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We model the propagation of turbulent gravity currents through an array of obstacles
which exert a drag force on the flow proportional to the square of the flow speed.
A new class of similarity solutions is constructed to describe the flows that develop
from a source of strength q0t

γ . An analytical solution exists for a finite release, γ = 0,
while power series solutions are developed for sources with γ > 0. These are shown to
provide an accurate approximation to the numerically calculated similarity solutions.
The model is successfully tested against a series of new laboratory experiments which
investigate the motion of a turbulent gravity current through a large flume containing
an array of obstacles. The model is extended to account for the effects of a sloping
boundary. Finally, a series of geophysical and environmental applications of the
model are discussed.

1. Introduction
There are several situations in which gravity-driven flows at high Reynolds number

encounter obstacles or roughness elements which impede the progress of the current.
Important examples include high-Reynolds-number flows in rough-walled fractures,
dilute powder snow avalanches propagating through arrays of retarding mounds
(Jóhannesson et al. 1996), large-scale dense gas flows through wooded or built-up
areas and density currents flowing down continental shelves (Lane-Serff 1993). In
permeable fractured rock, the near-surface transport of water is often controlled by
large fractures. If the aperture is sufficiently wide, then the Reynolds number of this
flow based on aperture width may exceed 100. In this case, the roughness of the
walls leads to a net drag force proportional to the square of the velocity, and this
force dominates the viscous drag (Dullien 1991; Bear 1988). Dilute powder snow
avalanches have been responsible for serious damage to a number of towns in Iceland
and in Switzerland located at the foot of steep slopes (Jóhannesson et al. 1996). In
order to mitigate such disasters, a variety of defence structures have been built. One
system involves an array of retarding mounds designed to arrest the flow by reducing
its speed and thereby facilitating the deposition of snow upstream of a settlement. For
high-Reynolds-number powder snow avalanches (Hopfinger 1983), such mounds can
exert a drag force proportional to the square of the flow speed. Finally, we note that
large dense gas releases produced from industrial accidents may encounter natural or
man-made obstacles which again impart a turbulent drag on the current proportional
to the square of the flow speed.

In order to develop some insight into the physical controls on the propagation
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of turbulent gravity-driven flows through such arrays of obstacles, we explore an
idealized model in which the presence of the obstacles is modelled by a uniform
drag force proportional to the square of the velocity and inversely proportional to
the mean length scale of the obstacles. We find that the frictional force causes the
flow to evolve away from the classical buoyancy–inertia balance which applies at
early times and which has been described in detail by numerous workers (Rottman &
Simpson 1983; Gratton & Vigo 1994). Instead, a new long-time asymptotic balance
is established between the buoyancy force and the turbulent drag. We develop a
new class of similarity solutions to describe the motion of such currents following
instantaneous and continuous releases of fluid. We then present the results of a new
series of experiments to test this model. In the experiments, we examined the motion
of a saline gravity current propagating through a 3 m long flume in which a regular
array of vertical obstacles produced a turbulent drag throughout the current. We
extend the model to include the effects of a sloping boundary and conclude with a
discussion of several applications of the model.

It is worth noting that Rottman et al. (1985) examined the impact of a localized
porous barrier on the propagation of a gravity current. In that case the porous
barrier partially arrests the flow: a fraction seeps through the obstacle and continues
downstream as an inertial current while a part is blocked by the obstacle leading to
the upstream propagation of a weak hydraulic jump (cf. Lane-Serff, Beal & Hadfield
1995). In contrast to that work this present study is concerned with the propagation of
a gravity current through a spatially extensive (rather than localized) porous layer so
that the turbulent drag associated with the porous layer can dominate the dynamics.
In a theoretical contribution Lane-Serff (1993) examined the steady-state dynamics of
a current propagating down a slope. The current was subject to turbulent entrainment
of the ambient fluid on its upper surface, turbulent drag and deceleration due to the
structure of the ambient fluid. This earlier study is complementary to the present
paper, in which we consider the transient motion of a gravity current produced from
a finite release and examine motion on both horizontal and inclined surfaces. In
both studies the motion is governed by a balance between the buoyancy force and
turbulent drag.

