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The steady speeds of the front of a gravity current and of an internal jump on a
two-layer stratification are often sought in terms of the heights of the relatively dense
fluid both up- and downstream from the front or jump, the height of the channel
within which they flow, the densities of the two fluids and gravitational acceleration. In
this study a unifying framework is presented for calculating the speeds by balancing
mass and momentum fluxes across a control volume spanning the front or jump
and by ensuring the assumed pressure field is single-valued, which is shown to be
equivalent to forming a vorticity balance over the control volume. Previous models
have assumed the velocity field is piecewise constant in each layer with a vortex
sheet at their interface and invoked explicit or implicit closure assumptions about the
dissipative effects to derive the speed. The new formulation yields all of the previously
presented expressions and demonstrates that analysing the vorticity balance within
the control volume is a useful means of constraining possible closure assumptions,
which is arguably more effective than consideration of the flow energetics. However
the new approach also reveals that a novel class of models may be developed in
which there is shear in the velocity field in the wake downstream of the front or
the jump, thus spreading the vorticity over a layer of non-vanishing thickness, rather
than concentrating it into a vortex sheet. Mass, momentum and vorticity balances
applied over the control volume allow the thickness of the wake and the speed of
the front/jump to be evaluated. Results from this vortex-wake model are consistent
with published numerical simulations and with data from laboratory experiments, and
improve upon predictions from previous formulae. The results may be applied readily
to Boussinesq and non-Boussinesq systems and because they arise as simple algebraic
expressions, can be straightforwardly incorporated as jump conditions into spatially
and temporally varying descriptions of the motion.

Key words: geophysical and geological flows, gravity currents, shallow water flows

1. Introduction
Gravity currents – the predominantly horizontal motion of fluids driven by

density differences – occur in many large-scale environmental and industrial settings.

† Email address for correspondence: a.j.hogg@bris.ac.uk
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Models of internal jumps and the fronts of gravity currents 655

Examples include the spreading of dense gases in the atmosphere, the interaction
between fresh and saline waters in estuaries and the transport of dilute suspension of
particles along the ocean floor. The dynamics of inertially dominated (high Reynolds
number) gravity currents has been explored for many decades through laboratory
experiments, field observations and mathematical models that capture flow speeds
and other properties as functions of the source conditions (see Simpson (1997) and
Ungarish (2009) for thorough presentations of flow phenomena and properties of
gravity currents).

Theoretical models have adopted a number of strategies for capturing these motions,
ranging from direct numerical simulation of the complete system of dynamical
equations, to layer-averaged models that exploit the relative thinness of most flows,
to integral models that do not resolve all of the interior characteristics. Dimensional
reasoning and scaling analyses are often useful tools for probing the dynamics of
the motions (though note the cautionary results of Johnson et al. (2015)). Very often,
however, it has been demonstrated that the differing approaches nevertheless lead to
similar quantitative predictions of the bulk motions (see, for example, Hogg et al.
(2016)).

A key component of shallow layer and integral models is the dynamical condition
that links the flow speed and the flow depth at the front of the current, where the
pressure is non-hydrostatic due to the significant vertical velocities that develop as
the displaced environmental fluid is uplifted over the advancing head of the relatively
dense fluid. This condition, often termed the ‘Froude number’ condition, closes the
model description and thus plays a vital role in the predictions of the flow speeds.
Von Kármán (1940) produced one of the first models for the Froude number on the
basis of ideal fluid flow. His arguments were later refined and significantly improved
upon by Benjamin (1968), who developed expressions for mass conservation and
momentum balance over a control volume encompassing the front, while allowing
for dissipation. More recently Borden & Meiburg (2013a) and Konopliv et al. (2016)
have produced models based upon the conservation of vorticity (or ‘circulation’) over
the frontal control volume, establishing expressions for the Froude number that are
close to, but in general not identical to, Benjamin’s result.

These, and other previous investigations, have invested considerable efforts in
addressing which of the many ‘formally correct’ solutions of the mathematical
idealisations of the flow dynamics is the most appropriate model. The major tool of
assessment was comparison of the front speed (or Froude number) with experiments
and Navier–Stokes simulations, alongside qualitative arguments concerning the energy
dissipation. Such justifications based upon ‘bulk’ properties may be problematic since
they examine integral measures of the motion rather than the detailed velocity fields.
Furthermore data are relatively scarce and generally, but not exclusively, limited to
the Boussinesq regime with equal fluid viscosities. Models have also often examined
laminar steady states with free-slip boundaries in the limit of vanishing solute
diffusivity – and these regimes are usually not in accord with laboratory experiments
or numerical simulations of the fluid motions.

The purpose of this contribution is to revisit the derivation of the Froude number
and to show how the results of Benjamin (1968) and Borden & Meiburg (2013a)
can be reconciled within the same theoretical framework. This is important because
both analyses start from the same configuration and governing equations – namely
two-layer high Reynolds number flow – and yet appear to diverge somewhat in
their results. We demonstrate that both results arise from the same control volume
formulation and we highlight that it is different assumptions (explicit or implicit) that
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656 M. Ungarish and A. J. Hogg

lead to the differences in their results. Indeed, we show that within the context of
two-layer fluid flow with free-slip boundaries, which is the starting point for both, they
differ in their assumptions about the dissipation in the system. This is curious since
both approaches appear to be based upon inviscid models of the motion and viscosity
does not enter explicitly in the final results for front speed or energy dissipation.
However the ‘inviscid’ model is an illusion – the non-vanishing dissipation can only
be justified if the derivation is based upon the Navier–Stokes equations. Also it is
noteworthy that although the motion sufficiently far upstream of the front may be
irrotational, the flow around the front is certainly rotational.

In this contribution we also explore the consequences of including shear in the
model of velocity field behind the front of the current or a bore, a feature that
is excluded by traditional two-layer hydraulic models for which the vorticity is
concentrated to a velocity discontinuity between the flowing layers. A continuous
transition layer has been considered briefly by previous studies (Klemp, Rotunno
& Skamarock 1994, Borden, Meiburg & Constantinescu 2012b, Borden & Meiburg
2013a,b, Baines 2016). Here we apply the idea of a ‘wake’ in a more systematic
way, which is based on the governing equations and avoids the use of empirical
data and adjustable constants (Borden et al. 2012b; Borden & Meiburg 2013a,b;
Baines 2016) and the need for linearisation (Klemp et al. 1994). We show that by
harnessing conservation of mass and momentum balance, together with a model of the
velocity wake, we may develop a new class of models for the Froude number, which
are quantitatively in line with existing experimental and simulation data and which
compute the thickness of the rotational region as an intrinsic part of the solution. We
term this class as ‘vortex-wake’ models, as opposed to the ‘vortex-sheet’ model of
Benjamin and others.

Our analysis may also be applied to jumps (bores) within horizontal, two-layer
stratified flows. Models of the velocity of bores within this context have crucially
depended upon assumptions about the dissipation (see Wood & Simpson (1984),
Klemp, Rotunno & Skamarock (1997), Li & Cummins (1998) and Baines (2016)).
Here we develop a unifying framework and demonstrate that analysis of the vorticity
balance within the flow leads to way of constraining the closure assumptions which
yields a sharper criterion than the analysis of the energetics of the motion. We also
present a new model that exploits a description of the wake downstream of the bore.

The structure of the paper is as follows. In § 2 we introduce the system, boundary
conditions and some general equations which are the basis of the unified theory. In
§ 3 we revisit the gravity current problem. We present solutions for both the classical,
vortex-sheet formulation and the new, vortex-wake model. The analysis supports
the results of Benjamin (1968) for the dimensionless speed of the front of the
current (encompassed as the Froude number, Fr), and also provides a novel analytical
expression for Fr which emerges from the new vortex-wake formulation. Internal
jumps are revisited in § 4. The classical models in the context of two-layer hydraulics
are based upon a vortex-sheet model of the velocity field, which has a discontinuous
velocity field at the density interface (see Wood & Simpson 1984; Klemp et al. 1997;
Borden & Meiburg 2013a; Baines 2016) and these are considered in § 4.1, where it
is demonstrated that the models based upon the conservation of circulation fall into
the same analytical framework. Then in § 4.2 we solve the vortex-wake model and
compare results with both existing formulae and previously published numerical data.
We summarise and make some concluding remarks in § 5. This paper also includes
two appendices. In the first (appendix A), we demonstrate the equivalence between
an expression of vorticity conservation over the control volume encompassing the
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Models of internal jumps and the fronts of gravity currents 657

U
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(b)

FIGURE 1. Schematic of (a) the front of a gravity current and (b) an internal jump, with
the control volume ABCDE. The current and jump are depicted in a frame of reference in
which the front and jump are stationary and the fluid flows towards them with speed U.

front and the requirement that the pressure field is single-valued, given that it is
constructed to be hydrostatic far from the front or jump. In appendix B, we calculate
the speed of the internal jump using the new vortex-wake model with an alternative
velocity profile.

2. Governing equations
We examine the motion of either a gravity current of density ρ1 advancing into

otherwise quiescent fluid of constant density, ρ2 (see figure 1a) or an internal jump
advancing into quiescent fluid stratified into two horizontal layers of density ρ1 and ρ2,
with ρ1>ρ2 (see figure 1b). The motion occurs within a horizontal channel with rigid
boundaries separated by distance H. It is convenient to work in a frame of reference
in which the front of the current or the internal jump is motionless and so the ambient
fluid is oncoming with speed U (see figure 1). The analysis is two-dimensional and the
coordinate axes are x (horizontal and aligned with oncoming flow) and z (vertical and
upwards), with unit vectors x̂ and ẑ, respectively. The control volume ABCDE encloses
the front or jump (see figure 1), with its edges CD and BE sufficiently distant so that
the velocity field across these edges is parallel to the x-axis. The origin is located at
the stagnation point of the gravity current, which demarks the location of the interface
between the dense fluids at the lower boundary and at the position of the internal jump
where the overlying less dense fluid undergoes significant contraction. The interface
height, h, at the section BE corresponds to the elevation at which the density of the
fluid corresponds to the mean density ((ρ1+ ρ2)/2), or if the density field is assumed
to be discontinuous, the height of the dense fluid layer.

