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The influence of drag on the motion of gravity currents over rigid horizontal surfaces
is considered analytically using a Chézy model of boundary shear stress. Although
the initial motion is governed by a balance between the buoyancy forces and fluid
inertia, drag gradually influences the flow. The length and time scales at which these
effects become significant are identified. A perturbation series, valid at early times, is
constructed to analyse the changes to the velocity and height of the evolving current
due to drag. At much later times, a new class of similarity solutions is developed
to model the motion which is now governed by a balance between buoyancy and
drag. The transition in the dominant forces which govern the dynamics of the flow
is examined by numerically integrating the equations of motion for flows generated
by a constant flux of relatively dense fluid. The numerical results confirm both the
perturbation solution, valid at early times, and the new similarity solution valid at late
times. The transition between the two may involve the formation of a discontinuity
(bore). Finally particle-driven currents, which exhibit different dynamical behaviour
due to the progressive reduction of their density arising from particle sedimentation,
are investigated.

1. Introduction
Gravity currents are common in nature and in many industrial applications. They

occur when a fluid intrudes into another of a different density, resulting in a buoyancy-
driven flow. For example, when a fluid is introduced into a less dense ambient, a gravity
current arises and the fluid spreads along the underlying boundary. Such flows may
arise when a relatively heavy pollutant is discharged into a river or estuary or when
there is a release of a dense gas in the atmosphere. In both of these situations
the difference in the densities of the two fluids is due to compositional differences.
Alternatively, the excess density of the intruding fluid may arise as a result of the
suspension of relatively heavy particles. In this case the dynamics of the gravity current
are more complicated because the particles settle out of the suspension and thus the
initial density difference is progressively reduced. Examples of these flows include
turbidity currents in the oceans and volcanic pyroclastic flows. The properties of
gravity currents and their importance in many other applications have been discussed
by Simpson (1997).

The purpose of this study is to consider the effects of drag upon the motion of
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gravity currents. Viscous gravity currents have been studied by Huppert (1982), in
which the resistive force is proportional to the viscous stress exerted by the underlying
boundary. High-Reynolds-number flows over horizontal boundaries have usually been
assumed to be unaffected by drag because the inertial forces far exceed the viscous
forces. In this study, however, we consider the effect on the propagation of gravity
currents of the drag associated with turbulent fluid motions. In its simplest form, this
stress per unit mass may be modelled by a constant drag coefficient multiplied by
the square of the speed of the overlying flow (Moody 1944; Turner 1973). Such a
Chézy model of drag has been employed widely in studies of channel flow over rough
boundaries composed of bed topography of low aspect ratio as well as in studies of
estuarine salt wedge formation and the flow of gravity currents down slopes (Turner
1973).

For many cases the influence of viscosity is negligible and a balance of inertial,
gravitational and drag forces dominates the dynamics of the flow. Furthermore, the
horizontal lengthscale of the motion usually far exceeds the vertical. Therefore the
pressure distribution is hydrostatic in the vertical and the shallow-water equations
may be employed to model its evolution (e.g. Whitham 1973). A boundary condition
at the front of the current is added to the governing equations. For an ideal fluid,
Benjamin (1968) found that when the depth of the current is much less than the
depth of the ambient fluid, the Froude number at the front is equal to

√
2. In this

context, the Froude number represents the ratio of the speed of propagation to the
local speed of internal waves of long wavelength. Huppert & Simpson (1980) studied
this condition experimentally and found the ratio to be 1.19. They attributed the
difference to unsteady and three-dimensional motions around the front of the gravity
current.

The system of equations admits self-similar solutions in the absence of basal drag.
These solutions are useful because they provide intermediate asymptotics for the flow.
They are valid for intermediate times when the flow is no longer strongly influenced
by the initial conditions and yet the effects of friction are still negligible. The solutions
have been classified by Grundy & Rottman (1986) and Gratton & Vigo (1994). Four
types of solution emerge which depend on the conditions at the front and the source:
continuous; continuous with supercritical–subcritical transitions; discontinuous with
hydraulic jumps; and discontinuous with two hydraulic jumps and a supercritical–
subcritical transition. We note that in the context of discontinuities between two
superimposed fluids, hydraulic jumps are termed internal jumps (Yih & Guha 1955).

In § 2, we review the governing equations of the flow, indicate the forms of self-
similar solutions in the absence of drag and summarize the particular solutions for
planar currents generated by the input of a constant flux of dense fluid (Gratton &
Vigo 1994). In § 3 we calculate the short-time perturbation to the similarity solution
by the inclusion of a relatively weak drag force. We then consider the long-time
balance in which the drag forces dominate the inertial and balance the streamwise
hydrostatic pressure gradient (§ 4). In this regime we find that the rate of propagation
of the current has a different power-law dependence on time and we construct new
solutions to the model. We present results of a numerical integration of the equations
of motion in § 5 which illustrate the way in which this new class of solutions is
established. In § 6 we investigate the difference in the dynamics of the flow when
the excess density is generated by the suspension of particles which progressively
sediment to the boundary, thus reducing the difference in density between the current
and the ambient fluid. Finally, in § 7, we summarize the results and illustrate some
applications of this work.



The transition in motion of turbulent gravity currents 203

2. Governing equations
We consider the motion of a gravity current in which a fluid of density ρc intrudes

along a horizontal boundary beneath a lighter ambient fluid of density ρa. The
horizontal lengthscale of the flow is assumed to be much greater than the vertical
lengthscale. Vertical accelerations are neglected and the pressure is hydrostatic (see,
for example, Whitham 1973). This implies that the shallow-water equations may be
employed and the evolution of the current can be described in terms of its velocity
and height, denoted by u and h, respectively. These are functions of time, t, and of
a horizontal spatial coordinate, x, which is the distance from a line source in two-
dimensional geometry and the radial distance from a point source in an axisymmetric
geometry. In most of the analysis which follows in this study, we pursue a description
of planar currents, but in this section and the Appendix we employ an analytical
framework which includes axisymmetric currents.