2. Turbulent drag acting on a unidirectional gravity current
When a high-Reynolds-number flow of speed u passes an obstacle of width d a drag

force is exerted on the flow of the form cDρu
2A, where A = hd is the cross-sectional

area of the obstacle in the flow and the drag coefficient cD depends on the detailed
shape of the obstacle, Rouse (1961). For a flow of depth h(� d), propagating through
an array of such obstacles, with volume fraction φ(� 1), we expect the drag force on
the current, per unit area in the direction of the flow, to scale as cDρu

2Aφ/a where a is
the area of each obstacle in plan. For the two-dimensional propagation of a long thin
Boussinesq current along a horizontal boundary through a deep layer of water we
may adopt the depth-averaged single-layer shallow-water model (e.g. Gill 1982). If we
include the turbulent drag force then the momentum equation in the flow direction,
x, has the form

∂u

∂t
+ u

∂u

∂x
= −λu|u| − g′ ∂h

∂x
, (2.1)

where λ = cDφ/d and the reduced gravity g′ = (ρc − ρa)g/ρa is defined in terms
of the densities ρc and ρa of the current and ambient fluid respectively and the
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gravitational acceleration g. As the current advances, we anticipate that, as with
inertially dominated gravity currents flowing over horizontal boundaries, the mass of
fluid entrained into the flow will be small (Simpson 1997), and later in the paper
we show that this is approximately the case in our experiments. In the absence of
entrainment, the depth-integrated mass-continuity equation has the form

∂h

∂t
+

∂

∂x
(uh) = 0. (2.2)

This expression for mass conservation in the absence of entrainment follows the
approach of a number of investigations of gravity current flow over horizontal
boundaries (Rottman & Simpson 1983; Gratton & Vigo 1994). When there is a
significant slope, however, the entrained flux of fluid may be parameterized as a
function of the Richardson number of the flow, Ri = g′h/u2. For example, Ellison &
Turner (1959) found the entrainment to be a decreasing function of the Richardson
number. Thus flows with large Richardson number exhibit relatively little mixing
with the overlying ambient fluid. In this study we predominately examine the motion
of shallow and laterally extensive currents over horizontal boundaries for which
entrainment has been found to be of little significance and we find that the effects of
drag are to slow and deepen the flow, thus increasing the Richardson number and
further suppressing entrainment.

In the remainder of the paper, we consider gravity currents with total volume

q(t) = q0t
γ (2.3)

per unit distance cross-stream, where γ > 0. The currents are released from a line
source, x = 0, for times t > 0, and propagate into the region x > 0, hence u > 0. In
the Appendix, analogous results are presented for an axisymmetric current generated
by a point source of dense fluid. Scaling analysis identifies that there is a critical time,
tc say, at which the turbulent drag and the flow inertia are of comparable magnitude
given by the physical balances

u

tc
∼ λu2 ∼ g′h

utc
, (2.4)

where

hutc ∼ q0t
γ
c. (2.5)

This leads to the scaling

tc ∼ (λ3q0g
′)−1/(γ+2)

. (2.6)

As the flow evolves, two dynamical regimes emerge depending upon whether t � tc
or t � tc. At short times, t � tc, there is a balance between the inertia and the
buoyancy forces,

∂u

∂t
+ u

∂u

∂x
∼ −g′ ∂h

∂x
, (2.7)

leading to the classic solutions for an inertial gravity current (Hoult 1972; Rottman
& Simpson 1983). At longer times, t� tc, the flow evolves from this regime, and we
will show in equation (3.10) that a new balance emerges in equation (2.1) between the
turbulent drag and the buoyancy force driving the flow,

−cD
d
u2φ = g′

∂h

∂x
. (2.8)
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The purpose of this work is to examine the flows that develop in this long-time,
t� tc, turbulent drag dominated regime.

3. Similarity solutions: t� tc

For a source flux of the form (2.3), we expect the flow to become self-similar, with
the depth and speed taking the form

h(x, t) = aH[ωt]αF (η) , (3.1)

u(x, t) = bHω[ωt]µG (η) , (3.2)

where the similarity variable η is defined as

η =
x

X0H[ωt]β
. (3.3)

F(η) and G(η) are the shape factors which determine the depth and speed of the
current as a function of position in the flow. Also, a, b and X0 are dimensionless
constants where X0 is chosen so that the leading edge of the current, h = 0, is located
at η = 1. H and 1/ω are characteristic depths and time scales of the flow given by

H = q
1/(2−γ)
0

(
g′

λ

)γ/[2(γ−2)]

(3.4)

and

ω =

(
λq0

g′

)1/(γ−2)

. (3.5)

Matching the exponents of time in the equations for local (2.2) and global (2.3) mass
conservation, and in the dynamic equation (2.8), we deduce that

