the (x, t) plane and the tear that it induces in the hodograph plane are
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Figure 4. The characteristic plane and the shock curve (xs, ts) (thick line), depicting
α-characteristics (dashed lines) and β-characteristics (solid lines) within the region affected
by the presence of the shock. The characteristics curves outside of this region are plotted with
faint lines.
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Figure 5. (a) The shock variables (αs, βs, β, ts , xs) and (b) the jump of the depth of the fluid
(solid line) and the velocity (dashed line) as s functions of the characteristic value α on the
shoreward side of the shock. Note that 2 < α < α∗.

plotted in figures 3 and 4, while the quantities that describe the shock and its location
(αs, βs, β, ts, xs) are plotted as functions of α in figure 5. We note a progressive
growth in the size of the discontinuities across the shock, followed by a subsequent
diminishing as the shoreline is approached. (See figure 5b in which the magnitudes
of the jumps in velocity and depth are plotted as functions of α.) Notably the shock
speed becomes positive (onshore) for 2 <α < 2.008 and the shock moves onshore for a
short period before intersecting with the shoreline at t ≡ tm = 3.349, x ≡ xm =1.089 and
αs = βs ≡ αm = 3.59. Thereafter the shoreline is governed locally by dxN/dt = αm − t .
However this is not the complete solution as the shoreline becomes an envelope of
α-characteristics (cf. Hibberd & Peregrine 1979).

The solution seaward of the shock may be readily evaluated using Riemann’s
method once the trajectory of the shock in the hodograph plane is known. In this
case we integrate around the closed contour PQT S, where P and Q denote locations
at the start of and on the shock trajectory, respectively (as defined above and plotted
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Figure 6. (a) The depth of the fluid and (b) the velocity of the flow as functions of distance at
times t = t∗, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5 (labelled a–g). Note that the shock forms at t = t∗ ≡ 2.916
and that it has dissipated in the profiles for t = 3.4, 3.5.

in figure 3) and the other points form straight line segments in the hodograph plane
with T =(α̃, βs) and S = (α̃, β∗). Then summing the contributions from each of the
segments, we deduce that

t(α̃, βs) =

(
α̃ − β∗

α̃ − βs

)3/2

t(α̃, β∗) +
1

2

(
α̃ − β∗

α̃ − βs

)3/2

B(αs, βs; α̃, β∗)t(αs, βs)

− 1

2

(
α∗ − β∗

α̃ − βs

)3/2

t∗ +

(
α̃ − β∗

α̃ − βs

)3/2

Ĩ3 +

(
α̃ − β∗

α̃ − βs

)3/2

×
∫ α̃

αs

t(a, βs)

(
∂B

∂a
− 3B

2(a − βs)

)
da, (4.16)

where the final integral is evaluated along b = βs and Ĩ3 is equal to I3 with the Riemann
function now evaluated as B = B(as, bs, α̃, β∗) and likewise for its derivatives. The
position x(α̃, βs) is computed by integrating (2.7) along the β = βs characteristic.

Armed with these expressions for the solution offshore of the shock, we may now
compute the complete solution. In figure 4, we plot the α- and β-characteristic curves,
noting how they intersect with the shock. In figure 6 we plot snapshots of the velocity
and depth profiles in the vicinity of the shock. These plots depict the variation of u

and d as the shock grows and diminishes and in the aftermath of its intersection with
the shoreline. The positions at which the gradients of u and d are discontinuous in
figure 6 correspond to the β = β∗ characteristic; shoreward of this point the solution
is affected by the shock, whereas seaward it is unaffected.

The fluid motion near the retreating front is relatively thin, but exhibits a relatively
rapid offshore velocity (see figures 2 and 6). This offshore flow encounters much deeper
and more slowly moving fluid and it is this interaction that generates the landward-
facing bore. After the bore formation, it grows as more offshore moving fluid is
fed into it, but eventually this offshore flux becomes sufficiently small and the bore
collapses shoreward, thus diminishing in magnitude and generating a weak onshore
motion. This sequence of dynamical phenomena is similar to that found by Hibberd &
Peregrine (1979) in their study of run-up and backwash bore formation from a uniform
bore approaching a planar beach. Their insights into these physical features were
drawn from their numerical computations, which integrated the nonlinear shallow
water equations. In the current study of the slumping of fluid from dam-break
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initial conditions, however, we have been able to track the onset and evolution of
the bore using these quasi-analytical techniques that are based upon the hodograph
transformation of the governing equations.

Finally, we may evaluate the magnitude of L such that the impermeable back wall
of the tank does not influence the evolution of the shock. The forward propagating
characteristic from the wall has α = αw . Thus there are two critical values of L, given
by L1 = −1 + (αm + 2)2/16 and L2 = −1 + (α∗ + 2)2/16. If L > L1 then the rear wall
does not affect the formation and evolution of the shock. If L1 > L > L2 then the
formation of the shock is not affected by the back wall, but at some point during its
development, it intersects with the α-characteristic emanating from the rear wall and
the subsequent evolution is modified. However if L2 > L then the presence of the rear
wall also modifies the initial inception of the shock.

5. Summary and conclusions
In this study we have developed a new analytical solution to the governing equations

that reveals the two-dimensional run-up of fluid on a planar beach and the formation
of a backwash bore. We employed the hodograph transformation to construct the
solutions, which linearized the nonlinear shallow water equations, and identified that a
bore formed at some interior point during the backwash; the signature of the inception
of this event was that the hodograph transformation failed. Thereafter a discontinuous
solution arose that may be viewed as a tear in the hodograph plane. Similarly to
Hogg (2006) and Antuono et al. (2009), we were able to track the evolution of this
discontinuity, however, importantly it differed from the previously studied examples
in that it grew in magnitude before diminishing and finally vanishing as it intersected
with the retreating shoreline. Although generated from different boundary conditions,
this shares identical features with the numerical computations of Hibberd & Peregrine
(1979), who studied the run-up of a uniform bore on a planar beach. These results
reveal interesting dynamics that could be studied in the laboratory and they pose a
challenging test for numerical routines designed to integrate the governing equations.

There are a number of interesting developments of this work that warrant further
investigation. These include predictions of over-topping from truncated beaches,
sediment transport, as well as an assessment of how the results might change should
a more complete model of the motion be employed.

This work was partially funded by the Italian Ministero dei Trasporti within the
framework of the Programma Ricerche INSEAN 2007–2009 and Programma sulla
Sicurezza INSEAN 2009.
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