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Unsteady draining of reservoirs over weirs and
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The gravitationally driven flow of fluid from a reservoir following the partial collapse
of its confining dam, or the partial opening of its confining lock, is modelled using
the nonlinear shallow water equations, coupled to outflow conditions, in which the
drainage is modelled as flow over a constricted, broad-crested weir. The resulting
unsteady motion reveals systematic draining, on which strong and relatively rapid
oscillations are imposed. The oscillations propagate between the outflow and the
impermeable back wall of the reservoir. This dynamics is investigated utilising
three methods: hodograph techniques to yield quasi-analytical solutions, asymptotic
analysis at relatively late times after initiation and numerical integration of the
governing equations. The hodograph transformation is used to find exact solutions at
early times, revealing that from initially quiescent conditions the fluid drains and yet
repeatedly generates intervals during which there are regions of constant depth and
velocity adjacent to the boundaries. A novel modified multiscale asymptotic analysis
designed for late times is employed to determine the limiting rate of draining and
wave structure. It is shown that the excess height drains as t−2 and, when the obstacle
has finite height, the velocity field decays as t−3, and exhibits a wave structure that
tends towards a constant and relatively rapid phase speed. In the case of a pure
constriction, for which all the fluid ultimately drains out of the reservoir, the motion
adjusts to a self-similar state in which the velocity field decays as t−1. Oscillations
around this state have an exponentially increasing period. Numerical simulations
with a novel implementation of boundary conditions are performed; they confirm the
hodograph solution and provide data for the asymptotic results.

Key words: gravity currents, hydraulic control, hydraulics

1. Introduction
Understanding the partial or total collapse of dams and the resulting fluid flow is

vital for the protection of people, infrastructure and environment downstream. When
a dam fails, it is common for only a portion of it to collapse, creating an obstacle
for the upstream reservoir to navigate before it rushes downstream. This results in
a gravity current, where the horizontal density difference between the current and
ambient fluid drives the flow (Simpson 1997; Ungarish 2009). The investigation into
gravity currents has a long history (von Kármán 1940) due to their many industrial
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and environmental applications, including open channel hydraulics, ventilation, the
spreading of toxic gas, intrusion of saline water in estuaries and chemical and oil
spillage. Important fundamental problems in this research area include ‘dam-break’
and ‘lock-release’ flows, in which initially quiescent fluid held behind a barrier,
surrounded by a lower density ambient, is suddenly released to flow along a channel.
The term ‘lock release’ usually relates to Boussinesq flows for which the density
ratio between the current and ambient is order unity, whereas the term ‘dam break’
is often used for non-Boussinesq flows in this configuration, importantly including
the subaerial collapse of a fluid reservoir. These flows are not only important for
their applications, but are well established experiments in laboratory settings as
documented by Simpson (1982) and Ungarish (2009), including flows interacting
with barriers (Lane-Serff, Beal & Hadfield 1995; Wilson, Friedrich & Stevens 2017).
The motion is non-trivial because the dynamics evolves spatially and temporally, and
yet the configuration is sufficiently simple to allow the fundamental fluid mechanical
mechanisms to be clearly investigated.

When modelling gravity currents and other free-surface hydraulic flows, their
extreme aspect ratio is exploited, as the motion typically has vastly greater horizontal
extent than depth. This asymptotic regime gives rise to a hydrostatic pressure field,
and thence the shallow water equations can be deduced (Ungarish 2009). Around
the flow head where the current propagates into the ambient, however, hydrostatic
pressure is not an accurate approximation, and special considerations must be made.
Benjamin (1968) performed one of the first comprehensive investigations into the
steady dynamics of the head for two layer flows in a lidded channel, and established
conditions of the form u = Fr

√
gh relating the velocity of head u to gravitational

acceleration g and the depth of upstream flow h by the Froude number Fr, where the
Froude number is a function of both the ratio of the flow depth to the channel height,
and the ratio of the current to ambient densities. This work has been recently revisited
by Ungarish & Hogg (2018) to account for the vorticity developed by the flow as it
overpasses the front. Solutions for unsteady dam-break and lock-release flows have
been constructed by employing the Froude number condition as a dynamical boundary
condition for the shallow water equations at the front of the motion (Rottman &
Simpson 1983). From lock-release initial conditions, the current rapidly accelerates to
propagate with constant velocity (Ungarish 2009) before entering a self-similar regime
in which the inertia of the fluid motion is in balance with the hydrostatic pressure
gradients (Fannelop & Waldman 1972; Hoult 1972). The approach to self-similarity
is characterised by interfacial waves that propagate between the front of the current
and the back wall of the reservoir (Hogg 2006).