α = 3
4
γ − 1

2
, β = 1

2
+ 1

4
γ and µ = 1

4
γ − 1

2
. (3.6)

For convenience we set

a = X3
0 and b = X0 (3.7)

so that, in terms of the similarity variables, the shape factors F(η) and G(η) are
governed by the dimensionless equations(

3
4
γ − 1

2

)F− ( 1
2

+ 1
4
γ
)
η

dF
dη

+
d

dη
(FG) = 0 (3.8)

from (2.2) and

dF
dη

= −G2 (3.9)

from (2.8). As a check in the scalings which lead to (2.8) it may be seen that
substitution of the similarity solutions into the full dynamic equation (2.1) leads to
the balance

1

X0

(
tc

t

)1/2+γ/4(
− ( 1

2
+ 1

4
γ
) dG

dη
η +

(
1
4
γ − 1

2

)G+ GdG
dη

)
+

dF
dη

= −G2 (3.10)

which reduces to (3.9) when t� tc. The global conservation of mass (2.3) leads to the
integral condition

X0 =

(∫ 1

0

Fdη

)−1/4

. (3.11)
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Finally, at the front of the current, x = xN(t), the kinematic boundary condition

dxN
dt

= u(xN) (3.12)

requires that

G(1) = 1
2

+ 1
4
γ. (3.13)

By solving equations (3.8), (3.9) we then have the similarity solutions of the form

h(x, t) = X3
0q

3/4
0

(
λ

g′

)1/4

t3γ/4−1/2F(η) (3.14)

and

u(x, t) = X0

(
g′q0

λ

)1/4

tγ/4−1/2G(η), (3.15)

where the similarity variable, η, is given by

x = ηX0

(
q0g

′

λ

)1/4

t1/2+γ/4. (3.16)

We now consider the solutions of F(η) and G(η) for the cases of (i) a finite release
of fluid; and (ii) a maintained source of fluid.

3.1. The finite release: γ = 0

For a finite release, γ = 0, we can find explicit solutions for F and G. Equation (3.8)
may be rewritten as

d

dη
(Fη) = 2

d

dη
(FG). (3.17)

Integrating once and using u(0) = 0, and hence G(0) = 0, we find that

G = 1
2
η (3.18)

so that the speed increases linearly with distance from the source. Now substituting
(3.18) into (3.9) gives

dF
dη

= − 1
4
η2 ⇒F = − 1

12
η3 + A, (3.19)

where A is a constant. The condition F(1) = 0 implies that A = 1/12 and so

F = 1
12

(1− η3). (3.20)

Global conservation of mass (2.3) then indicates that X0 = 2. In figure 1 we illustrate
the form of F(η) and G(η).

3.2. The maintained source: γ > 0

In the case γ > 0, the shape of the current may be calculated exactly by solving
the shape equations (3.8), (3.9) numerically subject to the boundary conditions given
above. For example in figure 2(a), we illustrate the form of the solution for γ = 1.
However, it is worth noting that since the current has depth F = 0 at its nose, η = 1,
we can develop accurate power series solutions for F and G of the form

F(η) = c0 + c1(1− η) + c2(1− η)2 + · · · , (3.21)

G(η) = d0 + d1(1− η) + d2(1− η)2 + · · · (3.22)
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Figure 1. The dimensionless current depth, F(η), and speed, G(η), as a function of the
dimensionless position, η, for a finite-volume release of fluid, γ = 0.

&(è)

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

è

'(è)
(a)

0 0.2 0.4 0.6 0.8 1.0

è

0.02

0.04

0.06

0.08

0.10
(b)

&rel

&rel

'rel

'rel

Figure 2. (a) Numerically calculated variation of the dimensionless current depth,F(η), and speed,
G(η), as a function of the dimensionless position, η, for a constant flux of fluid at the source,
γ = 1. (b) Relative errors of (i) the numerically calculated dimensionless current depth, Fnum, and
the respective series approximation, Fseries; and (ii) the numerically calculated dimensionless speed,
Gnum, and the respective series approximations, Gseries. For the case γ = 1. The dotted and solid lines
are the relative errors when the series include terms up to O((1− η)2) and O((1− η)3) respectively.

for some constants c0, c1, c2, . . . , d0, d1, d2, . . . We find c0 = 0 since F(1) = 0. Also,
d0 = 1/2 + γ/4 from condition (3.13). Substituting the power series into equations
(3.8) and (3.9), and equating powers of (1 − η) leads to values for the constants
c1, . . . , d1, . . .. The first three terms in the expansion give the approximate solution

F(η) =
(

1
4
γ + 1

2

)2
(1− η) + 1

4

(
1
4
γ2 − 1

)
(1− η)2

− ( 1
144

(γ + 6)(γ − 2)
)

(1− η)3 + O((1− η)4), (3.23)
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Figure 3. Schematic of the flume including the obstacles.