Recent experimental studies have investigated the mixing of the relatively dense
gravity current with the surrounding ambient fluid for flows over horizontal bound-
aries (Hallworth et al. 1996). Although they find there is some entrainment of the
ambient, the overall rate of entrainment is low. Thus, on the assumption that the
current does not entrain ambient fluid, conservation of mass is given by

∂h

∂t
+ x−n

∂

∂x
(xnuh) = 0, (2.1)

where n = 0 and n = 1 for planar and axisymmetric flows, respectively. On the
assumption that the density difference between the ambient fluid and the gravity
current is small so that the Boussinesq approximation may be made, the vertically
integrated momentum equation is given by

∂

∂t
(uh) + x−n

∂

∂x
(xnu2h) +

∂

∂x
( 1

2
g′h2) = −τb/ρc, (2.2)

where τb is the basal shear stress exerted on the lower boundary and g′ ≡ (ρc−ρa)g/ρa
is the reduced gravity. If viscous forces were non-negligible and the fluid were
Newtonian, then this stress could be related to the product of the strain rate and
the dynamic viscosity. Viscously dominated flows have been studied by Huppert
(1982). However, in this study, we are interested in the effect of turbulent stresses. We
therefore introduce a drag coefficient, CD , which will be assumed constant, to relate
the shear stress to the mean flow speed,

τb = ρcCDu
2. (2.3)

Typical values of the drag coefficient are in the range 0.01–0.001 (Moody 1944),
depending on the roughness of the boundary. The gravity current is assumed to be
non-entraining and the source of the fluid is such that the total volume is given by∫ xN

0

xnh dx = qtα, (2.4)

where xN(t) is the position of the front of the current. Note the important cases
α = 0 and α = 1, corresponding to constant-volume and constant-flux releases of
fluid. Following Benjamin (1968) and Huppert & Simpson (1980), we assume that the
Froude number at the front of the current is constant

u

(g′h)1/2
= Fr at x = xN(t). (2.5)
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Also, we assume that the source Froude number, F0, is known,

u

(g′h)1/2
= F0 at x = 0. (2.6)

The specification of this condition permits the difference between sub- and supercrit-
ical conditions at the source to be analysed (Gratton & Vigo 1994).

This system of equations admits the possibility of discontinuous solutions. Suppos-
ing that a discontinuity were propagating at speed c and were at a position x = xs(t),
then the matching conditions across it are given by (Whitham 1973)

[h(u− c)]x=xs+
x=xs− = 0, (2.7)

[h(u− c)2 + 1
2
h2]x=xs+

x=xs− = 0. (2.8)

These jump conditions represent the conservation of mass and momentum, respec-
tively, and are formulated on the assumption that the motion of the ambient fluid may
be neglected. (If the motion of the ambient is not negligible then the jump conditions
must be amended to account for the acceleration of fluid around the discontinuity,
but this falls outside of the scope of this study.)

We introduce dimensionless variables by scaling lengths with respect to
(q2g′−α)1/(2n+4−α) and times with respect to (qg′−(n+2))1/(2n+4−α). This leaves CD, Fr and
F0 as the residual dimensionless parameters in the problem. Unless stated to the
contrary, we hereinafter assume that h, u and xN are dimensionless functions of the
dimensionless variables x and t.

2.1. Similarity solutions when CD = 0

In the limit of vanishing drag, the system of equations (2.1)–(2.8) admits similarity
solutions (e.g. Hoult 1972; Grundy & Rottman 1986; Gratton & Vigo 1994). In
general, these are given by

xN = t(2+α)/(n+3)X0, (2.9)

u = t(α−n−1)/(n+3)U(y), (2.10)

h = t2(α−n−1)/(n+3)H(y), (2.11)

c = t(α−n−1)/(n+3)C0, (2.12)

where the similarity variable is y = x/xN and C0 and X0 are constants. The functions
U(y) and H(y) are determined by substitution into the governing equations and the
resulting ordinary differential equations are solved subject to the boundary conditions
(2.4)–(2.6).

We may assess the domain of validity of these solutions by estimating the magnitude
of the viscous and turbulent drag forces, relative to the inertia of the flow. In terms
of dimensional variables, these forces per unit mass are denoted by Fv, Fd and Fi,
respectively, and are given by

Fi ∼ ρcu2/xN, Fv ∼ µu/h2, Fd ∼ ρcCDu2/h. (2.13)

Viscous forces may be neglected if Fi � Fv , which implies that

Re t(4α−5n−7)/(n+3) � 1, (2.14)

where Re = ρcg
′(n+2−2α)/(2n+4−α) q3/(2n+4−α)/µ is the initial Reynolds number of the flow

(Huppert 1982). Similarly, the effects of turbulent drag may be neglected if Fi � Fd,
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Figure 1. Classification of the different types of similarity solution for a planar, constant flux
gravity current, determined by the Froude numbers at the source and at the front of the current.
(After Gratton & Vigo 1994.)

which likewise implies that

C−1
D t(α−2n−4)/(n+3) � 1. (2.15)

This condition illustrates that, for α < 7+3n, if the viscosity is vanishingly small, then
the flow is eventually affected by the action of turbulent drag so that the buoyancy–
inertial balance ceases to hold. In the course of this study, we investigate this regime
and consider how turbulent drag modifies the dynamics of the flow.

2.2. Similarity solutions for planar, constant flux gravity currents

We now summarize the results of Gratton & Vigo (1994) for a drag-free, planar,
constant flux current (α = 1, n = 0). In this case, the scalings of the similarity
solutions are particularly simple and the equations for the continuity of mass and
momentum reduce to

−yH ′ + (UH)′ = 0, (2.16)

−yU ′ +UU ′ +H ′ = 0, (2.17)

where a prime denotes differentiation with respect to y. These equations yield

((U − y)2 −H)H ′ = 0. (2.18)

The general solutions of the these coupled equations are

H = A, U = B, (2.19)

H = (D − 1
3
y)2, U = D + 2

3
y, (2.20)

where A, B and D are constants. Furthermore, since (2.18) is singular at y = U±√H ,
there may be discontinuities in the derivative of H . There is also the possibility of
discontinuous solutions in which case the solutions on either side of the discontinuity
are matched together via the jump conditions (2.7) and (2.8). The form of the similarity
solution is determined by the Froude numbers at the source and at the front of the
current.