We assume that the motion is steady in the moving frame of reference and thus
neglect both transient effects, as the flow is established, and the potential for wave-
induced transport. Many studies have demonstrated that the bulk properties of gravity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

21
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f B

ri
st

ol
 L

ib
ra

ry
, o

n 
10

 M
ay

 2
01

8 
at

 1
0:

57
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.219
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


658 M. Ungarish and A. J. Hogg

currents and internal jumps are steady if, for example, the motion is generated by a
sustained, constant flux or during the initial phases of ‘lock release’ (Ungarish 2009).
Additionally, Ungarish (2009) argued that even for unsteady flows, a local analysis
within a control volume spanning and moving with the front or jump features steady
dynamics. Unsteady (undular) wave generation from internal jumps have been shown
to arise when the height of the jump relative to the height of the oncoming dense fluid
is small, and to be more prevalent when the relative density difference, (ρ1 − ρ2)/ρ2,
is of order unity (Borden, Koblitz & Meiburg 2012a). This unsteady mechanism is not
included in what follows, and this excludes a small subdomain from the wide domain
of parameters (height and density ratios) covered by our analysis.

The equations of steady-state motion are

∇ · u= 0, (2.1)

u · ∇u=−
1
ρ
∇p− gẑ+

1
ρ
∇ · τ . (2.2)

Here u= (u,w) is the velocity field, p is the pressure, τ is the deviatoric stress tensor
and −gẑ is acceleration due to gravity. Since the velocity field is two-dimensional, the
vorticity field is aligned with the y-axis and is given by ωŷ, where

ω=
∂u
∂z
−
∂w
∂x
. (2.3)

We note that the divergence of the stress may be written

∇ · τ =−µ∇ ∧ (∇ ∧ u)=µ
(
∂ω

∂z
x̂−

∂ω

∂x
ẑ
)
, (2.4)

where µ is the dynamic viscosity, which is assumed constant. This identity is used
below (see (2.18) and (2.19)). The pressure p(x, z) must be a single-valued function
and consequently ∇ ∧∇p= 0 in the flow domain. Then integrating over the surface
spanning ABCDE with unit normal ŷ, which is bounded by the directed curve Γ =
ABCDE, must give

0=
∫

S
∇ ∧∇p · ŷ dS=

∮
Γ

∇p · dx. (2.5)

The conditions on the boundary of the control volume are as follows. The upstream
flow corresponds to uniform velocity u = Ux̂. The downstream flow is parallel to
the channel boundaries, which are horizontal, and the velocity field at BE is denoted
by u = u(z)x̂. The boundaries BC (z = 0) and DE (z = H) are impermeable and
stress-free; thus w = 0 and ∂u/∂z = 0. Importantly these are not inviscid boundary
conditions and do not preclude the possibility of viscous dissipation as shown below.
We note immediately that together these boundary conditions imply that the vertical
component of the velocity field, w, vanishes on all of the boundary, Γ . Furthermore
these conditions imply that vorticity, ω, vanishes on the free-slip boundaries (BC,DE)
and on the inflow (CD), whereas it is non-vanishing on the outflow. Finally there is
stress and velocity continuity at the interface between the fluids of differing density
(i.e. at z= h on BE).
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Models of internal jumps and the fronts of gravity currents 659

2.1. Pressure field
As a consequence of assumed parallel flow on the inflow and outflow, the pressure
adopts hydrostatic balance over the section BAE and CD, and is given by

∂p
∂z
=−(ρ2 +1ρ(z))g, (2.6)

where the density of the fluid is written ρ(z)= ρ2+1ρ(z) and thus 1ρ is the excess
density. Upstream we denote the depth of the dense fluid by ha, noting that for a
gravity current ha vanishes. The pressure distribution on CD is then given by

p=

{
pD + ρ2g(H − z), ha < z<H,
pD + ρ2g(H − ha)+ ρ1g(ha − z), 0< z< ha,

(2.7)

while the pressure distribution on BE is given by

p= pE +

∫ H

0
(ρ2 +1ρ)g dz. (2.8)

In this integral (2.8), and throughout, z-integrals are evaluated over the outflow
boundary BAE. It is then straightforward to evaluate the differences in pressure
between the upper and lower boundaries at these inflow and outflow locations. These
are given by

pC − pD = ρ2gH + (ρ1 − ρ2)gha, (2.9)

pB − pE = ρ2gH +
∫ H

0
1ρg dz. (2.10)

The pressure differences on BC and DE may be expressed from (2.2), noting that
w= 0 on these boundaries. On DE this yields

ρ2u2
E

2
+ pE =

ρ2U2

2
+ pD +

∫ E

D
µ∇2u dx, (2.11)

while on BC

ρ1u2
B

2
+ pB +

∫ O

B
µ∇2u dx=

ρCU2

2
+ pC +

∫ O

C
µ∇2u dx, (2.12)

where ρC is the density at C (which is equal to ρ2 for the gravity current scenario and
ρ1 for internal jumps). Also in the latter expression we have separated the dissipative
effects into contributions from OB and OC.

We may now combine these expressions for the pressure differences over the
boundaries of the control volume to satisfy the requirement that the pressure field is
single-valued (2.5). Thus evaluating (pC− pD)+ (pD− pE)+ (pE− pB)+ (pB− pC)= 0
from (2.9)–(2.12), we deduce that

ρ2u2
E

2
−
ρ1u2

B

2
−

U2

2
(ρ2 − ρC)=

∫ H

0
1ρg dz− (ρ1 − ρ2)gha

+

∫ E

D
µ∇2u dx−

∫ O

C
µ∇2u dx−

∫ B

O
µ∇2u dx. (2.13)

It is shown in appendix A that integration of the vorticity equation over the control
volume leads to an identical condition, as it must, since they are derived from the
same fundamental governing principles.
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660 M. Ungarish and A. J. Hogg

2.2. Global mass and momentum balances
Mass conservation is given by ∫ H

0
u dz=UH, (2.14)

while conservation of the dense solute is given by∫ H

0
1ρ u dz= (ρ1 − ρ2)Uha. (2.15)

Since there are no x-components of the stress tensor on the boundary of the control
volume, the global balance of linear momentum along the x-axis integrated over the
domain is given by

(pD − pE)H + ρ2U2(H − ha)+ ρ1U2ha −

∫ H

0
ρu2 dz=

∫ H

0
z1ρg dz−

1
2
(ρ1 − ρ2)gh2

a.

(2.16)
We emphasise that this balance, which is sometimes termed the ‘flow force balance’,
does not explicitly include the effects of viscosity due to the assumed conditions
on the boundary of the control volume. This does not imply that viscous effects
are absent within the control volume. Indeed an inviscid analysis would eliminate
coupling between the flowing layers and energy dissipation, assumptions that restrict
the results to a very narrow range of parameter values. Some recent studies (Borden
et al. 2012b, Borden & Meiburg 2013a,b, Konopliv et al. 2016) suggested that
vorticity conservation for the control volume should be added to the formulation.
However, as explained above and demonstrated in appendix A, this condition is
equivalent to the requirement that the pressure field is single-valued and is embodied
in (2.5) and (2.13).

The formulation above is the common basis for various models that predict the
velocities of the front of gravity currents and of internal jumps, U (and some related
features, such as energy dissipation). For both flow problems, closure assumptions
specify the outflow velocity and density profiles (u(z) and 1ρ(z), respectively) and
usually some additional assumptions are made about the energy dissipation or the
source of vorticity. Then this framework yields an expression for the speed, U,
expressed dimensionlessly in terms of a Froude number, as a function of the relative
depth of the dense fluid layer. Very often the outflow velocity is assumed to be
piecewise constant in the layers with a discontinuity of velocity at the interface (i.e.
a vortex sheet), but an alternative model pursued in this study features a velocity
profile in which the velocity transitions between the layers over a finite thickness,
denoted by η, the magnitude of which emerges from the model. We term this latter
class of models as ‘vortex-wake’ models, because the velocity field in the wake of
the front or the jump is rotational. We note that although these approaches are related,
the vortex-sheet model does not emerge as the limit of vanishing thickness of the
vortex-wake model (η → 0), because the thickness is part of the solution and not
a free variable. The models coincide only in the special case for which η = 0 is a
solution and this corresponds to an energy conserving flow.

In what follows (§§ 3 and 4), we analyse the prediction from this framework for the
flow in two configurations, namely the front of gravity currents and internal jumps.
For each we show that a solution may be calculated on the basis of a vortex-sheet
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Models of internal jumps and the fronts of gravity currents 661

or vortex-wake idealisation for the motion. We note that these differing approaches
invoke differing assumptions about the energy losses and/or diffusion of vorticity and
they diverge somewhat from each other. The challenge is to reveal the conditions for
agreement, because both models approximate the same physical problem. We further
note that in the Boussinesq regime ((ρ2−ρ1)/ρ2� 1), the vortex-sheet problem for an
internal jump coincides with the problem for a gravity current in the limit ha/H→ 0.
In that case, the lower layer expands strongly, and hence uB/U→ 0 (as for the gravity
current problem). However, in the gravity current model, the stagnation pressure at O
is proportional to upper fluid density, ρ2, and this makes a difference for the non-
Boussinesq analysis. Therefore, in general, we need separate solutions for the gravity
currents and internal jumps.

2.3. Dimensionless variables and governing equations
At this point it is convenient to introduce dimensionless variables. We scale lengths
with respect to the channel height H, velocities with respect to oncoming speed U
and densities with respect to the density of the less dense fluid, ρ2. There are five
dimensionless quantities. The Froude number, Fr, and excess density ratio, S, are
given by

Fr2
=

U2

g′h
and S=

ρ1 − ρ2

ρ2
, (2.17a,b)

where the reduced gravity g′= Sg and we define 1ρ(z)/ρ2= S r(z). There are also two
dimensionless parameters that measure the dissipation along the channel boundaries.
On the streamlines DE and BC, noting the independence of the velocity field to the
streamwise coordinate at the outflow and inflow, we write

ρ2g′hδt ≡−

∫ E

D
µ∇2u dx=−

∫ E

D
µ
∂2u
∂z2

dx≡−
∫ E

D
µ
∂ω

∂z
dx, (2.18)

ρ2g′hδb ≡−

∫ B

C
µ∇2u dx=−

∫ B

C
µ
∂2u
∂z2

dx≡−
∫ B

C
µ
∂ω

∂z
dx, (2.19)

where in (2.18) the viscosity corresponds to that of the less dense fluid, while in
(2.19) it corresponds to that of the fluid along BC (see figure 1). The dimensionless
parameters, δt and δb measure the head loss on the streamlines DE and BC,
respectively. Equivalently they measure the diffusion of vorticity from the boundaries
into the flow. Additionally the parameter R = ρC/ρ2, which equals 1 for gravity
currents and 1 + S for internal jumps. Henceforth all variables will be assumed to
be dimensionless; in particular the scaled downstream interface height varies between
zero and unity (0 6 h 6 1).