G(η) =
(

1
2

+ 1
4
γ
)

+ 1
2

(
1
2
γ − 1

)
(1− η) + 1

6
γ

(
2− γ
2 + γ

)
(1− η)2

+

(
γ

36

(7γ − 6)(γ − 2)

(γ + 2)2

)
(1− η)3 + O((1− η)4). (3.24)

This approximate solution is in very good agreement with the solution obtained
by the numerical integration of equations (3.8) and (3.9) as shown in figure 2(b) by
the relative errors Frel = |Fnum −Fseries|/Fnum and Grel = |Gnum − Gseries|/Gnum. In
this figure the dotted lines show the relative errors when terms up to order (1 − η)2

inclusive are retained and taken as an approximation to the full numerical solution.
The solid lines show the relative errors when terms of order (1− η)3 are also included
in the series approximation. This illustrates that the power series expansion converges
very rapidly to the exact solution.

4. Experimental model
In the experiments we used a flume of length 3 m, width 0.153 m and depth 0.35 m

with a lock gate placed 0.10 m from the endwall, x = 0. A regular array of vertical
metal rods encased in plastic tubing, and mounted on a false floor of length 1.1 m
was inserted into the flume. The rods had a diameter of 0.016 m and the centres
of adjacent rods were 0.03 m apart, producing a gap between each adjacent pole of
0.014 m as depicted in figure 3. Using the flume, we conducted a series of finite-release
experiments as shown in table 1. The main body of the flume was filled with fresh
water, while the dyed saline fluid was placed behind the lock gate. Once the fluid
motions had settled down, the lock gate was rapidly removed, and the motion of the
gravity current was filmed by video camera and used for subsequent analysis.

In these experiments the drag coefficient for each cylindrical rod has value cD ∼ 1
(Rouse 1961); thus since the volume fraction occupied by the rods in the flume
φ ∼ 0.2 and the diameter of the rods d ∼ 0.016 m we expect that λ ∼ O(10).
Therefore, with a current of finite volume q0 ∼ 0.01 m2 per unit distance across the
flume, and g′ ∼ 0.1 m s−2 we find that, from (2.6), tc ∼ 1 s so that the bulk of the
experiment should be controlled by the regime of turbulent drag. Also, the viscous
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Experiment q0(m2) g′(m s−2)
1 0.020 0.0697
2 0.020 0.140
3 0.020 0.352
4 0.015 0.0697
5 0.015 0.140
6 0.015 0.352

Table 1. List of experiments.
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Figure 4. The volume (per unit width) of the current as a function of time. The volume was
estimated using the Digimage image processing system. (a) Experiments 1 to 3. (b) Experiments 4
to 6.

stresses from the floor of the tank and the rods are negligible for the typical flow
speed of 0.02 – 0.2 m s−1. Therefore, we expect that the model of § 3 should provide a
good description of the flows in these experiments.

5. Experimental results
We first monitored the degree of mixing of the flow with the ambient fluid. This was

achieved by studying a video recording of the experiment, where the variation in area
of the current with time was measured using the Digimage image processing system. It
was found that immediately following the lock release there was rapid mixing, leading
to dilution of the current by a factor of about 2. This initial mixing occurred as
ambient fluid was rapidly engulfed into the dense intruding fluid. However, following
this initial mixing, which occurred during the first few seconds after releasing the lock
gate, the volume of fluid in the current remained approximately constant as shown
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of η and the dimensionless measured shape of the current at dimensionless times, t∗ = g′1/2t/q1/4
0 ,

for experiments 1, 3 and 5.

by figures 4(a) and 4(b). This suggests that during the main stage of spreading of the
current, which persisted for 15–40 s, there was negligible entrainment of the overlying
fluid and the current formed a low-aspect-ratio intrusion along the base of the flume.
We note that the total buoyancy of the flow, q0g

′, is conserved under this dilution
and hence the progression of xN(t) is unaffected. However, the profile of the current
is a function of dilution and hence we have quantified it for these experiments.
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We then measured the rate of advance of the head of the current as a function
of time. These measurements are shown in figure 5, where we plot the variation of

x2
N/(q0g

′)1/2t as a function of the dimensionless time g′1/2t/q1/4
0 . In each experiment,

after a short initial adjustment, the current length follows the scaling, from (3.16),

xN = 2

(
q0g

′

λ

)1/4

t1/2, (5.1)

suggesting that λ−1/2 = 0.15±0.01 and so for the array of vertical obstacles, λ = 44±8.
This agrees with our order of magnitude prediction of λ in § 4.