Despite the extensive investigation into dam-break flows, there are many important
variations that have not been studied. In this work we consider the possibility of
incomplete breakage of a dam, either by collapse of the upper portions, creating a
weir, or the centre portion, creating a constriction. A similar situation occurs with
the sudden (partial) opening of a sluice gate in a canal. Broad-crested weirs (BCW),
where the horizontal crest extends for a sufficient length such that critical flow with
hydrostatic pressure is established (Chow 2009), are of particular interest here. Early
work on this topic was documented by Horton (1907) for sharp-edged BCW, in which
the flux of fluid over the weir is related by empirical relationships to upstream flow
characteristics. Whilst many different empirical relationships are still in use, the one
presented Ackers et al. (1978) is useful for conceptual understanding as it uses a
drainage coefficient Cd which can be related to the ratio of upstream energy head Hu

to crest energy head Hc (using the crest height as the datum) as Hc/Hu=C2/3
d . Values
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of Cd are calculated from data compiled from 18 different studies in Zachoval et al.
(2014) and from their results we calculate a head loss of 3 %–12 %. Experimental
results for a variety of ramped BCW are presented in Azimi, Rajaratnam & Zhu
(2013) and, whilst their choice of drainage coefficient is somewhat different to that
of Zachoval et al. (2014), they find even lower head losses. This indicates that broad-
crested weirs may be modelled to leading order by a shallow-water model with the
overflow represented by a condition that enforces the conservation of energy between
the bottom and top of the weir, with critical flow at the top. This is the approach
taken by Lane-Serff et al. (1995), Karelskii & Petrosyan (2006) and Valiani & Caleffi
(2017) for both ramped and sharp-edged BCW.

A similar variation on the dam break was presented by Momen et al. (2017), where
the dam break occurred at a vertical edge so that critical flow was rapidly established.
Both experiments and direct numerical simulations of the Navier–Stokes equations
were presented, and compared to numerical solutions of the shallow-water equations
and an analytical similarity solution that emerges after a sufficient time following flow
initiation. Close correspondence was found between the modelling and experimental
results. The present work may be considered both a generalisation and extension of
their shallow-water analysis: a generalisation because we include the possibility of
a weir and/or constriction between the bulk and the critical flow, and an extension
because we employ a variety of additional analytical and numerical techniques to
investigate the dynamics.

Flows modelled by the nonlinear shallow-water equations may be calculated using
quasi-analytical techniques when analysed in terms of hodograph variables (see, for
example, Hogg 2006) and this approach is used in this study to reveal the initial
phases of the motion as the collapsing reservoir of fluid interacts with the containing
barrier or constriction. Hodograph techniques for hyperbolic partial differential
equations, such as the shallow water equations, interchange the dependent and
independent variables and it is then convenient to treat the space and time variables
as functions of the two characteristics variables of the shallow-water equations. Under
this transformation the governing equations become linear and may then be solved
using an appropriate Green’s function; the variables are determined as integrals that
can be evaluated easily with elementary numerical techniques to high numerical
precision. This quasi-analytical approach has advantages in that it is easy to track the
locations of positions where the values or gradients of the original variables change
discontinuously and it is straightforward to calculate the spatial and temporal domains
over which the confining barrier influences the flow. The hodograph technique has
been deployed in a number of circumstances including lock-release gravity currents
(Hogg 2006), dam-break collapse into a channel with a pre-existing fluid layer (Goater
& Hogg 2011), swash evolution and bore formation (Antuono & Hogg 2009) and flow
run-up and overtopping sloping beaches (Hogg, Baldock & Pritchard 2011). In this
study we will show from the hodograph analysis that the flow generates waves that
propagate between the end wall of the lock and the barrier or constriction, while the
fluid unsteadily drains. These oscillations lead to successive intervals during which
the flow depth is locally horizontal (and the velocity uniform) at either end of the
domain. These oscillations persist until the depth of the fluid reduces to the height of
the barrier, or completely drains out of the domain in the case of a constriction. This
flow feature is analogous to the oscillations in lock-release gravity currents between
the rear of the lock and the front of the flow (see Rottman & Simpson 1983; Hogg
2006). For flows through a constriction, the motion approaches a self-similar regime,
the solution of which we construct (cf. Momen et al. 2017), and the period of the
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oscillations grow exponentially. In contrast, for flows over a barrier the oscillations
tend to a finite period, which is dependent upon the barrier height; this latter regime
is analysed asymptotically as described below.