The balances over the control volume have yielded four independent expressions
that must be satisfied by the motion. These are conservation of mass (2.14) and dense
species (2.15), the consistency of the pressure distribution to ensure that it is single-
valued (2.13) and the balance of streamwise momentum (2.16), which we simplify by
substituting (2.11) and (2.18) for the pressure difference pD − pE. In dimensionless
form these are given by ∫ 1

0
u dz= 1, (2.20)∫ 1

0
ru dz= ha, (2.21)
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662 M. Ungarish and A. J. Hogg

Fr2

2
(u2

E − (1+ S)u2
B − (1− R))=

1
h

(∫ 1

0
r dz− ha

)
− δt + δb, (2.22)

Fr2

(
u2

E

2
−

∫ 1

0
(1+ Sr)u2 dz+

1
2
+ Sha

)
+ δt =

1
h

(∫ 1

0
zr dz−

h2
a

2

)
. (2.23)

Finally we comment that in §§ 3 and 4, we will compute the rate of dissipation within
the flow, denoted by Ḋ and rendered dimensionless with respect to ρ2(g′h)3/2h.

3. Gravity currents
We now specialise to find the conditions at the front of a gravity current (see

figure 1a). The interface touches the lower boundary at the stagnation point O inside
the control volume, and there is only fluid of density ρ2 in the upstream domain. This
means that we set ha = 0 and R= 1. Moreover we consider a regime in which there
is negligible mixing of the solute between the layers and the dense fluid is stationary
in the frame moving with the front of the current. We do, however, account for shear
in the less dense fluid across the outflow boundary (AE). Thus we impose

u= uE(1− f (z)), (3.1)

together with

r(z)=

{
1, 0 > z< h
0, h > z > 1

and f (z)=

{
1, 0 6 z 6 h
φ((z− h)/η), h 6 z 6 1,

(3.2a,b)

where guided by physical considerations, we assume that φ(s) is a continuous,
monotonically decreasing function, defined for s ≡ (z − h)/η > 0. Furthermore,
φ(0) = 1 to ensure the velocity field is continuous at the interface z = h and
φ(s) = 0 for s > 1, which indicates that η is the thickness of the transition zone.
The justification for adopting this velocity profile is that it represents simply the
velocity deficit in the ambient fluid in the wake of the front of the gravity current.
Furthermore it is a straightforward generalisation of the vortex-sheet model (with
piecewise constant velocity fields), while maintaining a stationary layer of dense fluid.
An immediate consequence of these assumed profiles is that the balance of solute
(2.21) is automatically satisfied.

The pressure consistency condition (2.22) is given by

Fr2

2
u2

E = 1+ δb − δt. (3.3)

As shown in appendix A, this balance also emerges from a consideration of the
vorticity; it expresses the outflow of vorticity, the baroclinic torque (which generates
vorticity) and the diffusion of vorticity from the boundary. It is noteworthy that this
balance emerges independently of the assumed profile on the outflow; the left-hand
side of (2.22) and (3.3) is due solely to the advection of vorticity uω = ∂(u2/2)/∂z
integrated over BE.

The other dimensionless balances are dependent upon the assumed form of the
outflow. The condition of mass conservation (2.20) is given by

uE

∫ 1

0
(1− f ) dz= 1. (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

21
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f B

ri
st

ol
 L

ib
ra

ry
, o

n 
10

 M
ay

 2
01

8 
at

 1
0:

57
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.219
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Models of internal jumps and the fronts of gravity currents 663

The momentum balance (2.23) is given by

Fr2

(
u2

E

2
− u2

E

∫ 1

0
(1− f )2 dz+

1
2

)
+ δt =

h
2
. (3.5)

Dissipation occurs in this flow and may be evaluated by computing the difference
between the fluxes of kinetic, internal and gravitational energy entering and leaving
the control volume. In dimensionless form and on substitution from (3.2), it is given
by

Ḋ=
Frδt

h
+

Fr3u3
Eη

2h

∫ 1

0
(1− (1− φ)2)(1− φ) dz. (3.6)

We emphasise that this expression of energy dissipation is a direct consequence of
the fundamental balances of mass and momentum fluxes. It is useful because it
provides some guidelines and restrictions on the domain of validity of the solutions;
in particular, only flow states with Ḋ > 0 are possible. Equivalently (3.6) may be
derived by identifying in-flow streamlines across CD with outflow streamlines across
AE, on each of which the head loss, δ(z), is given by

δ(z)= δt +
Fr2u2

E

2
(1− (1− f (z))2) for h< z 6 1. (3.7)

The dimensionless dissipation is then given by

Ḋ=
uEFr

h

∫ 1

h
δ(z)(1− f ) dz (3.8)

and using (3.7), this recovers (3.6).
The governing equations have therefore formed three expressions (pressure

consistency (3.3), mass conservation (3.4) and momentum balance (3.5)) for five
unknowns (Fr, uE, δt, δb, η), as well as the unknown function, φ, that specifies the
velocity profile of the outflow. The two extra unknowns indicate that the formulation
is missing equations; indeed the control volume derivation has circumvented two
equations. Momentum balance is formulated for the entire control volume, rather
than for each layer, with an extra expression required to determine the drag force at
the interface. The objective of a reliable model, therefore, is to formulate the extra
unknowns in a way that is consistent with the effects that contributed to the omitted
equations. We emphasise that the missing details concern momentum transfer, rather
than the energetic losses.

It is useful to eliminate uE from (3.3) and (3.5) using (3.4) and in this way we find

Fr2
= 2(1+ δb − δt)

(
1−

∫ 1

0
f dz
)2

, (3.9)

and

(1+ δb − δt)

(
2
∫ 1

0
f dz− 2

∫ 1

0
f 2 dz+

(∫ 1

0
f dz
)2
)
+ δt =

h
2
. (3.10)

To solve (3.9) and (3.10), it is necessary to add two more equations, or conditions,
concerning δb, δt and η. These variables are associated with viscous and vorticity
effects inside the control volume. Physical considerations suggest that for high
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664 M. Ungarish and A. J. Hogg

Reynolds number flows there should be an ‘inviscid’ result with η, δt and δb set to
0. This would provide (see (3.9)) the simple ‘ideal’ (or ‘inviscid’) result

Fr= FrI ≡
√

2(1− h). (3.11)

Unfortunately, from (3.10), which reduces to h2
= h/2 in this case, we deduce the

strong restriction that this result is only admissible when h = 0 or h = 1/2. Of
these values, only h = 1/2 corresponds to a physically relevant inviscid current, as
derived by Benjamin (1968), which is consistent with the assumption of inviscid
dynamics throughout the domain. (The other root, h = 0, corresponds to a current
of fixed thickness, but the dissipation when scaled by the thickness of the current
is non-vanishing in a very deep ambient (h→ 0).) Therefore, in general, it is not
possible to close the model by demanding that all of the variables δt, δb and η vanish;
instead some criterion must be sought to incorporate the viscous effects, even if they
are weak, and this leads to net dissipation and the diffusion of vorticity. In general
FrI is the upper bound for the more realistic Fr results as shown below. The need
for ‘models’ to close the system then creates dilemmas and indicates the need for
more analysis, since several models may be able to capture the behaviour of Fr(h)
in a satisfactory manner. This will be discussed below. In any case, (3.6) indicates
that δt = 0 cannot coexist with η = 0 in general, because this combination prohibits
energy dissipation.

We observe that η = δt = δb = 0 are not ‘natural’ boundary conditions that can be
imposed on the Navier–Stokes system of equations with free-slip and influx–outflux
conditions. Instead we reiterate that η, δt and δb are associated with the simplified
model that replaces the flow in the control volume. Also we comment that the
unspecified f (z) (and φ(z)) play only a relatively minor role in the analysis, provided
it varies from φ(0) = 1 to φ(1) = 0; tests with linear and exponential profiles, as
discussed later, support this inference. It is noteworthy that the function that specifies
the velocity profile, φ(z), is similar to a shape factor encountered in other hydraulic
flows (see, for example, Hogg & Pritchard (2004) and Woodhouse, Phillips & Hogg
(2016)) and a non-vanishing thickness, η indicates vortical motion.

3.1. Vortex-sheet model (η= 0)
The classical approach specifies a constant velocity uE over h < z 6 1. This implies
that φ = 0 for z > h and corresponds to a sharp velocity transition at the interface
z= h, a vortex sheet, and thus η = 0. The typical members of this group of models
are the work of Benjamin (1968) and the recent circulation-based solutions (Borden
& Meiburg 2013a, Konopliv et al. 2016).

With η= 0, the previous results for mass conservation (3.4), pressure compatibility
(3.3) and momentum balance (3.5) (already reduced to (3.9)–(3.10)) can be expressed
as follows:

Fr2
= 2(1− h)2(1+ δb − δt), (3.12)

δt +
h2

1− h2
δb =

1
2

h
1− 2h
1− h2

. (3.13)

An important outcome (see (3.7)) is that the dimensionless head loss is constant, and
equal to δt, on all the streamlines in the less dense ambient (except for the stagnation
line CO). In this setting with η = 0, the dimensionless dissipation is Ḋ = Frδt/h
(see (3.6)).
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Ambient

Current

z

FIGURE 2. Schematic of the expected vorticity ω distribution in a vortex-sheet model
of the flow around the front of gravity currents. In this ‘classical’ model, the vorticity
vanishes (ω = 0) on the boundaries of the control volume (ABCDE) due to free-slip
conditions and the assumptions of parallel in- and outflow, except for at the vortex sheet.
Eddies are depicted to show vorticity generation at the interface between the fluids of
different densities. Above the head of the current, we expect significant upward diffusion
and advection of vorticity because of ∂ω/∂z<0 and the vertical component of the velocity
field is non-vanishing. We expect insignificant vorticity (ω ≈ 0) in the domain above
CO, because the inflow is uniform. This scenario demonstrates that under the ‘classical’
model it is expected that the diffusion of vorticity from the boundary OC is much smaller
than the diffusion of vorticity from DE. Thus δt� |δb| ≈ 0 in general, and this supports
Benjamin’s model for the front speed with δb = 0 in (3.14). Note that a positive δb (as
predicted by the circulation-based Fr) requires ω< 0 above OC.