We also measured the shape of the currents at several different times. Figure 6
illustrates how the shape of the current in experiments 1, 3 and 5 evolves with time.
Dimensionless profiles are shown at dimensionless times after the opening of the lock
gate. It is seen that over this time, the shape of the current is self-similar, and that it
is in good accord with the theoretical prediction (3.20).

These experiments confirm that the dynamical balance between turbulent drag
and a streamwise pressure gradient, (2.8), provide a very good description of the
propagation of a turbulent gravity current through an array of obstacles for a finite-
volume release.

6. The effect of a sloping bed
The analysis and experiments described above are restricted to flows over a hori-

zontal boundary. In many situations, such as dense-fluid propagation in a fractured
rock, the flow may advance down an impermeable slope, and it is of interest to
examine the different behaviour of the flow in this case. The momentum equation
now becomes

∂u

∂t
+ u

∂u

∂x
+ g′ cos θ

∂h

∂x
− g′ sin θ = −λu2, (6.1)

where θ is the angle of the slope to the horizontal. Therefore, for high-speed flow,
sufficiently large drag, or at sufficiently long times, so that t � tc (cf. § 2), the drag
force will dominate the inertial forces, and equation (6.1) will reduce to

g′ cos θ
∂h

∂x
− g′ sin θ = −λu2. (6.2)

Substituting (6.2) into the mass conservation equation (2.1) gives

∂h

∂t
+

∂

∂x

(
h

√
g′ sin θ
λ

(
1− cot θ

∂h

∂x

)1/2
)

= 0. (6.3)

With long shallow gravity currents on a relatively steep incline, we expect that
sin θ � hx cos θ, so that the current depth only changes over distances large compared
to the slope. In this case, neglecting terms of O((cot θhx)

2) gives the approximate form
for (6.3)

∂h

∂t
+

∂

∂x

(
h

√
g′ sin θ
λ

(
1− cot θ

2

∂h

∂x

))
= 0. (6.4)

Equation (6.4) represents a wave equation for the disturbances, with wave speed
(g′ sin θ/λ)1/2, and a nonlinear diffusive spreading of the wave about this mean flow.
For a steady source of fluid, the flow will evolve towards a uniform thickness except
at the head of the flow, where the flow depth adjusts to zero. For a finite release of
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Figure 7. The theoretically predicted evolution of a finite release of fluid down a slope. The
position and shape of the current are shown at three dimensionless times after the initial release.

fluid, such as occurs in an industrial explosion of dense gas or a snow avalanche, it
is convenient to work in the frame moving with the wave speed, U =

√
g′ sin θ/λ.

We introduce new coordinates X = x−Ut and t = τ, so that the governing equation
becomes

∂h

∂τ
− cot θ

2

√
g′ sin θ
λ

∂

∂X

(
h
∂h

∂X

)
= 0. (6.5)

This equation admits similarity solutions (cf. Pattle 1959) of the form

h(X, τ) = X0H[ωτ]αF
(
X

xN

)
(6.6)

where

xN = X
1/2
0 H[ωτ]1/3, α = − 1

3
(6.7a,b)

and

H = q
1/2
0 , ω =

(
A2

q0

)1/2

, A = cot θU/2, (6.8)

with F(η) satisfying the equation

− d

dη
(Fη) = 3

d

dη

(
FdF

dη

)
. (6.9)

This has solution

F(η) = 1
6
(1− η2) (6.10)

with

X0 =

(∫ 1

0

Fdη

)−2/3

= 92/3. (6.11)

It is interesting to note that as a result of the nonlinear relationship between the
current speed and the gravitational force, the resulting nonlinear diffusion equation
of the current shape (6.5) is different from that on a horizontal boundary, for which
there is no along-boundary force. Figure 7 illustrates how the current spreads out
alongslope as a result of the component of gravity normal to the slope. In turn, this
leads to the rather different scalings (6.7) compared to those of § 3.
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7. Applications
This work was motivated by a number of geophysical applications, including high-

Reynolds-number flow in a rough-walled fracture and flow of a dilute powder snow
avalanche through an array of retarding mounds. We now consider conditions under
which the dynamical regime described herein might apply to such flows, and we
examine the implications on the propagation of the flow.