There are three classes of solution, as described by Gratton & Vigo (1994) and
as summarized in figure 1. These include constant solutions, continuous solutions
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(rarefactions) and discontinuous solutions (internal jumps). There are also regions
of the (Fr, F0)-plane for which it is not possible to construct similarity solutions,
while imposing Froude numbers at both the source and the front. When the Froude
numbers at the source and front are equal (F0 = Fr), then the velocity and height
are constant along the length of the current. If the Froude number at the front
is supercritical and exceeds that at the source (Fr > F0 > 1), then the velocity of
the flow increases towards the front, whilst the height of the current decreases. The
solutions are continuous but there are internal points of transition beyond which the
velocity increases linearly and the height decreases quadratically (cf. a rarefaction
wave in gas dynamics). This class of solution includes the dam-break solution, for
which F0 = 1 and Fr → ∞ (see Whitham 1973). We note that it is not possible to
construct similarity solutions of this form when F0 < 1. Finally, if the Froude number
at the source is greater than the Froude number at the front of the current, then
there is a discontinuous solution in which two regions of constant velocity and height
are joined by a moving internal jump. The velocity of this jump is determined by
the matching conditions (2.7) and (2.8). The requirement that this jump is forward
propagating, c > 0, corresponds to a minimum Froude number at the front for a
given Froude number at the source. In figure 1, this requirement corresponds to the
curve C1, which is given by

Fr = F0

(
2

(1 + 8F2
0 )1/2 − 1

)3/2

. (2.21)

If this jump is not forward propagating, then the flow undergoes a hydraulic jump
at its source so that the flow immediately adjusts to the Froude number at the nose
of the current. Note that only jumps from supercritical to subcritical conditions may
occur since energy is dissipated over the transition (see, for example, Whitham 1973).
A range of different solutions is given in figures 2(a) and 2(b). Note further that for a
subcritical source, a similarity solution is only possible if the Froude numbers at the
source and the front are identical and even then the propagation of waves upstream
is still feasible which could alter the conditions at the source.

It is anticipated from the theoretical study of Benjamin (1968) and the experimental
work of Huppert & Simpson (1980) that the Froude number at the front of the current
is supercritical. (Huppert & Simpson 1980 find Fr = 1.19.) In this case, it is possible
to construct similarity solutions which are constant, continuous or discontinuous,
depending on the precise conditions at the source. We note that this classification
is based upon an assumption that there is no entrainment of fluid into the moving
current of relatively dense fluid. For flows with F0 � 1, however, it is likely that
entrainment is significant within the regions where the flow undergoes a hydraulic
jump (Wilkinson & Wood 1971; Sherman, Imberger & Corcas 1978).

3. The effect of drag at early times
We now calculate the effects of drag on the propagation of gravity currents by

means of an asymptotic expansion. This analytical approach yields a valid expansion

for times t � C
(n+3)/(α−2n−4)
D . We explore the long-time solution in § 4. We illustrate

the use of this series expansion for the case of a planar, constant flux current
(n = 0, α = 1). The series is expanded in terms of CDt, which is assumed to be
much less than unity and the leading term of the expansion corresponds to the
appropriate drag-free similarity solution of § 2.2. This technique for the construction
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Figure 2. The similarity profiles of (a) height and (b) velocity for a planar, constant flux gravity
current. The different solutions correspond to F0 = 1.2 and (i) Fr = 0.84; (ii) 1.1; (iii) 1.2; (iv) 2;
and (v) ∞. The first of these has a stationary internal jump at the source and is the smallest Fr for
which a similarity solution exists, given F0 = 1.2.

of a perturbation to an exact similarity solution has been employed recently by Hogg,
Ungarish & Huppert (2000) in the examination of a particle-driven gravity current.
Also Whitham (1955) and Dressler (1952) employed a somewhat similar approach to
examine the effects of hydraulic resistance on dam-break flows. We pose the following
series for the velocity, height and length of the current

xN = X0t+ CDt
2X1 + · · · , (3.1)

u = U0(y) + CDtU1(y) + · · · , (3.2)

h = H0(y) + CDtH1(y) + · · · , (3.3)

where y = x/(X0t). As discussed above, there may be one or more discontinuities
(internal jumps) within the flow, for which series expansions for their velocities
should be posed as well. In the following analysis, for simplicity, we assume that the
source and frontal Froude numbers are identical (Fr = F0). This implies that the
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leading-order similarity solutions are continuous and given by

U0 = Fr2/3, H0 = Fr−2/3, X0 = Fr2/3. (3.4a,b,c)

The analytical procedure described below may be equally well applied to the other
classes of similarity solutions. We substitute the series into the governing equations and
balance the terms at each order of CD . The leading-order equations are automatically
satisfied whereas at O(CD) we find that the equations for the conservation of mass
and momentum are given by

H1 − yH ′1 + Fr−4/3 U ′1 +H ′1 = 0, (3.5)

U1 − yU ′1 +U ′1 + Fr−2/3H ′1 = −Fr2. (3.6)

The boundary conditions are also expanded in terms of these series. At the origin, we
find that

U1(0) = 0, H1(0) = 0. (3.7)

At the nose of the current, there is a kinematic condition which yields

2X1 = U1(1). (3.8)

On the assumption that the effects of drag are sufficiently weak that the Froude
number condition still applies, we find that

U1(1) = 1
2
Fr4/3H1(1). (3.9)

These conditions, together with the expression for the conservation of mass (3.5),
imply that the global mass balance (2.4) is automatically satisfied at O(CD). The
governing equations lead to the following expression for the first-order perturbation
of the height,

((y − 1)2 − 1/Fr2)
d2H1

dy2
= 0. (3.10)

Hence, the height and velocity fields are linear functions of the similarity variable, y,
and are given by

H1(y) = Ay+B, U1(y) = −Fr4/3(A+B)y−Fr2−Fr−2/3A+Fr4/3(A+B), (3.11)

where A and B are constants. Furthermore, we expect a possible transition in the
solution at y = y1 ≡ 1 − 1/Fr, because (3.10) is singular at that point. For the
experimentally determined value Fr = 1.19, we deduce that y1 > 0.