The dilemma is the choice of δt and δb. As observed above, the attempt to impose
δt = δb = 0 is compatible with (3.12)–(3.13) only at the points h= 0 and 1/2. At any
other value of h, at least one of the δt and δb must be non-zero. Furthermore the
attempt to set δt= 0 fails, because in this case (3.13) yields the unacceptable δb∼ 1/h
for h� 1.

We mentioned above that the dimensionless head losses along the boundary
streamlines, δt and δb, result from flow-field features inside the control volume, and
we recall the connection between δt, δb and vorticity fluxes at the top and bottom
boundary (see (2.18)–(2.19)). Figure 2 shows the expected vorticity distribution. The
top and bottom boundaries are free-slip with ω= 0, the upstream flow is irrotational
with ω= 0, the dense fluid is motionless with ω= 0. We cannot identify a mechanism
that can justify the presence of a significant non-zero ω above the CO line, and this
implies ∂ω/∂z = 0 on CO, and hence δb = 0. On the other hand, ω > 0 is expected
above the interface, a gradient ∂ω/∂z < 0 can be justified below the DE boundary,
and hence δt > 0 is the only physically consistent representation.

These observations yield simple guidelines that constrain the closure of the
vortex-sheet models of gravity currents. There is no head loss on streamlines prior to
contraction/expansion, i.e. upstream of O (δb= 0) and the head loss in the contracting
layer must be positive, in general (δt > 0). The head loss terms reduce Fr (see (3.12)),
and hence the ideal FrI is the upper bound of this result, as expected.

These conditions δt > 0, δb= 0 lead directly to the solution due to Benjamin (1968):

Fr2
= Fr2

B ≡
(2− h)(1− h)

1+ h
; δt =

1
2

h
1− 2h
1− h2

. (3.14a,b)

Note that our discussion of feasible values of δt and δb was not based upon energetic
considerations. Rather, we have framed the discussion in terms of vorticity. Moreover,
by the same logic we infer that δt < 0 is not feasible, and hence the range of validity
of (3.14) is h ∈ (0, 1/2].
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666 M. Ungarish and A. J. Hogg

A key weakness in this argument based upon vorticity is the reliance on the
presence of a significant, non-vanishing gradient ∂ω/∂z in the entire contracted/
accelerated fluid, which generates head loss in all the streamlines, including the top
one. There is little convincing physical justification for the presence of significant ω
far away from the interface at high Reynolds number. However, this must be accepted
as a mathematical simplification needed for the classical model. Since having adopted
the control volume analysis, we have no means for setting the details of the flow
inside the control volume. Our decision to set a vortex sheet (η = 0) at the outflux
boundary can be sustained only if the head loss δt is homogeneous in the fluid above
the interface. The less dense fluid contracts in a domain close to the interface in the
control volume and there is no doubt that ∂ω/∂z< 0 there. The best we can do with
the vortex-sheet model is to demand consistency of the sign and magnitude between
the physical gradient of vorticity (∂ω/∂z) and the modelled head loss, δt.

A pseudo-inviscid solution for the Froude number, Fr, has been suggested by
the circulation-based analysis in Borden & Meiburg (2013a) and Konopliv et al.
(2016). These papers argue that the viscous contribution to the vorticity balance
(3.12) vanishes, but do allow for the effects of head loss and dissipation in the
momentum and energy balances (which implies δt = δb > 0). Mathematically, this
yields Fr(h)= FrI ≡

√
2(1− h) (see (3.11)) and (from (3.13))

δt = δb =
1
2 h(1− 2h). (3.15)

We consult again figure 2. The positive δt requires a negative ∂ω/∂z in the domain
above the current, and this is consistent with the expected distribution of vorticity, as
for Benjamin’s solution discussed above. On the other hand, the positive δb requires
∂ω/∂z< 0 at the CO boundary, which needs a significant negative ω in the upstream
domain, to the right of the stagnation point O (see figure 2). In our opinion, there
is no simple mechanism that can justify a negative ω above the OC line. The
incoming flow field is irrotational and diffusion from the interface is not expected
to supply negative ω either. Consequently, the solution based on the δb = δt > 0
scenario appears not to be physically acceptable. We emphasise that this conclusion
is based on vorticity, not energy, arguments. Both the Benjamin and circulation-based
results yield predictions for the Froude number, Fr, that are quantitatively close, and
both find Ḋ > 0 in the same range of validity (0 < h 6 1/2). The novelty of the
interpretation developed in this paper is that energy-dissipation considerations are less
incisive than vorticity-distribution arguments in the selection of top/bottom head loss
closures for jump models.

We note in passing that there is ambiguity in the circulation-based derivation
concerning the status of the δt = δb > 0 component. Borden & Meiburg (2013a)
and Konopliv et al. (2016) derive Fr from the inviscid form of (3.12) and then
substitute this Fr into the momentum balance and obtain (3.15), apparently as
a consequence of their result. These separate calculations obscure the distinction
between the assumptions that underpin the idealisation and the predictions that it
affords. In our opinion, the use of the inviscid form of (3.12) is valid only in a
steady-state situation in which the momentum equation (2.23) is also satisfied and
hence only under the condition δt = δb. We showed above that the governing system
reduces to (3.12) and (3.13), which provides two equations for the three unknowns Fr,
δt and δb. Hence any solution requires an additional expression linking the variables.
In any case, the observations that δt > 0 in general, and that δb > 0 appears to be
physically unacceptable, indicate that imposing δt = δb may not be a good modelling
assumption, although it does coincide with the inviscid result FrI and thus forms an
upper bound for Fr.
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Ambient

Current

z

FIGURE 3. Schematic of the vortex-wake model for flow around the front of a gravity
current. Vorticity is only non-vanishing within the layer of thickness η where the velocity
transitions from u= 0 to u= uE. Outside this transition layer the vorticity vanishes, and
thus there is no head loss on the boundaries BC and DE (and so δt = δb = 0).

3.2. Vortex-wake model
Our new approach is to close the integral model of mass and momentum balances
using the conditions δt = δb = 0 on the top and bottom boundaries, but to allow the
vortex layer to have non-vanishing thickness (see figure 3). This is in accord with our
expectation that the ambient flow is mostly irrotational, therefore ∂ω/∂z= 0 on and
near the z= 0,H boundaries, and, according to (2.18)–(2.19), δt= δb= 0. On the other
hand, the viscous and rotational effects exist in a layer close to the interface, and this
justifies the finite thickness of the transition region in the velocity field (i.e. there is
a vortex layer of thickness η instead of the vortex sheet as assumed in the classical
models).

The governing equations are (3.2)–(3.5) with δt= δb= 0, and the dissipation is given
by (3.6). We immediately deduce from (3.3) that Fr uE =

√
2 and then from (3.4) and

(3.5) that

Fr2
= 2

(
1−

∫ 1

0
f dz
)2

, (3.16)

Fr2
=

h
(

1−
∫ 1

0
f dz
)2

2
∫ 1

0
f dz+

(∫ 1

0
f dz
)2

− 2
∫ 1

0
f 2 dz

. (3.17)

We substitute for f (z) from (3.2) and eliminate Fr2 to find that the thickness η satisfies
the following quadratic equation:

η2

(∫ 1

0
φ(s) ds

)2

+ 2η
(
(1+ h)

∫ 1

0
φ(s) ds−

∫ 1

0
φ(s)2 ds

)
+

h(2h− 1)
2

= 0. (3.18)

It is noteworthy that this quadratic has real roots for 06 h6 1/2, which is the domain
of validity. Also from (3.6), the dimensionless dissipation is given by

Ḋ=
√

2η
h

∫ 1

0
(2φ − φ2)(1− φ) ds. (3.19)
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FIGURE 4. (Colour online) The Froude number, Fr, as a function of dimensionless gravity
current depth, h, for various models: Benjamin, FrB; circulation, FrC; vortex-wake linear,
FrL; vortex-wake exponential, FrE.

If we now impose a linear variation of the velocity field within the wake φ(s)= 1− s,
we find the wake thickness, Froude number and dissipation are given by

η= ηL ≡
2
3

(√
1+

21
2

h− 1− 3h

)
, Fr= FrL ≡

√
2

3

(
4−

√
1+

21
2

h

)
and Ḋ= ḊL ≡

√
2ηL

4h
,

 (3.20)

where the subscript L refers to assumption of a linear variation within the wake. These
dependencies are plotted in figures 4–6, where we observe that dissipation vanishes
when h = 1/2 and reaches a maximum when h→ 0. Notably, when h� 1 we find
that

ηL =
3h
2
+ · · · , FrL =

√
2+ · · · and ḊL =

3
√

2
8
+ · · · . (3.21a−c)

Furthermore, when |1/2− h| � 1 we find that

ηL=
3
5

(
1
2
− h
)
+· · · , FrL=

√
2

2
+· · · and ḊL=

3
5

(
1
2
− h
)
+· · · . (3.22a−c)

Conversely if the velocity variation is exponential with φ(s)= exp(−αs), then using
exp(−1/η)� 1, the wake thickness and Froude number are given by

η= ηE ≡
α

2

(√
1+ 6h− 1− 2h

)
, Fr= FrE ≡

1
√

2

(
3−
√

1+ 6h
)

and Ḋ= ḊE ≡
5
√

2ηE

6αh
,

 (3.23)
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FIGURE 5. (Colour online) The dissipation, Ḋ, as a function of dimensionless gravity
current depth, h, for various models: Benjamin, ḊB; circulation, ḊC; vortex-wake linear,
ḊL; vortex-wake exponential, ḊE.
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FIGURE 6. (Colour online) The thickness of the vortex layer, η, and the relative thickness
of the layer, η/h, as functions of the dimensionless depth of the gravity current for the
linear, ηL, and exponential (with α = 3), ηE, models of the vortex wake.

where the subscript E refers to the exponentially varying velocity. It is interesting to
note that neither the Froude number, FrE, nor the dissipation ḊE depend upon the
value of α. Furthermore, if we choose α= 3, which corresponds to the velocity field
being within 5 % of its asymptotic value at z= h+ η, then ηL= ηE= 3h/2+ · · · when
h� 1.