The buoyancy–turbulent drag flow regime represents an intermediate asymptotic
regime, with an inertia–buoyancy balance applying at earlier times, t � tc given
by equation (2.6), and a viscous–buoyancy balance applying at later times, t � tv .
In order that this intermediate regime develops, we require tc � t � tv . The time
scale on which viscous forces become important depends upon the particular flow
geometry. In the present experiments, the viscous drag from the floor of the tank
becomes important at t ∼ tv1 when 12νu/h2 ∼ λu2 where h is the flow thickness and ν
is the kinematic viscosity of the fluid. The viscous drag associated with the obstacles
becomes important at t ∼ tv2 when φνu/w2 ∼ λu2 where w is the inter-obstacle
spacing. Combining these relations with the self-similar drag-controlled flows, which
apply for t� tv , we find that

tv1 ∼
(
g′q0

λ

)1/2(
h2λ

12ν

)2

(7.1)

and

tv2 ∼
(
g′q0

λ

)1/2(
w2λ

φν

)2

. (7.2)

We note that tv = min(tv1, tv2).

7.1. Rough-walled fractures

In a rough-walled fracture, the size of the roughness elements will span a range
of scales up to the fracture aperture, while they will be distributed throughout the
fracture with some volume density φ which may lie in the range 0.001–0.1. The net
effect of the roughness elements will be to produce a mean drag on a scale larger than
that of the roughness elements. For high-Reynolds-number flow, the net frictional
resistance associated with the roughness elements may be expressed in the form
φcDu

2/y = λu2 where y is the distance between fracture walls and cD is an averaged
drag coefficient, which accounts for the size distribution of the roughness elements.

For flow in a fracture there exists a third viscous time scale associated with the
resistance of the bounding fracture walls, tv3 say, given by 12νu/y2 ∼ λu2. Now

tv3 ∼
(
g′q0

λ

)1/2(
y2λ

12ν

)2

(7.3)

and tv = min(tv2, tv3). In figure 8, we present calculations illustrating how the times
tc, from (2.6), and tv vary with the volume release, q0. For such a flow the viscous
resistance is expected to be dominated by the viscous stresses associated with the
fracture walls, so tv = tv3. It is seen that for small volume releases, tv � tc, there is
a transition directly from the inertial flow regime to the viscous flow regime, so that
the turbulent drag is not important. However, there is a critical q0 = q∗, determined
by the condition tc = tv such that for q0 > q∗, the flow dynamics are governed by
the turbulent-drag-controlled regime for the period tc6 t6 tv . This is the flow regime
which we have described in the above experiments and models.
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Buoyancy–viscous
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Buoyancy–inertia
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Buoyancy–turbulent
drag balance

q0q*0

tv~sv(q0/q*)1/2

tc~sc(q0/q*)–1/2

Figure 8. Illustrations of the evolution of high-Reynolds-number flow in a rough-walled fracture.
The graph compares (i) the time at which the current inertia becomes comparable to the turbulent
drag force on the flow, tc; and (ii) the time at which the viscous resistance becomes comparable
to the drag force, tv . In the case tc < tv the current passes through the intermediate asymptotic
regime in which there is a balance between the turbulent drag and the gravitational acceleration.
Otherwise, there is a direct transition from an inertial to a viscous gravity current.

The figure shows that for a large volume of injected liquid, the drag-controlled
regime may apply for a considerable length of time, during which the current will
spread far from the source. The region of fractured rock that is invaded by the
liquid may then be quite different than would be predicted for inertial or viscous
currents.

In the case that a finite flux of fluid is supplied to the current we expect that the
liquid-saturated region near the source will continually deepen. In contrast, for an
inertial gravity current, with a constant flux, the flow adjusts to a nearly constant
depth, except at the flow front (Rottman & Simpson 1983). Therefore, we would expect
a much deeper layer of liquid to form near the source if the effects of turbulent drag
are dominant. Such considerations are crucial in applications such as the reinjection
of liquid into superheated geothermal systems, for which the surface area of the
flow has a key role in controlling the mass of liquid which boils (e.g. Woods 1999).
They are also important in calculating regions of contamination following injection
of pollutants into an aquifer.