We find that the first-order perturbations to the similarity solution are piecewise
linear and are given by

H1(y) =
Fr8/3

Fr2 − 1
y, U1(y) = − Fr4

Fr2 − 1
y for 0 < y < y1, (3.12a)

H1(y) = −Fr
8/3((3Fr + 2)y − 3Fr)

Fr2 + 3Fr + 2
, U1(y) =

Fr4(2y − 3)

Fr2 + 3Fr + 2
for y1 < y < 1.

(3.12b)
These are plotted in figure 3. The leading-order correction to length of the current,
X1, is given by

X1 = −Fr4/[2(Fr2 + 3Fr + 2)], (3.13)

which implies that, irrespective of the internal dynamics of the current, the action of
drag is always to reduce the rate at which its length increases. With these solutions,
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Figure 3. The short-time perturbation velocity and height solutions, U1(y) and H1(y), for flows
with equal Froude numbers at the source and the front, given by F0 = Fr = 1.2.

we now have derived the first-order correction to the drag-free similarity solution,
although the solutions are only consistent for supercritical flows (Fr > 1). For
subcritical flows, it is not possible to maintain the given source conditions and a
jump occurs at the origin. (In terms of the analysis developed here, this conclusion
is equivalent to the requirement that y1 > 0.) We observe that for y < y1, the
perturbation is steady; neither the height nor velocity exhibit any explicit dependence
on time. However, for y > y1, the flow is unsteady. The character of the supercritical
flows is that, near to the source, the velocity is reduced by the action of the drag
and the height of the current increases. This implies that the local Froude number of
the flow is decreasing with distance from the source. However, we require the flow to
attain the same Froude number at the front as at the source. Thus, there is a transition
from steady to unsteady flow and the height of the current develops a streamwise
gradient to produce a (positive) streamwise pressure gradient. This compensates for
the effects of drag and accelerates the fluid towards the front. The condition at the
front of the gravity current can be viewed as a point of hydraulic control and y = y1

is a ‘choked’ point, although neither is fixed in space.
This perturbation expansion is formally valid only in the regime CDt � 1. How-

ever, the form of these first-order solutions (and subsequent higher-order solutions)
indicates that close to the source there is a region in which the flow is steady and
spatially developing. It is decelerated by the action of drag until it attains the critical
velocity (u = 1) at which the local Froude number is reduced to unity. This critical
velocity corresponds to the minimum momentum and energy within a steady flow
with a given volume flux and reduced gravity. After this point has been attained,
steady flows further downstream are no longer possible. Instead, there is a ‘hydraulic
catastrophe’ and the flow becomes time dependent. An internal jump is set up and
a bore is formed which propagates upstream. This transition is discussed in more
detail in § 5, where the results of the numerical integration of the governing equations
are presented. Note that these numerical results seem to indicate that this short-time
perturbation solution is stable. The downstream location at which critical conditions
are first attained is given by

xc = C−1
D (−Fr−2/3 + 1

4
Fr−8/3 + 3

4
). (3.14)
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4. The effects of drag at long times
The asymptotic series of § 3 is formally valid only for early times. After sufficient

time has passed, the drag force is not just a small perturbation to the flow. Rather, it
is a dominant force and different solutions must be constructed for the flow to reveal
the internal dynamics. We present a new class of similarity solution in which the
drag force is balanced by the developing streamwise hydrostatic pressure gradient.
We focus on a planar, constant flux current (n = 0, α = 1), but the analysis for a
more general release and axisymmetric geometry is pursued in the Appendix.

In terms of dimensional variables, the balance between the hydrostatic pressure
gradient and the drag force per unit volume is given by ρg′h/xN ∼ ρCDu

2/h. Also,
the conservation of volume implies xNh ∼ qt, while kinematic consistency requires
u ∼ xN/t. Therefore, we seek a solution of the form

xN = C
−1/5
D t4/5 g′1/5 q2/5X0, (4.1)

u = 4
5
C
−1/5
D t−1/5 g′1/5 q2/5X0U(ξ), (4.2)

h = 4
5
C

1/5
D t1/5 g′−1/5 q3/5X3/2

0 H(ξ), (4.3)

where the similarity variable is ξ, defined by ξ = x/xN . In the regime CDt � 1, the
governing equations, to leading-order, are given by

H− 4ξ
dH
dξ

+ 4
d

dξ
(UH) = 0, (4.4)

dH
dξ

= −U
2

H . (4.5)

There are three boundary conditions on the flow. The kinematic condition at the
front of the current is given by

U(1) = 1. (4.6)

The global conservation of mass is given by

4
5
X5/2

0

∫ 1

0

H dξ = 1. (4.7)

Finally, by substituting these solutions into the Froude number condition at the front
of the current, we deduce that the condition does not apply. Rather, the leading-order
boundary condition is given by

H(1) = 0. (4.8)

We calculate numerical solutions forH(ξ) and U(ξ) and plot their profiles in figure 4.
These solutions yield X0 = 1.089. An approximate solution for these functions is given
by expanding for H(ξ) and U(ξ) in powers of (1− ξ) to yield

H(ξ) = [2(1− ξ) + 1
3
(1− ξ)2 + 1

90
(1− ξ)3 + O((1− ξ)4)]1/2, (4.9)

U(ξ) = 1 + 1
6
(1− ξ)− 1

180
(1− ξ)2 + O((1− ξ)3). (4.10)

We note that the length of the current increases in proportion to t4/5, which is a
slower rate of propagation than in the case of drag-free motion for which the length
increases linearly with t. The current also adopts a ‘wedge’-shaped profile in order to
generate a streamwise pressure gradient which balances the drag. The transition of a
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Figure 4. The long-time solutions for ——, height and - - - - -, velocity as functions of the
similarity variable, ξ.

gravity current to a ‘nose-down’ mode of propagation has been noted by other studies
(Simpson & Britter 1979; Ungarish & Huppert 1998; Hatcher, Hogg & Woods 2000).
It reflects the fact that the current is propagating against an adverse pressure gradient
or resistive force and must develop a streamwise pressure gradient, as in a viscous
flow (Huppert 1982; Huppert & Woods 1995).