Both of these dependencies are plotted in figures 4–6. We note that the predicted
Froude numbers from these vortex-wake formulations are very close to those
derived by Benjamin (1968) and Borden & Meiburg (2013a) – and the vortex-wake
predictions precisely coincide with the inviscid result (3.11) (and with the vortex-sheet
models) when h = 0 and h = 1/2, The largest discrepancy with the Benjamin result
is 4 % for the linear profile, and only 2 % for the exponential profile. This is a
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670 M. Ungarish and A. J. Hogg

remarkable agreement. The discrepancies with the circulation-based model of Borden
& Meiburg (2013a) are a little larger (see figure 4).

The rate of dissipation is shown in figure 5. Both the classical (η= 0) and vortex-
wake (δb = δt = 0) models yield the same qualitative behaviour: a positive dissipation
Ḋ which vanishes when h= 1/2 and which is maximised when h= 0. Quantitatively,
the new model is slightly less dissipative. The wake model of Klemp et al. (1994)
led to broadly similar results. However their approach did not explicitly calculate the
thickness of the wake, η, and was based upon a linearisation that neglected the term
of order ηφ2. We note that had this approximation been made in (3.16)–(3.18), then
we would have recovered their result for the Froude number, Fr.

In figure 6 we show the thickness of the velocity-transition layer for both the linear
and exponential variations ((3.20) and (3.23), respectively), where for the latter we
choose α= 3, so that φ(1) < 0.05 (i.e. the layer thickness corresponds to the position
where the velocity field is within 5 % of its asymptotic value). The interesting feature
is that η/h is finite and non-zero for relatively thin currents h� 1; the wakes are also
relatively thick in this regime. Additionally, the wake thickness vanishes for h= 1/2
and at this value Fr= FrI = 1/

√
2.

3.3. Discussion
The vortex-sheet and vortex-wake models are consistent: their range of validity
is 0 < h 6 1/2, the jump is dissipative, and Fr(h) is numerically very close to
Benjamin’s formula. The vortex-wake model is arguably physically superior to the
classical models. The choice of vanishing dissipation along the channel boundaries
(BC and DE) and a finite wake thickness (δt = δb = 0, η > 0) is more acceptable
than η = δb = 0, δt > 0. While a finite (even thick) velocity-transition layer makes
sense, the concept that sufficient vorticity is present near the upper boundary of the
channel to provide a non-vanishing vorticity flux (and a non-vanishing δt) is rather
artificial. The classical expression due to Benjamin (1968) yields FrB(h) as a simple
unique formula, while the vortex-wake model prediction for Fr depends (slightly)
on the assumed profile of velocity through transition layer. However, the former is
based upon the assumption of a discontinuous change in the velocity. Instead the
vortex-wake model introduces the physically consistent, continuous adjustment of
the velocity field and thus its predictions for the Froude number, FrE (and FrL), are
strong competitors to FrB.

4. Internal jump problem

The general configuration for internal jumps is sketched in figure 1(b) in a frame
of reference in which the jump is stationary. The important difference from gravity
current flow is that the layer of relatively dense fluid extends upstream (so that R=
1+S) and flows across the segment CD with speed U. The lower, dense layer expands
and decelerates, whereas the upper less dense fluid contracts and accelerates. This
motion produces vorticity (ω> 0) about the interface and also within the layers. The
problem is specified by two dimensionless parameters: the excess density ratio S (2.17)
and ha, which measures the upstream depth of dense fluid relative to the channel
depth.

We use balances of mass and streamwise momentum within a control volume
ABCDE (see figure 1b), together with the expression of consistency to ensure a
single-valued pressure field (which is shown to be equivalent to the balance of
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Models of internal jumps and the fronts of gravity currents 671

vorticity in appendix A), to model the motion. The dimensionless governing equations
are given by (2.20)–(2.23), and we examine their form when there is negligible mixing
of solute between the layers so that r(z) is piecewise constant and the velocity field

u(z)= (uB + uE)/2+ (uE − uB)f (z)/2 (4.1)

takes the following form:

r(z)=

{
1, 0 6 z 6 h
0, h 6 z 6 1

and f (z)=ψ
(
(z− h)
η

)
, (4.2a,b)

where η is the thickness of the layer over which the velocity field transitions from uB
to uE. The function ψ satisfies ψ(0)= 0 and ψ(s)= s/|s| for |s|> 1.

Conservation of mass (2.20) then gives

1
2
(uB + uE)+

1
2
(uE − uB)

∫ 1

0
f dz= 1, (4.3)

and conservation of solute (2.21) yields

1
2
(uB + uE)h+

1
2
(uE − uB)

∫ h

0
f dz= ha. (4.4)

The dimensionless condition for the consistency of the pressure field (2.22) gives

Fr2

2
(u2

E − (1+ S)u2
B + S)= 1−

ha

h
− δt + δb. (4.5)

Finally the dimensionless balance of streamwise momentum (2.23) is expressed by

Fr2

(
u2

E

2
−

∫ 1

0
u2 dz− S

∫ h

0
u2 dz+

1
2
+ Sha

)
+ δt =

h2
− h2

a

2h
. (4.6)

In the inviscid limit (δt = δb = η = 0), (4.5) and (4.6) provide expressions for the
speed of the jump in terms of ha and S. For instance from (4.5) we find that

Fr2
= Fr2

I ≡
2(h− ha)

h

(
(1− ha)

2

(1− h)2
− (1+ S)

h2
a

h2
+ S
)−1

=
2h(1− h)2

S(1− h)2(h+ ha)− 2hah+ ha + h
. (4.7)

However, by substituting this result in (4.6), we find that this inviscid result is only
valid when h= ha (which is a trivial result as there is no jump), and

h=
1+ S−

√
1+ S

S
. (4.8)

Note that in the Boussinesq regime (S� 1), h= 1/2+ · · · , which recovers the same
condition as for gravity currents. We encounter again the issue that at least one of δt,
δb and η must be non-vanishing for a more general solution.

We now specialise to two important classes of solution, namely the vortex sheet
(§ 4.1), for which the velocity field changes discontinuously (η = 0), and the vortex
wake (§ 4.2), in which the velocity field transitions over some finite, non-vanishing
extent.
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672 M. Ungarish and A. J. Hogg

4.1. Vortex-sheet model (η= 0)
In a vortex-sheet model of the flow downstream from the internal jump, both the
density and velocity fields are discontinuous at the interface z = h, and in terms of
the expression for the velocity field given in (4.2), we impose ψ(s)= s/|s|. Then from
(4.3) and (4.4) we deduce

uB =
ha

h
and uE =

1− ha

1− h
. (4.9a,b)

Substituting these expressions into (4.5) and (4.6) we find two coupled algebraic
equations for three variables, Fr, δt and δb, given by

Fr2

2

((
1− ha

1− h

)2

− (1+ S)
h2

a

h2
+ S

)
= 1−

ha

h
+ δb − δt, (4.10)

Fr2

(
1
2

(
1− ha

1− h

)2

−
(1− ha)

2

(1− h)
− (1+ S)

h2
a

h
+

1
2
+ Sha

)
+ δt =

h2
− h2

a

2h
. (4.11)

Since the velocity field on the outflow is piecewise constant, a Bernoulli balance yields
that head loss on each streamline in the upper fluid is δt, while it is δb in the lower
fluid. We may thus evaluate the dimensionless dissipation in the flow, which can be
rewritten as

Ḋ=
Fr
h
(δt(1− ha)+ δbha). (4.12)

We may readily identify this expression for the dissipation as the sum from each
layer. Physical considerations demand that the total dissipation must be positive semi-
definite Ḋ> 0, but importantly this criterion does not imply that both layers must be
dissipative.

To complete the model, we must invoke a closure assumption because our systems
is reduced to three variables (Fr, δt, δb) and two equations (4.10) and (4.11). This
situation is entirely analogous to the problem for gravity current fronts – and in
the context of internal jumps, different investigators have adopted different strategies
(see Wood & Simpson 1984; Klemp et al. 1997; Li & Cummins 1998; Borden &
Meiburg 2013b; Baines 2016). We find that it is convenient to write δb = λδt and
then eliminating δt between (4.10) and (4.11), we find that

Fr2
=
(h− ha)(1+ 1

2(λ− 1)(h+ ha))

h(q1 + (λ− 1)q2)
, (4.13)

where

q1 =
1
2

(
(1− ha)

2

(1− h)2
− (1+ S)

h2
a

h2
+ S
)
, (4.14)

q2 =
1
2
(1− ha)

2

(1− h)2
−
(1− ha)

2

1− h
− (1+ S)

h2
a

h
+

1
2
+ Sha. (4.15)

We may then recover different formulae by substituting different values of λ (cf. Li &
Cummins 1998). Wood & Simpson (1984) assumed that there was no dissipation in
the contracting layer and so δt= 0 (λ→∞). In contrast Klemp et al. (1997) assumed
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FIGURE 7. Schematic of the vorticity, ω, distribution in a two-layer jump under the
classical model of a vortex sheet at A. The vorticity vanishes (ω= 0) at the boundaries of
the control volume, except for at the vortex sheet. The eddies indicate vorticity generation
and note that ω > 0 in the lower (expanding) layer. This implies that ∂ω/∂z > 0, and
δb < 0. This scenario demonstrates that under the ‘classical’ model of a vortex sheet that
it is inconsistent to set δb= (1+ S)δt since they must be opposite signed and furthermore
because the total dissipation must be positive, there must be dissipation in the upper
contracting layer (thus supporting the model of Klemp et al. (1997)).

that there was no dissipation in the expanding layer, expressed as δb= 0 and so λ= 0.
Finally, and most recently, Borden & Meiburg (2013b) and Baines (2016) assumed a
form of vorticity conservation that is equivalent to assuming that the dissipation per
unit mass along the bounding streamlines DE and BC is equal (δb = (1 + S)δt). We
also note that that if λ= 1 then the deduced Froude number from (4.13) is equal to
the ideal, ‘inviscid’ result (4.7), although the dissipation is not necessarily vanishing
in this case. It is evident therefore that all previous expressions for the speed of the
bore require, or imply, a closure assumption.