7.2. Retarding mounds for snow avalanches

We can perform an analogous series of calculations for a snow avalanche channelled
in a valley and passing through an array of obstacles. We consider the case in
which the obstacles extend a considerable distance along the valley so that once
the flow has entered the array of obstacles the turbulent drag associated with those
obstacles is dynamically important. Although the initial interaction of the flow with
the obstacles may lead to partial blocking of the flow and upstream propagation of a
weak hydraulic jump (cf. Rottman et al. 1985) the subsequent evolution of the flow
through the array of obstacles will be as described herein. If the obstacles are of size
d ∼ 2–4 m, and occupy a fraction φ ∼ 0.25 of the flow path, then λ ∼ 1. For an
avalanche where g′ ∼ 0.1 and the initial size is 104–105 m2 per unit distance in the
cross-flow direction we predict that tc ∼ 0.1 s from (2.6) so the flow will be controlled
by the drag–buoyancy balance soon after it has entered the array of obstacles. Using
the typical characteristics of snow avalanches and retarding mounds, viscous stresses
are negligible. For a finite volume release, the flow speed decreases inversely with the
square-root of time, in contrast to inertia–buoyancy currents in which the flow speed
decreases as t−1/3. As a result, for an avalanche with the properties described above,
the propagation speed may decrease more rapidly due to the drag, as seen in figure 9.
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Figure 9. Variation of the speed as a function of time for a dilute snow avalanche propagating (i)
through an array of retarding mounds; and (ii) in a simple inertial balance on a smooth horizontal
boundary. Turbulent drag rapidly becomes dominant, leading to a reduction in flow speed at times
t> 0.03 s.

If the mounds do not actually arrest the flow, then as a consequence of the drag they
exert, they will reduce the impact of the avalanche on a building since the dynamic
pressure of the flow will be smaller. A reduction in flow speed also reduces the ability
to produce normal stresses which support the load of the granular flow. This may
lead to more rapid sedimentation from the flow and hence dissipation of the flow.
The present model provides an initial estimate of this reduction in the flow speed and
hence the dynamic pressure.

8. Conclusions
We have developed a theoretical model which describes the behaviour of a gravity

current subject to turbulent drag. Using scaling arguments, we showed that there is
an intermediate asymptotic balance between the turbulent drag and the buoyancy
force, with inertia dominating at short times and viscous resistance at longer times as
shown in figure 8. Similarity solutions were derived to describe the motion of both
constant-volume and constant-flux currents propagating along a horizontal boundary
subject to this turbulent drag. New power series solutions for the shape of the current
were developed, and shown to be very accurate representations of the numerically
integrated profiles. The theoretical predictions were supported by a series of analogue
laboratory experiments in which a flume, filled with vertical poles, was used to model
the effect of retarding mounds on the propagation of a snow avalanche. Theoretical
predictions for both the position of the nose and shape of the current were in very
good accord with the experimental measurements. The model was extended to account
for the effect of a slope, and a different set of scalings were shown to apply in that
case. We note that the governing equations should be modified if the volume fraction
φ is significantly larger than zero. The theory presented here assumes that the depth
of the current is much smaller than the channel depth. A return flow in the upper
layer may become important when the current occupies a substantial depth of the
channel and the equations governing the motion should be altered accordingly. It is
interesting to note that the phenomena we describe are closely related to the effects of
turbulent bottom friction acting on a gravity current (Hogg & Woods 1999); however,
since the frictional drag acts throughout the flow, the present model is much more
amenable to verification by small-scale laboratory experiments.
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Appendix. The effect of drag forces on an axisymmetric gravity current
A similar analysis can be carried out for an axisymmetric flow spreading from a

point source. The derivation of these solutions closely follows § 3 and so will not be
presented in such detail. For an axisymmetric flow the analogous equations for mass
and momentum conservation are

∂h

∂t
+

1

r

∂

∂r
(ruh) = 0 (A 1)

and
∂u

∂t
+ u

∂u

∂r
+ g′

∂h

∂r
= −λu|u|, (A 2)

where r is the radial coordinate. When the dominant dynamical balance is between
the horizontal pressure gradient and turbulent drag, and |u| = u so we have a purely
outward radial flow, then (A 2) reduces to

g′
∂h

∂r
= −λu2. (A 3)