5. The effects of drag at intermediate times: numerical solutions
In this section, we describe the transition from the drag-free similarity solutions

of § 2.2 to the drag-dependent, long-time similarity solutions of § 4. We integrate
numerically the governing equations and boundary conditions described in § 2 to
study the way in which the new similarity solution is approached. As before, we
focus on planar, constant flux currents, although the numerical techniques may be
applied equally to other geometries and source conditions. We adopt the numerical
method employed by Bonnecaze, Huppert & Lister (1993). It uses a two-step Lax–
Wendroff scheme, which is second-order in time and space. The computational domain
is mapped into a spatial region between zero and unity by the introduction of the
coordinate ξ = x/xN(t) and the equations are discretized in terms of this new variable.
The boundary conditions at the source are fully specified for a constant flux current.
However, the intersection of an outward propagating characteristic with the front of
the current must be calculated at each time step to determine fully the boundary
conditions at the front. The system of equations admits solutions with discontinuities
and this scheme does not require the explicit resolution of shocks. Instead, there is
implicit numerical viscosity to which a small amount of artificial viscosity is added to
the momentum equation in order to damp out unphysical oscillations and maintain
numerical stability. Through numerical experimentation, it is ensured that the added
artificial viscosity is as small as possible in order to reproduce some of the shock-like
features of the flow. Although numerical instabilities have been suppressed in most
of the calculations, there is still some evidence of small oscillations around some of
the discontinuities. We do not believe that these have had any significant effect on
the results. The scheme is explicit in time and so a relatively small time step must be
taken in order to maintain stability; however, runs times are only of the order of a
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few minutes on an Ultrasparc 2200 and so this is not a problem. The total volume
of the current per unit width was calculated at regular intervals by integrating the
height of the current along its length and it was compared to the product of the input
volume flux of fluid per unit width and the time elapsed. It was found that at all times
throughout the computation, these were equal to within 0.1%, thus demonstrating
that global mass conservation (2.4) is maintained.

We integrate the equations from initial conditions of xN = 0.2 for three sets of
parameter values. As demonstrated in §§ 3 and 4, it is the relative magnitudes of the
source and frontal Froude numbers which determine the character of the solution.
The magnitude of the drag coefficient, CD , solely determines how rapidly the effects
of drag are experienced. We only present results for those flows with supercritical
Froude numbers at the source. Those with subcritical source conditions undergo an
immediate transition in the conditions of the flow.

We first consider the evolution of the current when the Froude numbers at the
source and the front are both equal to 1.2. For these values, the drag-free similarity
solution of § 2.2 is that the height and velocity within the current are constant. In
figures 5(a) and 5(b), we study the early time correction to this similarity solution, the
analysis for which was presented in § 3. In order to do this, we evaluate the following
functions

δh =
h− Fr−2/3

CDt
≡ H1(y) + O(CDt), (5.1)

δu =
u− Fr2/3

CDt
≡ U1(y) + O(CDt). (5.2)

We note that the height and the velocity fields have a piecewise linear perturbation.
There is a point of transition initially located at y = 1

6
, as predicted in § 3. On the

source-side of this point the perturbation is steady and since the source is supercritical,
the velocity is progressively reduced and the height is progressively increased. In
contrast, on the other side of this transitional point, the perturbation is unsteady and
the height decreases and the velocity increases towards the front of the current. In
figure 6, we consider the flow at later times (CDt = O(1)). The general behaviour is
that the flow evolves to a steady-state close to the source, while in the bulk of the
current it develops a progressively increasing streamwise hydrostatic pressure gradient
to balance the drag. (In figure 6 this corresponds to the time given by CDt = 0.125.)
This occurs until the transition point within the current is sufficiently far downstream
that the velocity and height have attained critical values. (In the dimensionless units
employed here this corresponds to u = 1 and h = 1.) Thereafter, the nature of the
flow changes. A backward propagating bore arises from the location at which the
critical conditions are first attained. This bore connects the steady near-source region
to the rest of the current, in which the dynamics are beginning to become dominated
by the balance between drag and the streamwise pressure gradient. The profiles of
height and velocity within this region converge to the long-time similarity solution
of § 4. The bore propagates backward at a relatively slow velocity. The total length of
the current, xN , exhibits a temporal increase proportional to t4/5 well before the bore
has reached the source (figure 7).