Previous investigations invested considerable effort into the question of which
of these many variants is preferable. These studies do not provide a theoretical
criterion for the choice of λ, and actually there is no reason why λ should be a
constant. The main comparison has been between measurement of the speed of the
jump, U, in laboratory experiments and Navier–Stokes simulations, and the model
predictions, along with qualitative arguments concerning the dissipation. In general,
the conclusion is that the model due to Klemp et al. (1997) performs better than
that of Wood & Simpson (1984) (although the predicted U often exceeds the data).
The circulation-based models of U are close to, but slightly larger than, the Klemp
et al. (1997) results. However there are difficulties in drawing firm conclusions
from comparisons with laboratory experiments and simulation data, because they
are usually restricted to a relatively narrow range of flow parameters (e.g. the flows
are often Boussinesq and with equal viscosities). The assumptions of the modelled
flow (e.g. free-slip boundaries, laminar steady state, Schmidt number Sc→∞) do
not conform precisely to either laboratory experiments or computational simulations.
Moreover, there is no theoretical interpretation or criterion to underpin the modelling
and closure assumptions.

We suggest a more self-contained approach. We exploit again the connection
between the boundary head losses, δt and δb, and the boundary gradients of vorticity,
∂ω/∂z (see (2.18) and (2.19)). The expected vorticity distribution is shown in figure 7.
The lower layer expands, the upper contracts, and hence u2>u1 and ω>0 is produced
at the interface. In view of the ω= 0 boundary conditions at z= 0 and 1, (∂ω/∂z)> 0
in the region with fluid of density ρ1 and (∂ω/∂z) < 0 in the region with fluid of
density ρ2. Thus according to (2.18)–(2.19), we deduce that δt > 0 and δb < 0.
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In other words, the upper layer is dissipative, while the lower one gains energy: see
(4.12). Immediately this implies that the model due to Wood & Simpson (1984) is
problematic: by imposing δt = 0 and δb > 0, it prevents the dissipation effect from
the proper layer, and enforces it on the wrong layer. The model due to Klemp et al.
(1997) with δt > 0 and δb= 0, on the other hand, is consistent with the vorticity field
in the upper (major) layer, while the needed negative δb is approximated by assuming
that it vanishes. The circulation-based model with δt > 0, δb > 0 is consistent with
the vorticity field in the upper layer, but imposes the wrong sign in the lower layer.
On balance, therefore, the model due to Klemp et al. (1997) appears to be the most
consistent compromise. We emphasise that we used no arguments concerning the
energetics of the flow in our assessment of the models with different δt and δb, in
contrast with the widely accepted suggestion of Li & Cummins (1998).

The expressions of head loss on streamlines (2.18)–(2.19) reveal that δt and δb can
be interpreted as distributed viscous drag forces per unit area, which arise due to
shear at the interface downstream of the internal jump. The contracting upper layer
moves faster than the expanding lower layer, and hence a positive drag is expected
in this domain, δt > 0. By the same argument, δb < 0 – and therefore the inferred
signs of these terms are in agreement with the argument developed above. Moreover,
in vorticity balance (A 2), the term δb − δt can be interpreted as the torque of the
distributed drag forces, and we expect it to be negative (clockwise).

Together, these observations yield a simple guiding principle for the closures for
classical (vortex-sheet) models of internal jumps. In general, the head loss in the
contracting layer must be positive, and in the expanding layer negative. From (4.10),
we see that the head loss terms δt > 0 and δb < 0 lead to a reduction in predicted
speed of the jump, Fr and the inviscid expression, FrI , is the upper bound of this
result, as expected. We note again that the situation δb = δt, which also reproduces
FrI , contradicts the observation that δb > 0 and therefore lacks physical justification.

The validity of the models is traditionally restricted by requiring the total dissipation
Ḋ> 0. We comment that this is not a sharp criterion in general, because some models
employ non-physical δb > 0, and this distorts the value of Ḋ. This is in particular
problematic for the model due to Wood & Simpson (1984) and circulation-based
models (Borden & Meiburg 2013a; Baines 2016). The model due to Klemp et al.
(1997) imposes vanishing dissipation in the lower layer (δb = 0 and Ḋ1 = 0) and
thus demands that the upper layer alone is dissipative (so that Ḋ > 0), whereas the
discussion above indicates that δb < 0 is consistent with the anticipated distribution
of vorticity.

We conclude that considerations of the vorticity distribution are sharper than the
energy-dissipation arguments (although the latter are still of value). For example, these
considerations predict that the model due to Klemp et al. (1997) is preferable to the
other closures – and we know that it is in broad agreement with the data. However,
the new insights are still mostly qualitative. We argue with confidence that the ratio
δb/δt < 0 should be negative and finite. A model with δb/δt < 0 will be an improved
substitute to the Klemp et al. (1997) model (δb = 0), but we do not have a reliable
estimate for the optimal value of this ratio.

4.2. The vortex-wake model
In this section we examine a different closure, namely the existence of a finite
thickness layer through which the velocity varies from uB to uE (see figure 8).
Within this layer there is non-vanishing vorticity generated by the baroclinic torque
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H

h

E
D

z

U
A

B
O

C

g

FIGURE 8. Schematic of the vorticity ω distribution in an internal jump with a finite, non-
vanishing thickness transition layer over which the velocity varies from uB to uE. Vorticity
is non-vanishing within this layer, but vanishes everywhere else within the domain.

associated with the expansion of the lower, relatively dense layer. We examine the
dynamics integrated over a control volume enclosing the jump on the assumption that
streamlines of the motion have become parallel with the channel boundaries at the
segment BE and the dissipative effects at the boundary vanish, so that δb = δt = 0.

The velocity is assumed to transition between z = h − η and z = h + η on the
assumption that the viscosities of the two fluids are comparable (and the extension
to differing viscosities and the resultant asymmetric velocity fields is tackled below).
It will also be assumed, and later confirmed, that η < h and η < 1 − h, so that
the transition layer is separate from the channel boundaries. Here we model a linear
variation within the layer, so that ψ(s)= s for |s|< 1 and ψ(s)= s/|s| for |s|> 1, and
in appendix B we analyse an alternative that yields almost identical results.

The flow is modelled using (2.20)–(2.23), for which we need the following integrals:∫ 1

0
f dz= 1− 2h,

∫ h

0
f dz=−h+

1
2
η, (4.16a,b)∫ 1

0
f 2 dz= 1−

4
3
η,

∫ h

0
f 2 dz= h−

2
3
η. (4.17a,b)

Conservation of mass and solute then yields

uE(1− h)+ uBh= 1 and uB(h− 1
4η)+

1
4 uEη= ha. (4.18a,b)

The requirement of a single-valued pressure field given by

Fr2(u2
E − (1+ S)u2

B + S)=
2(h− ha)

h
. (4.19)

Finally the balance of streamwise momentum leads to

Fr2

[
u2

E

(
h−

1
2
+
η

3
−

Sη
12

)
− u2

B

(
h(1+ S)−

η

3
−

5Sη
12

)
− uEuB

(
2
3
+

S
3

)
η+

1
2
+ Sha

]
=

h2
− h2

a

2h
. (4.20)

It is possible to solve these algebraic equations to find that the dimensionless speed
of the internal jump, expressed as Fr, satisfies

Fr2
=

1
4h

[4h(1− h)− η]2

[(Sh− (S+ 1))η+ 2(S(1− h)2.(h+ ha)− 2hha + h+ ha)]
. (4.21)
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Note that this expression reduces to the inviscid result Fr=FrI (see (4.7)) when η= 0.
The thickness of the transition layer is determined by the quadratic equation

3Sη2
− 2[3Sh(h− 3ha)+ 6Sha + (S+ 5)(ha − h)]η

− 12(ha − h)2(S(1− h)2 − 2h+ 1)= 0. (4.22)

It is noteworthy that this expression has real solutions when ha < h < (S + 1 −√
1+ S)/S and that η vanishes as the largest and smallest values of h in this range,

yielding the ‘inviscid’ solution for Fr= FrI (4.7). Furthermore, for Boussinesq jumps
(S= 0), we immediately deduce that

η=
6
5
(h− ha)(1− 2h) and Fr2

=
(4h2
− 7h− 3ha(1− 2h))2

20h(3h2 + h+ 4ha(1− 2h))
. (4.23a,b)

Dissipation is a by-product of this calculation. By substituting the assumed forms
of the velocity we may evaluate the dimensionless dissipation in the lower and upper
layers, denoted by Ḋ1 and Ḋ2, respectively, and given by

Ḋ1 =−
Fr3η(1+ S)

64h
(uE − uB)(uE + 3uB)

2 and Ḋ2 =
Fr3η

64h
(uE − uB)(3uE + uB)

2.

(4.24a,b)
Thus we deduce that since uB < uE there is in general some energy gain in the lower
layer since Ḋ1 < 0. In the upper layer there is dissipation (Ḋ2 > 0) and in general
for Boussinesq systems for which uB � uE, Ḋ2 � |Ḋ1|. We reiterate that this result
is an intrinsic outcome of the vortex-wake solution and furthermore we note that the
flow is only non-dissipative when η= 0, which occurs at h= (S+ 1−

√
1+ S)/S, in

addition to the trivial cases h= ha (and uB = uE).
We illustrate our results in figures 9 and 10 for the Boussinesq regime (S= 0). In

figure 9, we plot the scaled thickness, η/h, the Froude number of the jump, Fr, and
dissipation, Ḋ1 and Ḋ2, as functions of the dimensionless downstream thickness of the
jump, h, along with the predictions from the vortex-sheet model due to Klemp et al.
(1997) (for which λ = 0 in (4.13)) and with results from Navier–Stokes simulations
due to Borden et al. (2012b). We find that in general the predictions of the bore
speed from the vortex-wake model are somewhat slower than the vortex-sheet model
due to Klemp et al. (1997) and are in general in quite good agreement with the data
from the numerical simulations. (Other vortex-sheet models lead to higher predicted
velocities and are not plotted in figure 9.) The predicted dissipation is slightly higher
in the vortex-wake model than in the vortex-sheet model and the lower layer always
exhibits a negative dissipation Ḋ1 < 0 for the parameters studied here, although it is
of significantly smaller magnitude than Ḋ2.