To reveal the behaviour at late times we develop a variation on multi-scale analysis
(Kevorkian & Cole 1996; Bender & Orszag 1999). This asymptotic technique permits
investigation of not only the systematic drainage of the flow over the barrier, but also
the comparatively rapid dynamics of superimposed waves that propagate from one
end of the lock to the other. The asymptotic analysis is carried out by introducing
different time scales for the amplitude and phase speed of waves and yields analytical
expressions for the velocity and the depth of the fluid layer. The results are verified
by comparison with the direct numerical integration of the governing shallow-water
equations and importantly draw out the wave structures that develop at relatively late
times.

The numerical results are produced utilising a central scheme (Kurganov, Noelle
& Petrova 2001), which is designed to solve hyperbolic conservation laws with
very low numerical dissipation, and resolve wave structures accurately over tens if
not hundreds of periods. We implement boundary conditions using ghost cells, and
there are several approaches to how to construct their values. Often extrapolation
or reflection of the bulk values are used (Leveque 2002). Here a new approach is
employed, where the ghost cell values are evolved in a manner compatible with both
the characteristic structure of the bulk equation and the boundary conditions. This
produces a system of differential algebraic equations (Ascher & Petzold 1998; Kunkel
& Mehrmann 2006), for which we provide a new numerical method consistent with
the time stepping (Shu & Osher 1988). As will be shown (§§ 3 and 4), the numerical
method is capable of producing results that are in very close agreement with those
generated from hodograph techniques described above.

The paper is structured as follows. First we formulate the problem in terms of the
shallow-water equations and derive the boundary conditions (§ 2 and appendix A).
The equations form a hyperbolic system, which are studied using the quasi-analytical
techniques set out in § 2.1. Also we integrate the nonlinear shallow-water equations
directly using the method described in § 2.2. The analytical, numerical and asymptotic
techniques are then applied to problems of unsteady fluid draining over a (possibly
constricted) barrier (§ 3) and through a pure constriction (§ 4). In § 3.1, we derive
the initial phases before the motion is affected by the end wall of the lock using
the method of characteristics and then in § 3.2 this is extended using hodograph
techniques to reveal how the confinement influences the unsteady drainage and
leads to wave propagation between the lock and the barrier. Results from numerical
integration of the shallow-water equations extend these analytical results to later
times, in which regime the motion can be tackled using asymptotic analysis
(§ 3.3). The asymptotic results reveal the progressive draining and relatively rapid
wave propagation; the algebraic details that are required to establish the temporal
dependence of the amplitude and phase speed of the waves are presented in
appendix B, but comparison with the numerical results is presented in § 3.3. Flows
through constrictions are analysed similarly, using quasi-analytical and numerical
techniques § 4. In this latter scenario the motion unsteadily drains and develops
relatively fast moving waves, the period of which grows exponentially in time. At
late times, the motion is given by a similarity solution (§ 4.2), and we show that that
by computing the linear stability of this solution, we may deduce the exponential
growth of the period of the oscillations (§ 4.3). We summarise and conclude the study
in § 5.
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x¡ = 0 x¡ = L
x¡

H
h¡(x¡, ¡t ) u¡(x¡, ¡t )

DH

g

FIGURE 1. The configuration of the flow over a weir, showing the important dimensional
variables. The vertical scale is exaggerated and the horizontal axis nonlinearly scaled to
show the reservoir and the weir. The flow variables are decorated with a tilde to represent
their dimensional form. The dimensionless variables are defined in § 2.

2. Formulation
In this contribution we model the unsteady, free draining of a horizontal reservoir

of fluid over a confining barrier or through a constriction. The fluid in the reservoir
is initially quiescent and its gravitationally driven motion arises following the partial
removal of one of the end walls, allowing fluid to drain unsteadily (see figure 1
for a schematic of the configuration of the flow and important variables). In this
investigation we neglect flow-induced mixing between the fluid initially in the
reservoir and the surrounding fluid and thus our modelling framework applies to
scenarios in which the fluids are effectively immiscible. We assume that the barrier
and/or the constriction are localised to one end of the reservoir, so that away from
this draining boundary the reservoir is of constant width and its base is at a constant
elevation. The motion is also assumed to be shallow, so that the depth of the flowing
layer is much smaller than the streamwise length scale, which implies that the velocity
is predominantly parallel with the underlying boundary, vertical fluid accelerations are
negligible and the pressure adopts a hydrostatic distribution. Thus in the bulk of the
reservoir, away from the outflow boundary, the motion is unidirectional, and if viscous
effects are negligible, dependent only on the streamwise coordinate and time; we may
therefore adopt the shallow-water model for the fluid motion (Peregrine 1972).