When the Froude number at the source exceeds that at the front, the drag-free
similarity solution includes an internal jump which connects two regions of constant
velocity and height. This jump occurs as a mechanism for the flow to dissipate energy
whilst conserving mass and momentum. We study the influence of drag upon the
flow when Fr = 1.2 and F0 = 2. At early times, the perturbations to velocity and
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Figure 5. The normalized deviation of the profiles of (a) height and (b) velocity of a drag-affected
gravity current from the drag-free similarity solution at short times (CDt � 1) as functions of the
similarity variable, y. In these numerical computations, F0 = Fr = 1.2 and the profiles of δh and δu
are shown for ——, CDt = 0.05; - - - - -, 0.10; – · – · –, 0.15.

height fields are approximately linear with respect to their values in the absence of
drag and the rate of propagation of the internal jump is reduced. As noted above,
since the flow at the source is supercritical, the velocity is reduced and the height is
increased near to the source. However, near to the front there is the opposite trend, as
the current develops a streamwise hydrostatic pressure gradient. Also as noted above,
the perturbation is steady on the source side of the internal transition. At later times
(CDt = O(1)), the internal jump has now reached the downstream location at which
the flow has first attained critical conditions (u = 1, h = 1). Thereafter, an unsteady
evolution occurs as the initially forward propagating internal jump reverses direction
and propagates backwards and the flow evolves towards the long-time similarity
solution of § 4 (figure 8). Therefore, this discontinuity propagates in both direction
past a fixed downstream location between the source and the location at which critical
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Figure 7. The length of the current, xN , as a function of time. The numerical calculations were
carried out with ——, Fr = F0 = 1.2; - - - - -, Fr = 1.2, F0 = 1.15; – · – · –, Fr = 1.2, F0 = 2. (The
first two lines are indistinguishable on these axes.) The drag coefficient, CD , was 0.05. Note that
the length of the current increases in proportion to t4/5 in each of these cases. The bold line shows
the similarity solution prediction.

conditions are first attained (0 < x < xc). At early times, the internal jump propagates
in the downstream direction, whereas at later times the bore propagates upstream
towards the source. Once again, the length of the current grows as t4/5 (figure 7).

The final set of numerical results is when the Froude number at the source is less
than that at the front (figure 9). The drag-free similarity solution is a continuous
solution in which the local Froude number within the current evolves from the value
at the source to the value at the front. In this investigation, Fr = 1.2 and F0 = 1.15
and so there are two points of transition within the current, between which the
velocity varies linearly and the height quadratically and outside of which the velocity
and height are constant. The effect of drag over short times is qualitatively similar to
the examples above, in that near to the source the perturbation is steady, the velocity
decreases and the height increases. However, the functional form of the short-time
perturbation (CDt � 1) is more complex. In the regions where the leading-order
solution is constant, the perturbation is still linear, but in the region where the
leading-order solution is linear in velocity and quadratic in height, the perturbation
is quadratic and cubic, respectively. At later times (CDt = O(1)), the dynamics of the
current are very similar to those of the previous examples. The flow progressively
adopts the long-time similarity solution of § 4 and a backward propagating bore is
initiated from the location at which the flow first attains critical conditions. The
length of the current also grows as t4/5 (figure 7).

We have already noted that in each of these scenarios the length of the current
grows as t4/5 when t� 1. In figure 7, we also plot the similarity solution derived in § 4.
This solution is independent of Froude numbers at the source and the front and is only
a function of time, the drag coefficient, CD , the volume flux per unit width, q, and the
reduced gravity of the intrusion, g′. We note that each of the numerical calculations
described above, which have identical values of these parameters, converge to the
long-time similarity solution.
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Figure 8. The numerically calculated profiles of (a) height and (b) velocity as functions of distance
from the source at various times. These calculations were made with Fr = 1.2, F0 = 2 and CD = 0.05.
Each profile is labelled with the appropriate value of CDt. Note that the results are displayed only
for 0 < x < 10 in order to illustrate how an internal jump propagates downstream initially but
propagates upstream at later times.

6. Particle-driven flows
The analysis and discussion of the preceding sections of this paper have considered

the motion of gravity currents which arise from the intrusion of a fluid of one
composition into a less dense ambient fluid of a different composition. The density of
the intruding fluid has been assumed to exceed that of the overlying ambient owing
to compositional differences between the fluids and because the entrainment of the
ambient has been neglected, the density of the current remains constant. However,
particle-driven gravity currents are also possible (e.g. Bonnecaze et al. 1993; Simpson
1997). For these flows, the excess density is due to the suspension of relatively heavy
particles. The density of the current is progressively reduced as the particles settle
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and CD = 0.01. The profiles are displayed for ——, CDt = 0.05; - - - - -, 0.10; – · – · –, 0.15.

out of the flow to the underlying boundary. These particle-driven motions have been
modelled mathematically using the shallow-water equations in which an expression
for the transport and sedimentation of particles is added to those for the conservation
of mass and momentum (Bonnecaze et al. 1993). In this section, we analyse how basal
turbulent drag affects the evolution of such flows.

We denote the volume fraction of particles by φ and assume that the excess density
of the current over the ambient is due solely to the presence of the suspended particles.
Hence

ρc = ρa + φ(ρp − ρa), (6.1)

where ρp is the density of the particulate phase. The initial volume fraction is denoted
by φ0 and the scaled volume fraction, φ/φ0 is denoted by ψ. In what follows, we
analyse the motion of particle-driven gravity currents in a planar geometry (n = 0)
which arise from the intrusion of a constant flux of particle-laden fluid (α = 1). The
height and velocity of the current are non-dimensionalized with respect to (q2/g′)1/3

and (qg′)1/3 where the reduced gravity is g′ ≡ g(ρp − ρa)φ0/ρa. In the regime of a
dilute suspension φ0 � 1, the expression of the conservation of fluid mass is given by

∂h

∂t
+

∂

∂x
(uh) = 0. (6.2)

The momentum equation is now driven by the pressure gradient associated with the
suspension of particles and may be written as

∂

∂t
(uh) +

∂

∂x
(u2h+ 1

2
ψh2) = −CDu2. (6.3)

Finally, on the assumption that the particles are well-mixed throughout the flowing
layer and are not resuspended having been deposited to the underlying boundary, the
transport and sedimentation of particles is given by

∂

∂t
(hψ) +

∂

∂x
(huψ) = −vsψ, (6.4)
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where vs is the dimensionless settling velocity of the particles (Bonnecaze et al. 1993).
The Froude-number condition at the front of the current is now given by

u = Fr
√
ψh at x = xN(t). (6.5)