From figure 9, we also note that η/h exhibits a maximum for ha < h < 1. In the
Boussinesq regime this is easy to evaluate (see (4.23)) – it occurs at h = (ha/2)1/2
and at this height of downstream jump, η/h= 6(1− 2ha

1/2)2/5. Thus the model of a
symmetric wake becomes invalid when η > h, which in the Boussinesq regime occurs
when ha < (11 − 2

√
30)/12 = 0.00374. For greater density differences between the

layers, this threshold value of ha increases, but as discussed below such flows are
modelled better by an asymmetric wake (see § 4.3).

The predictions are also plotted as functions of the dimensionless depth of the
upstream fluid, ha, in figure 10 for h/ha = 1.3 and 1.9, and the results are also
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FIGURE 9. (Colour online) Properties of an internal jump as functions of the
dimensionless downstream thickness of the jump, h, for various dimensionless upstream
thicknesses: (a) the scaled thickness of the vortex-wake, η/h; (b) the Froude number of
the jump, Fr; (c) the dissipation in each layer, Ḋ1(< 0) and Ḋ2 (dashed lines) and the
total dissipation Ḋ1+ Ḋ2 (solid lines). In (b) and (c), the prediction from the vortex-sheet
model due to Klemp et al. (1994) are also plotted (dot-dash lines). In (b) the data points
are from the simulations reported by Borden et al. (2012b) for ha= 0.2 (◦), ha= 0.1 (@)
and ha = 0.05 (×).

compared with numerical simulations of the Navier–Stokes equations (Borden et al.
2012b) in the Boussinesq regime (S= 0). In this figure we examine the dependence
of the dimensional bore speed scaled by (1ρgha/ρ1)

1/2 and in terms of the dependent
variables used here, this dimensionless speed V = Fr((1+ S)h/ha)

1/2. We again note
the utility of the vortex-wake model in that it is able to reproduce the simulation
data more accurately than the vortex-sheet model due to Klemp et al. (1997).

4.3. Asymmetric wakes
An interesting flexibility of the vortex-wake model is that the layer over which the
velocity transitions between uB and uE need not be of equal thickness above and below
the elevation z = h, in particular when the fluids differ strongly in viscosities and
densities. This effect may be included by writing u = (uB + uE)/2 + (uE − uB)f (z)/2
and demanding a piecewise model for f (z) in z> h and z< h. Denoting the thickness
of the transition zones in the lower and upper layers by η1 and η2, respectively, we
impose f (−η1)=−1 and f (η2)= 1, while for continuity of velocity and shear stress,
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FIGURE 10. (Colour online) Properties of an internal jump as functions of the
dimensionless downstream thickness of the jump, h, for various dimensionless upstream
thicknesses: (a) the scaled thickness of the vortex-wake, η/h; (b) the dimensionless speed
of the jump, V; (c) the total dissipation Ḋ (solid lines). In (b) and (c), the prediction
from the vortex-sheet model due to Klemp et al. (1994) is also plotted (dot-dash lines).
In (b) the data points are from the simulations reported by Borden et al. (2012b) for
h/ha = 1.3 (×) and h/ha = 1.3 (@).

we enforce
f (h−)= f (h+) and µ1f ′(h−)=µ2f ′(h+). (4.25a,b)

If we assume that there is linear dependence upon position within the transition layer,
we find that

f =
1

1+Λ


Λ− 1+ 2

(z− h)
η1

, h− η1 < z< h,

Λ− 1+ 2
(z− h)
η2

, h< z< h+ η2,

(4.26)

where Λ = (η1µ2)/(η2µ1). To close the problem then, we require an expression in
addition to the conservation expressions derived above.

We proceed by arguing that in the steady laminar state, the thickness of the
transition layer at a downstream distance, x, is proportional to [µx/(ρU)]1/2. Thus
the ratio of the thickness η1/η2 = [(µ1ρ2)/(µ2ρ1)]

1/2. We shall test our formulation
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FIGURE 11. (Colour online) The rescaled speed of an internal jump, V , as a function of
the density ratio, (1+ S)−1, for various ratios of the downstream to upstream thicknesses
of the lower layer (h/h1 = 2.3, 1.85, 1.35). Also plotted are the predictions due to Klemp
et al. (1997) (dot-dash line) and the results from Navier–Stokes simulations by Ungarish
et al. (2014).

against recent simulations of the Navier–Stokes equations by Ungarish, Borden &
Meiburg (2014) that examined non-Boussinesq jumps when the dynamic viscosities of
the fluids are equal. Thus we write η1/η2= (1+ S)1/2 and we analyse the conservation
equations to deduce the thickness of the lower layer η1 and the dimensionless speeds
of the jump, Fr. Results are plotted in figure 11, along with results from simulations
(Ungarish et al. 2014) and from the vortex-sheet model of Klemp et al. (1997).
We see that the scaled velocity, V , decreases with increasing ρ2/ρ1 and that the
vortex-wake model captures the dependency quite accurately. Strongly non-Boussinesq
models (with S> 3, say) may require a complicated analysis because of their tendency
to adopt single layer dynamics, as pointed out by Ungarish et al. (2014), and because
of undular wave production, which is not captured by this steady analysis (Borden
et al. 2012a).

5. Concluding remarks
In this study we have revisited models for the flows of gravity currents and

internal jumps and have sought to unify and clarify the existing descriptions, as well
as deriving a new modelling framework. In particular by formulating principles of
mass conservation and momentum balance over a control volume encompassing a
gravity current front or an internal jump, we have shown how dissipative effects
enter what otherwise appears to be an entirely inviscid description, and crucially it
is the modelling of these processes that differentiates the previous models of these
motions. We have shown that the requirement that the pressure field is single-valued
is identical to the balance of vorticity within the control volume, and the former is
more straightforwardly evaluated than the latter. However, it is in general often useful
to consider the balance of vorticity in terms of its advection and production due
to baroclinic effects and boundary fluxes, rather than energy fluxes and dissipative
processes, because the former provide more definite guidance for the sign and
magnitude of the effects.

While previous models of the motion have abstracted the flow downstream of the
front or the jump to a vortex sheet in which the velocity changes discontinuously

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

21
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f B

ri
st

ol
 L

ib
ra

ry
, o

n 
10

 M
ay

 2
01

8 
at

 1
0:

57
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.219
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


680 M. Ungarish and A. J. Hogg

between the layers, we have formulated a new modelling framework in which there
is now a layer of non-vanishing thickness over which the velocity field (and possibly
the density field, if the Schmidt number is not large) transitions. We term this class
of models as vortex-wake models because the formulation captures the rotational flow
field in the lee of the front of the gravity current or internal jump and the thickness
is determined by these fundamental balances. We have demonstrated in this study that
this model is capable of accurately predicting the speeds of the front and jumps, as
well as abstracting the flow in a more realistic way than the classical vortex-sheet
model.

Turning then to the classical vortex-sheet models, we showed that when integrated
over the control volume with free-slip channel boundaries, there is a crucial role
played by the magnitudes of the head losses on the upper and lower boundaries (δt
and δb, respectively). If both of these vanish then the flow model is entirely inviscid
and the flow depth is forced to adjust to a unique value. Furthermore, the deduced
speed of the gravity current front or internal jump is greater than any speed had
non-vanishing dissipation been assumed. The inviscid model thus forms an upper
bound of more realistic descriptions. The difference between the previous models
therefore concerns the different choices that are invoked for modelling δt and δb,
since with a vortex-sheet description there is no other way of altering the inviscid
predictions.

For internal jumps, while previous studies have analysed the magnitude of
dissipative processes, we find that framing the problem in terms of vorticity balances
is insightful and this analysis suggests that δt> 0 and δb< 0. Thus energy is dissipated
within the upper contracting layer and gained within the lower expanding layer, with
the constraint that overall the system must be dissipative. Of the classical models,
the one that invokes assumptions closest to this requirement is due to Klemp et al.
(1997), who postulate that there is dissipation in the upper layer (δt > 0), but not in
the lower layer (δb = 0). Conversely the formulation furthest from this criteria is due
to Wood & Simpson (1984), who demanded vanishing dissipation in the upper layer
(δt = 0), but non-vanishing dissipation in the lower layer (δb > 0). Circulation-based
models (Borden & Meiburg 2013b; Baines 2016) are intermediate in that they imply
δb = (1 + S)δt > 0. As shown by Li & Cummins (1998) it is possible to express
the dimensionless speed of the jump in terms of the ratio of the fluid densities,
the dimensionless up- and downstream thicknesses of the dense fluid layer and an
unknown ratio of the head losses on streamlines within the upper and lower layers.
(The latter parameter was denoted by λ in (4.13).) Our discussion in terms of the
boundary fluxes of vorticity indicates that a realistic model needs λ < 0 and we
comment that a useful formula for the dimensionless speed of the jump could be
formed by setting λ = −1. We did not pursue this suggestion further because we
believe that the new vortex-wake models offer greater insight into the dynamics.

When gravity currents are modelled using the vortex-sheet description, the
dissipative processes occur only within the fluid of density ρ2 and are denoted
by δt and δb for the head losses along the streamlines DE and OC, respectively (see
figure 2). Within this framework, we show that Benjamin (1968) imposes δb = 0,
while Borden & Meiburg (2013a) impose δt = δb. Both choices yield prediction for
the Froude number that are quantitatively close; however, for free-slip boundary
conditions the framework indicates that δt is positive while δb is approximately zero,
and this lends support to the model of Benjamin (1968).