The depth of the flowing layer is denoted by h(x, t) and the maximum height of
the barrier by D; both are rendered dimensionless with respect to the initial depth of
the reservoir, H. The reservoir is of constant width, W, apart from within the locality
of the boundary across which the fluid drains; the minimum width of the channel
relative to the uniform width is denoted by w, and both the minimum width and
maximum height occur at the same location. The horizontal flow velocity is denoted
by u(x, t) and it is made dimensionless with respect to (1ρgH/ρ)1/2, where 1ρ is
the density difference between the reservoir and ambient fluids and ρ is the density
of the reservoir fluid. Both dependent variables are functions of x and t, the distance
from the back wall of the reservoir and the time since initiation, respectively. The
x-axis is directed streamwise and is non-dimensionalised with respect to the reservoir
length, L. Finally time is made dimensionless with respect to L/(1ρgH/ρ)1/2. The
dimensionless governing equations, which express conservation of mass and the
balance of streamwise momentum, are then given by

∂h
∂t
+ ∂

∂x
(uh)= 0, (2.1a)
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∂

∂t
(uh)+ ∂

∂x

(
u2h+ 1

2
h2

)
= 0. (2.1b)

The back wall of the reservoir is impermeable to fluid, which implies the boundary
condition

u(0, t)= 0. (2.2)

Fluid freely drains over the other boundary at which we enforce a mass- and energy-
conserving condition that permits the relatively tranquil flow from the reservoir to be
connected to the more rapid draining flow (Dake 1983, § 4.3.4), given by

u2 + 2(h−D)− 3
(

uh
w

)2/3

= 0, at x= 1. (2.3)

Details of the derivation of this boundary condition are given in appendix A. It is
notable that by adopting the dimensionless velocity and time scales described above,
neither the governing equations (2.1a)–(2.1b) nor the boundary conditions (2.2) and
(2.3) feature the densities of the fluids. We further note that it is convenient to write
(2.3) in terms of the Froude number at the boundary, Fr= u(1, t)/

√
h(1, t), in which

case we find that

Fr2 − 3
(

Fr
w

)2/3

=−2
(

1− D
h

)
. (2.4)

Physically relevant solutions corresponds to 0 6 Fr 6 1 and we note that Fr = 1 for
D = 0 and w = 1, recovering the standard condition for free-draining flow when in
the absence of a barrier or constriction. This system of equations has been recently
employed by Momen et al. (2017) to study unsteady gravity current drainage over an
edge (D= 0,w= 1). We emphasise that the definition of this internal Froude number,
Fr, at the fixed position, x = 1 is different from the Froude number introduced by
Benjamin (1968), and more recently revisited by Ungarish & Hogg (2018), which
expresses the conditions at the front of a gravity current.

2.1. Hodograph variables
The shallow-water equations (2.1a) and (2.1b) are hyperbolic and may be written
in terms of quantities α = u + 2h1/2 and β = u − 2h1/2, which are invariant along
characteristics (Whitham 1974). Thus we find that

dα
dt
= 0 on

dx
dt
= u+ h1/2 and

dβ
dt
= 0 on

dx
dt
= u− h1/2. (2.5a,b)

It is also possible to interchange the dependent and independent variables to treat
x and t as functions of the characteristic invariants, α and β. This hodograph
transformation converts the nonlinear governing equations into linear equations. In
particular as shown by Hogg (2006), the characteristic equations (2.5) are now given
by

∂x
∂β
= (3α + β)

4
∂t
∂β

on α = const., (2.6a)

∂x
∂α
= (α + 3β)

4
∂t
∂α

on β = const. (2.6b)
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Unsteady draining of reservoirs over weirs and through constrictions 882 A9-7

This transformation is possible and invertible provided the Jacobian J = (α − β)
(∂t/∂α)(∂t/∂β) is finite and non-vanishing.

It is possible to find a fundamental solution to the adjoint governing equations and
this Riemann solution can then aide the construction of the solution from conditions
along the boundaries in the hodograph plane. This technique was used by Hogg and
coworkers to solve some gravity current and hydraulic problems using quasi-analytical
techniques (Antuono & Hogg 2009; Antuono, Hogg & Brocchini 2009; Goater &
Hogg 2011; Hogg et al. 2011). These analyses deploy the Riemann function, which
is given by (Garabedian 1986)

B(a, b; α, β)= (a− b)3

(a− β)3/2(α − b)3/2
F
[

3
2
,

3
2
; 1; (a− α)(β − b)

(a− β)(α − b)

]
, (2.7)

where F denotes a hypergeometric function. Integration around a closed curve, ∂D,
in the hodograph plane yields ∫

∂D
f · dx= 0, (2.8)

where f (a, b; α, β)=−V â+Ub̂, dx= daâ+ dbb̂ and

U =− 3
2(a− b)

tB+ B
2
∂t
∂b
− t

2
∂B
∂b
, (2.9)

V = 3
2(a− b)

tB+ B
2
∂t
∂a
− t

2
∂B
∂a
. (2.10)

Thus a and b are dummy variables for the evaluation of integral (2.8) around the
closed path ∂D in the hodograph plane.