The equation for global mass conservation is∫ rN

0

2πrhdr = q0t
γ, (A 4)

where γ> 0 and q0 is constant with dimensions of L3T−γ . The system admits similarity
solutions

h(r, t) = aH[ωt]αF(η), (A 5)

u(r, t) = bHω[ωt]µG(η), (A 6)

where η = r/rN , and rN = R0H[ωt]β is the position of the nose at time t. Furthermore,
a, b and R0 are multiplicative constants and dimensional consistency is enforced by
the introduction of H and ω with dimensions [H] = L and [ω] = T−1. Substitution
of (A 5) and (A 6) into (A 1), (A 3) and (A 4) gives

h ∼ t(3γ−4)/5, u ∼ t(γ−3)/5, rN ∼ t(2+γ)/5. (A7a,b,c)

For convenience we take a = R3
0 , b = R0. Then, substituting α, β and µ into (A 5)

and (A 6) we obtain the following differential equations for the shape and speed of
the current: (

3γ − 4

5

)
F−

(
2 + γ

5

)
dF
dη

η +
FG
η

+
d

dη
(FG) = 0, (A 8)

dF
dη

+ G2 = 0, (A 9)

where we have set

H =

(
λ

g′
q

2/γ
0

)γ/(6−2γ)

(A 10)

and

ω =

(
λ

g′
q

2/3
0

)3/(2γ−6)

. (A 11)
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Hence

h(r, t) = R3
0λ

2/5g′−2/5
q

3/5
0 t(3γ−4)/5F(η), (A 12)

u(r, t) = R0λ
−1/5(q0g

′)1/5
t(γ−3)/5G(η) (A 13)

where

r = ηR0

(
q0g

′

λ

)1/5

t(2+γ)/5. (A 14)

Substituting the similarity solutions into the equation for global mass conservation
gives

R0 =

(
2π

∫ 1

0

ηFdη

)−1/5

(A 15)

and the kinematic boundary condition

drN
dt

= u(rN)⇒ G(1) =
2 + γ

5
. (A 16)

A.1. Series solutions

For a finite release, γ = 0, equations (A 8) and (A 9) admit an analytical solution.
(A 8) may be expressed in the form

−2

5

d

dη

(Fη2
)

+
d

dη
(FGη) = 0, (A 17)

hence

G = 2
5
η. (A 18)

Upon substituting (A 18) into (A 9) and using the condition F(1) = 0 we obtain

F = 1− 4
75
η3. (A 19)

When γ > 0 we again seek approximate series solutions of the form

F(η) = c1(1− η) + c2(1− η)2 + · · · , (A 20)

G(η) =
2 + γ

5
+ d1(1− η) + d2(1− η)2 + · · · , (A 21)

for some constants c1, c2, . . . , d1, d2, . . .. Upon substituting (A 20) and (A 21) into (A 8)
and (A 9) and equating powers of (1− η) we find

F(η) =
(γ + 2)2

25
(1− η) +

(3γ − 4)(2 + γ)

50
(1− η)2

+

(
17

900
γ2 +

2

225
γ +

4

75

)
(1− η)3 + O((1− η)4), (A 22)

G(η) =
2 + γ

5
+

3γ − 4

10
(1− η) +

γ(8− γ)
12(2 + γ)

(1− η)2

+
γ(43γ2 − 68γ + 192)

144(2 + γ)2
(1− η)3 + O((1− η)4). (A 23)

Note that the term FG/η in (A 8) was dealt with by writing 1/η = 1/(1 − (1 − η))
and then using the binomial expansion. For a constant flux, γ = 1, the series gives a
good approximation near the nose of the current, however, near the source, η = 0,
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the depth of the flow predicted by this series diverges from the numerically calculated
solution. In fact, near the origin, the constant flux supplied at η = 0 requires that

F(η) ∼ η− 1
3 . This divergence at the origin may be patched to the series solution near

the nose of the current.

Validity of the solution

As in the unidirectional case the similarity solutions are only valid at intermediate
times when the turbulent drag dominates both the current inertia and the viscous
resistance. As before, for inertia to be small, we require

λu2 � ∂u

∂t
. (A 24)

Upon substituting in the similarity solutions we find that turbulent drag dominates
inertia if

t� tc ∼ (R5
0λ

4q0g
′)−1/(2+γ). (A 25)

Turbulent drag dominates the viscous resistance associated with the obstacles if

λu2 � φνu

w2
(A 26)

where φ is the volume fraction occupied by the obstacles and w is the inter-obstacle
spacing. Substituting in the similarity solutions we find that this is satisfied if

t� tv ∼
(

φν

R0w2λ4/5(q0g′)1/5

)5/(γ−3)

, (A 27)

so the turbulent drag solutions apply when tc � t� tv .
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