The vortex-wake models provide a different approach: boundary effects are
neglected on the assumption that the Reynolds number is high (δt = δb = 0) and
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Models of internal jumps and the fronts of gravity currents 681

instead the velocity field adjusts over a finite, non-zero thickness, which is determined
as part of the modelling framework. One must choose the velocity profile within the
transition layer (which turns out to play a very limited role in these integral models),
but thereafter there are no adjustable constants and the Froude number, Fr, and the
dissipation are unique. The vortex-wake formulation is shown to agree quite closely
with previous models (Benjamin 1968; Klemp et al. 1994) and with data from
numerical simulations of the complete governing equations. The modelling framework
also reveals why the vortex-sheet idealisation includes undetermined parameters δt
and δb, which are required to close the model, because when the thickness of the
transition layer vanishes, the effects on the balance of momentum and dissipative
processes must now be distributed over the assumed plug flow within the two layers.
In this study we have made a simple choice of maintaining a stationary dense layer
and extended a wake into the ambient in the lee of the gravity current front. One
could imagine relaxing this assumption to account for weak circulation of dense fluid
through the lower layer.

The idea of a diffuse interface has been briefly considered in previous studies, but
as a semi-empirical extension of the vortex-sheet results. In particular, the vortex-wake
model shows similarities with the ‘improved bore model’ of Borden et al. (2012b)
and Borden & Meiburg (2013b), with the diffuse interface model of jumps due
to Baines (2016) and with the mixed layer model for gravity currents (Borden &
Meiburg 2013b). These descriptions assume linear variations of the velocity field
close to the interface and for internal jumps, evaluate the energy balance to conclude
there is gain in the lower layer (Borden et al. 2012b). This result is combined with
semi-empirical data for the interface thickness from computational simulations in
the Boussinesq regime to derive a new model. However, because of its reliance
on empiricism, the description is not a closed, self-contained prediction, unlike the
vortex-wake model presented above.

Moreover, the vortex-wake model supplies the answer to the dilemma identified
by Borden et al. (2012b) regarding the cause of energy loss within a modelling
framework which is essentially inviscid. The answer is that the ‘inviscid’ control
volume is an illusion. The free-slip boundary conditions are compatible with the
Euler equations. However, we demonstrated that the Navier–Stokes equations are
needed for consistency of the control volume balances, which means that the flow
inside the control volume is not inviscid, in general. In addition, the Navier–Stokes
equations demand a continuous velocity field at the outflow of the control volume.

A steady-state flow with an internal jump requires, in general, non-vanishing
dissipative effects. In the vortex-wake model this head loss is introduced by resolving
the velocity adjustment between the layers over a transition zone of unspecified
thickness. Such a wake cannot appear in an inviscid flow – and a continuous velocity
variation is a consequence of viscous effects. Energy dissipation is a by-product of
the wake, and is therefore a viscous effect. In the two-layer models with a sharp
interface (e.g. Klemp et al. 1997; Borden & Meiburg 2013b), the wake is contracted
to a dissipationless vortex sheet, and the viscous effects of the wake, concerning
momentum and energy balances, are replaced by non-zero (in general) δb and δt. It
is therefore expected that δt and δb reproduce viscous effects. Indeed, we showed
that these dissipative terms are proportional to µ∂ω/∂z at the horizontal boundaries
of the control volume, and hence the control volume balances employed by Wood
& Simpson (1984), Klemp et al. (1997), Li & Cummins (1998), Borden & Meiburg
(2013b) and Baines (2016) are not truly inviscid; actually, these models spread out
the viscous effects from the near-interface domain over the entire thickness of the
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fluid, to create the same head loss for all the streamlines of each fluid. These models
require that the irrotational upstream flow must become rotational inside the control
volume. The expectation that the free-slip ω = 0 boundary conditions maintain an
irrotational flow inside the control volume is not fulfilled in the two-layer models.
We may of course wonder why the results with viscous influence are independent of
Reynolds number. Our suggestion is that this is because we focus on a steady-state
situation, in which the potentially small viscous contributions are integrated over a
large control volume spanning the region within which the oncoming flow is altered
by the front or internal jump. Unsteady effects, not included in this analysis, could
be expected to depend on the Reynolds number of the flow as they develop through
viscous processes.

Our study covers both Boussinesq and non-Boussinesq systems, and the solutions of
the new model are obtained by simple algebraic means. This facilitates straightforward
interpretation of the dynamical processes, but moreover allows the front and jump
conditions to be readily incorporated into more general models of the temporally and
spatially dependent motion of gravity currents.
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Appendix A. Vorticity conservation
The vorticity is given by ω = ωŷ = ∇ ∧ u (see (2.3)), and as noted in the main

text, it vanishes on the inflow (CD) because the inflow velocity is uniform and on the
channel boundaries (BC and DE) due to free-slip conditions. However, it is non-zero
on the outflow (BE). We form the steady vorticity equation by taking the curl of the
Navier–Stokes equations (2.2), which may be written in the form

∇ ∧ (ω ∧ u)=−∇ ∧
(

1
ρ
−

1
ρ2

)
∇p+∇ ∧

(
µ

ρ
∇

2u
)
. (A 1)

In this expression, we have added the irrotational term (1/ρ2)∇p to the curl of the
Navier–Stokes equations to simplify the manipulations that follow. The expression
(A 1) is then integrated over the surface bounded by the directed curve Γ = ABCDE
(see figure 1) and using Stokes’ theorem this leads to the vorticity balance (cf. Borden
& Meiburg 2013a)

−

∮
Γ

ωu · ŷ∧ dx=−
∮
Γ

(
1
ρ
−

1
ρ2

)
∇p · dx+

∮
Γ

µ

ρ
∇

2u · dx. (A 2)

Physically these terms represent the advection of vorticity over the boundaries of the
control volume, the net baroclinic torque and the viscous torques at the boundaries.
Since the vorticity ω vanishes on DE, BC and CD, the only contribution to first term
of (A 2) is given by

−

∫ B

E
ωu · ŷ∧ ẑ dz=

1
2
(u2

E − u2
B), (A 3)
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provided u(z) is continuous on BE. The pressure contribution to (A 2) is given by

−

∮
Γ

(
1
ρ
−

1
ρ2

)
∇p · dx =

∫ H

0

1ρ

ρ2
g dz−

(ρ1 − ρ2)

ρ2
gha +

ρ1 − ρ2

ρ1ρ2
(pO − pB)

+
ρC − ρ2

ρCρ2
(pC − pO), (A 4)

where pO is the pressure at the origin and ρC is the density of the fluid at C. Finally
note that the viscous contribution to (A 2) is only non-zero along BC and DE and is
given by ∮

Γ

µ

ρ
∇

2u · dx=
∫ E

D

µ

ρ2
∇

2u dx+
∫ O

B

µ

ρ1
∇

2u dx+
∫ C

O

µ

ρC
∇

2u dx. (A 5)

Then summing these contributions (A 3)–(A 5) and using (2.11) and (2.12) to evaluate
the pressure differences pB − pO and pC − pO, we find that (A 2) is given by

ρ2u2
E

2
−
ρ1u2

B

2
−

U2

2
(ρ2 − ρC)=

∫ H

0
1ρg dz− (ρ1 − ρ2)gha

+

∫ E

D
µ∇2u dx−

∫ O

C
µ∇2u dx+

∫ O

B
µ∇2u dx. (A 6)

This is an identical expression to (2.13) and so the vorticity balance does not add
to the dynamical condition that the pressure must be single-valued within the control
volume.

Even though the boundary conditions on DE and BC are free-slip, and so the
vorticity vanishes, its normal derivative cannot be assumed to vanish. Consequently
the divergence of the viscous stresses does not necessarily vanish. The viscous torque
exerted on the control volume is given by (A 5) and using (2.18) and (2.19), we
note that it vanishes for a gravity current if δt = δb and for an internal jump if
δb = (1+ S)δt.

Appendix B. Internal jump: another downstream velocity profile
In this appendix we examine the vortex-wake model for an internal jump when the

velocity profile at outflow BE (see figure 8) varies as u(z) = (uB + uE)/2 + (uE −

uB)f (z)/2 and f (z)= tanh((z− h)/η). To complete the model, we require the following
integrals, evaluated in the regimes e−h/η

� 1 and e−(1−h)/η
� 1:∫ 1

0
f dz= 1− 2h+ · · · ,

∫ h

0
f dz=−h+ η log 2+ · · · , (B 1a,b)∫ 1

0
f 2 dz= 1− 2η+ · · · ,

∫ h

0
f 2 dz= h− η+ · · · . (B 2a,b)

On substitution of these expressions into the governing equations (4.3)–(4.6) and
subsequent elimination of the variables, uB and uE, we find that the Froude number
of the internal jump is given by

Fr2
=

1
4h

(4(1− h)h− 2η log 2)2

[(Sh− (S+ 1))η2 log 2+ 2(S(1− h)2(h+ ha)− 2hha + h+ ha)]
. (B 3)
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FIGURE 12. (Colour online) The Froude number of an internal jump in the Boussinesq
regime (S = 0) as a function of the downstream depth of the lower layer for different
upstream layer depths, showing the predicted Froude number with velocity profile f (z)=
tanh((z− h)/η) (solid lines) and with the linear profile of § 4.2 (dashed lines).

We note immediately that this reduces to the inviscid Froude number FrI when η= 0
(see (4.7)). Furthermore we find that the thickness of the transition layer satisfies the
following quadratic equation:

S(log 2)2η2
+ [−S log 2(h2

− 3hha + h+ ha)+ (S+ 2− log 2)(h− ha)]η

− (h− ha)
2(S(1− h)2 − 2h+ 1)= 0. (B 4)

This quadratic equation yields real roots for η when ha 6h6 ((1+S)− (1+S)1/2)/S as
established when a linear velocity profile was assumed (see § 4.2), and the thickness
of the layer vanishes at the end values of this range.

We plot solutions in the Boussinesq regime in figure 12 and note that the
dimensionless speed of the internal jump, here expressed as the Froude number,
is very similar to that predicted had a linear profile of velocity been assumed as
in § 4.2. The difference between the two models is less than 1.2 % throughout the
range of admissible downstream layer depths and the models concur with the inviscid
speed, FrI , when h= ha and h= 1/2 (when S= 0).
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