6.1. Spatially developing flows

We seek steady-state solutions of these equations on the assumption that the front
of the current has travelled sufficiently far downstream that it does not influence the
flow. Such solutions, in the absence of drag, have been discussed recently by Bursik &
Woods (1996) in the context of sedimenting, volcanic ash-flows and their interaction
with topography. Since the flow is generated by a constant flux of particle-laden fluid,
the steady-state distribution of the volume fraction of particles is given by

ψ = exp(−vsx), (6.6)

whereas the momentum and mass conservation equations yield

d

dx
(log u) =

−vs(γu4 − ψ)

2(u3 − ψ)
, (6.7)

where γ = 2CD/vs. The nature of the solution depends upon the magnitude of γ
which measures the relative magnitudes of the drag force and the pressure gradient
associated with the progressively evolving density of the current. In figures 10(a) and
10(b), we sketch typical solutions for the cases of γ < 1 and γ > 1. We note that (6.7)
admits two asymptotic solutions for the velocity when x� 1. These are u ∼ 2/(γvsx)
and u ∼ exp(−vsx/2). To which solution the velocity tends is determined by its initial
value and the magnitude of γ.

The ‘critical’ velocity of these flows which occurs when the local fluid velocity
is equal to the speed of propagation of surface waves of long wavelength is given
by u =

√
ψh. Since the volume fraction of particles decays with distance from

the source as particles settle to the underlying boundary, the critical velocity also
decays. In figures 10(a) and 10(b), we plot the curve which gives the critical velocity,
u = exp(− 1

3
vsx). The parameter γ measures the relative importance of the change

in fluid velocity due to drag relative to that due to sedimentation. In figures 10(a)
and 10(b), we have also plotted the curve u = γ−1/4 exp(− 1

4
vsx) which corresponds to

the condition when the two are equal. The structure of the steady solution is then
determined by the magnitude of γ.

For γ < 1, the effects of sedimentation are of greater significance than the effects
of drag and continuous solutions are possible for all initial conditions (figure 10a).
Flows which are supercritical at the source (u(0) > 1) remain supercritical and tend
to u ∼ 2/(γvsx) for x � 1. Conversely, those which are subcritical (u(0) < 1) remain
subcritical and tend to u ∼ exp(− 1

2
vsx) for x� 1.

When γ > 1, the effects of drag exceed those of sedimentation and the structure of
these steady-state solutions are different (figure 10b). For a range of initial conditions,
the evolution of these spatially developing flows leads to ‘hydraulic’ catastrophe in
which the flow attains the critical velocity. The trajectories of the solutions converge
to the curve u3 = ψ and thereafter continuous, steady solutions are not possible. The
precise range of initial conditions leading to this state depends upon the magnitude
of γ. The curve Cr indicates the division between these types of initial conditions.
We calculate Cr by integrating (6.7) from the point at which γu4 = ψ and u3 = ψ
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Figure 10. Sketch of the trajectories of the solutions for the velocity, u(x) for (a) γ < 1; (b, c) γ > 1.

intersect, namely vsx = 3 ln γ, back to x = 0. When |vsx− 3 ln γ| � 1 we find

u± =
1

γ
+

1

γ

(
−1

2
±
√

3

6

)
(vsx− 3 ln γ) + O((vsx− 3 ln γ)2). (6.8)
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These expressions provide the expansions for the velocity field, u(x) where the trajec-
tories intersect the point vsx = 3 ln γ and u = 1/γ. In figure 10(c), we plot log(u(x))
as a function of x and from (6.7) indicate the sign of du/dx. The curve Cr runs
from x = 0 to u = ucrit to vsx = 3 ln γ, u = 1/γ and its expansion in the locality of
vsx = 3 ln γ is given by u− (6.8). The curve Cr , close to this point, is given by u− (see
figure 10c). The condition on the initial value of u(x) so that the steady solution is
continuous is u(0) < ucrit. (For example, when γ = 4, we calculate ucrit = 0.62.) Dis-
continuous solutions may arise when u(0) > ucrit and these flows undergo a transition
from super- to subcritical conditions.

6.2. Unsteady flows

In this section, the results of numerical integration of the time-dependent shallow-
water equations (6.1)–(6.4) are presented to study the way in which the steady states
of § 6.1 may be attained. The numerical method is identical to that of § 5, although the
run times are slightly increased as there are now three dependent variables, namely
u, h and ψ. We present two sets of results. In the first, the Froude number at the
source and front are equal to 1.2, and γ = 0.4. We note that the flow evolves towards
a continuous steady state (figure 11). In this regime, the effects of sedimentation are
to reduce the critical velocity more rapidly than the rate of decrease of the flow
speed. Thus, the flow always remains supercritical and evolves smoothly towards a
continuous steady state.

For the second set of results, we impose both Froude numbers equal to 1.2 while
γ = 4 (figure 12). These flows lead to the ‘hydraulic’ catastrophe described above
(§ 6.1). Thereafter the flows evolve in an unsteady and discontinuous manner. A
backward propagating bore is initiated from the downstream location at which the
velocity has first become critical. This corresponds to the point at which u3 = ψ.
The bore propagates towards the source with a diminishing velocity. It may become
stationary if there is sufficient energy within the initial flow to account for that
required by the subcritical flow to which the transition occurs and for that dissipated
by the internal jump. In the example shown this is not so, and a bore propagates all
the way back to the source. Conversely, if there is sufficient energy in the flow, then
a stationary jump is attained.

7. Conclusions and applications
The models presented herein illustrate the role of bottom friction in modifying

the propagation of a turbulent gravity current over a horizontal plane. The effects
become important at long times and we have studied in detail the development of
a flow from a steady source. The initial phase of the motion is governed by an
inertia–buoyancy balance, as described by Gratton & Vigo (1994), but, at later times,
the dynamics are controlled by a balance between buoyancy and drag forces. The
models illustrate that the transition occurs at the front of the current, which adjusts
to a more gradual spreading regime. The fluid behind the nose therefore builds up
and a backward-propagating adjustment wave develops.

It is of interest to examine conditions under which the bottom friction may be
important in two geophysical examples. We consider a dense turbidity current, in
which the subaqueous flow is driven by particles (Sparks et al. 1993) and volcanic ash
flows in which the subaerial flow is again driven by the presence of dense particles
(Bursik & Woods 1996). In both cases, the key issue in determining the control of
the dynamics is the rate at which sedimentation of dense, suspended particles reduces
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Figure 11. The numerically calculated profiles of (a) height, (b) velocity and (c) volume fraction of
particles as functions of distance from the source at various times. These calculations were made
with Fr = 1.2, F0 = 1.2, CD = 0.001 and vs = 0.005. Each profile is labelled with the appropriate
value of t. Note that in this calculation γ < 1 and the flows evolve downstream continuously towards
the steady state. (b) - - - - -, ‘critical’ velocity; (c) - - - - -, the steady-state for ψ.

the buoyancy compared to the magnitude of the drag force. The relative importance
of these two effects and the time scales over which they become non-negligible is
measured by the magnitude of the parameter γ, which may be explained as follows.
The dimensional timescale on which drag forces significantly influence the flow is given
by td ∼ C−1

D (q/g′2)1/3 (see §§ 2 and 3). The length scale over significant sedimentation
occurs scales as q/Vs, where Vs is the dimensional settling velocity of the suspended
particles. Hence, the timescale is given by ts ∼ (qg′)−1/3 q/Vs. Thus, the ratio of these
two time scales ts/td ∼ CD(qg′)1/3/Vs is equivalent to the parameter γ (see § 6). The
dynamics of the flow are dominated by sedimentation if γ � 1, whereas drag effects
are more important if γ � 1.

For many geophysical flows, the drag coefficient, CD , is estimated to be in the range
10−2–10−3 (Parker, Fukushima & Pantin 1986), while the initial reduced gravity, g′
is in the range 10−1–10 m s−2. In turbidities, the fall speed of particles of typical size
1–100 µm lies in the range 10−4–10−2 m s−1, whereas in ash flows, the typical fall speed
of particles is of order 10−1–1 m s−1. We may thus estimate the magnitudes of flow
which become strongly influenced by bottom friction before most of the sedimentation
has occurred.

For a channelled ash flow, sedimentation will dominate the effects of turbulent
drag in flows with volume fluxes smaller than about 103 m2 s−1. Thus, only in the
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Figure 12. The numerically calculated profiles of (a) height, (b) velocity and (c) volume fraction of
particles as functions of distance from the source at various times. These calculations were made
with Fr = 1.2, F0 = 1.2, CD = 0.01 and vs = 0.005. Each profile is labelled with the appropriate
value of t. Note that in this calculation γ > 1 and the flows evolves to the steady state by means of
an internal jump, which is established by a backward propagating bore from the location at which
the flow first attains critical conditions. (c) - - - - -, steady-state for ψ.

most extreme eruptions is the turbulent drag likely to influence the flow. By contrast,
however, in long-lived turbidities with typical volume fluxes of order 10 m2 s−1, the
effects of drag are likely to become important long before substantial sedimentation
has occurred. As we have seen in the calculations of this paper, this will limit the
range of propagation and the sedimentation profile of the current relative to the
predictions of models invoking a buoyancy–inertial balance. The propagation speeds
are significantly reduced and the suspended sediment is deposited closer to the source.

In closing, we note that it would also be interesting to develop some of the present
ideas to account for the effects of a sloping boundary and for the effects of mixing of
ambient fluid with the effect of the current.

A. J. H. acknowledges the financial support of the EPSRC.

Appendix A
In this Appendix, we generalize the new similarity solution of § 4, in which the

basal drag is in balance with a streamwise pressure gradient, to include axisymmetric
geometry and a variable source, given by (2.4). In terms of dimensional variables
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for which xN is the distance from a line source or a point source in planar or
axisymmetric geometry, respectively, the balance between the drag and the pressure
gradient implies

g′h/xN ∼ CDu2/h. (A 1)

The global expression for the conservation of mass yields

xn+1
N h ∼ qtα, (A 2)

where n = 0 for planar geometry and n = 1 for axisymmetric geometry. Finally, for
kinematic consistency we require u ∼ xN/t. Therefore, we seek a similarity solution
of the form

xN = X0[CDg
′q2 t(2α+2)]1/(2n+5), (A 3)

u =
2α+ 2

2n+ 5
X0[CDg

′q2 t(2α−2n−3)]1/(2n+5)U(ξ), (A 4)

h =
2α+ 2

2n+ 5
X

3/2
0 [C−(n+1)

D q3 g′−(n+1) t(3α−2n−2)]1/(2n+5)H(ξ), (A 5)

where the similarity variable is given by ξ = x/xN . Substitution of these expressions
into the equation for the conservation of mass yields

(3α− 2n− 2)H− (2α+ 2)ξ
dH
dξ

+
2α+ 2

ξn
d

dξ
(ξnUH) = 0. (A 6)

The dominant terms in the momentum equation at long times depends upon the
magnitude of α. Provided that α < 4, we find that, for t� 1, the momentum equation
is given by

dH
dξ

= −U
2

H . (A 7)

The boundary conditions at the front of the current are given by

H(1) = 0, U(1) = 1. (A 8)

The global conservation of mass is now given by

2α+ 2

2n+ 5
X

(2n+5)/2
0

∫ 1

0

ξnH dξ = 1. (A 9)

This system of ordinary differential equations and boundary conditions could be
integrated to determine the profiles within the current. In what follows, we consider
only the cases of flows generated by the instantaneous release of dense fluid (α = 0).

Constant volume gravity currents (α = 0)

For this case, the equations admit exact similarity solutions. They are given by

U = ξ, (A 10)

H = ( 2
3
)
1/2

(1− ξ3)1/2. (A 11)

The constant, X0, is evaluated by substitution into (A 9). For two-dimensional flows
(n = 0), X0 = 1.68 and for axisymmetric flows (n = 1), X0 = 2.01.
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