The method of characteristics and the hodograph transformation will be used
to construct the solution for this free-draining flow and will be shown to bring
considerable insight to the ensuing dynamics, elucidating the nonlinear wave
reflections from the back wall (x = 0) and the barrier or constriction (x = 1).
Throughout this paper we will use the following terminology: complex wave region
refers to a domain within which both characteristic variables are varying; simple
wave region refers to a domain within which one of the characteristic variables is
constant and the other varying; and uniform region refers to a domain within which
both characteristic variables are constant.

2.2. Numerical method
We also integrate the governing equations (2.1a) and (2.1b) numerically. This is done
utilising a central-upwind scheme (Kurganov et al. 2001) with a minmod piecewise
linear reconstruction (see Kurganov et al. 2001 equation (3.16) with θ = 1). The
resultant semi-discrete system is then time stepped using a third-order Runge–Kutta
scheme composed of multiple Euler time steps (Shu & Osher 1988). This scheme is
positivity preserving, i.e. we always have h> 0, due to the Courant–Friedrichs–Lewy
(CFL) condition and lack of source terms.

To impose boundary conditions we use three ghost cells at each domain end, for
which we must find values consistent with both the governing equations and the
boundary conditions. We discuss below the process of finding values at the domain
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end itself, but to impose values in the ghost cells some extrapolation utilising the
domain endpoint values and interior values is required. Zeroth-order extrapolation is
inconsistent with the first-order reconstruction in the cells, and first-order extrapolation
can produce negative depths. To resolve this issue we consider the ghost cells to have
size ε1x (where 1x is the cell size in the interior) and limit ε→ 0. Under this limit
all consistent extrapolation procedures converge to enforce the values of h and uh at
the domain end across all ghost cells.

To deduce how the domain endpoint values should be evolved we consider the
general form of a homogeneous system of m hyperbolic partial differential equations
of a variable Q(x, t) ∈Rm

∂Q
∂t
+ A(Q, x, t)

∂Q
∂x
=Ψ (Q, x, t). (2.11)

For the purposes of imposing boundary conditions alone, (2.11) is adjusted by
including a small amount of diffusion 0 < D� 1, and then multiplying by the pth
left eigenvector of A(Q, x, t), lp(Q, x, t) corresponding to eigenvalue λp(Q, x, t), which
results in the characteristic form

lp ∂Q
∂t
+ λplp ∂Q

∂x
=Dlp ∂

2Q
∂x2
+ lpΨ . (2.12)

Diffusion is required for cases when a weak solution to the system contains a
discontinuity between the bulk and the boundary, that is when the value at the
boundary is not the limit of the interior values. Such a situation is not permitted
in the vanishing viscosity solution, and to ensure this solution is found we include
a small amount of diffusion. The boundary conditions are of the form f (Q, t) = 0,
where the function f :Rm×R→Rk, and specify the values advected by characteristics
entering the domain. We focus our discussion on the right-hand end of the domain,
that is we are at x = xe such that the domain is x < xe (and in this study xe = 1).
This means that we must enforce (2.12) for those p such that λp > 0 as well as the
boundary conditions to determine Qe(t) = Q(xe, t). We discretise the x derivatives
using finite differences over the grid with cell size, 1x, and take D = maxp |λp|1x
which is of the same form as the effective diffusion from the method in the bulk and
is stable under the same CFL condition. This yields a system of differential algebraic
equations (DAE) (see Ascher & Petzold 1998; Kunkel & Mehrmann 2006) of the
form

L(Qe, t)
dQe

dt
=C(Qe, t), (2.13a)

f (Qe, t)= 0, (2.13b)

where the rows of L are the m − k left eigenvectors with λp > 0, and we treat the
values of the internal cells as known functions of t so that their values do not appear
in the arguments of C. For the shallow-water equations and boundary conditions
given by (2.1a), (2.1b), (2.2) and (2.3), we note that m = 2 and k = 1; thus at
both boundaries, the rear wall (x = 0) and the barrier (x = 1), there is one outward
propagating characteristic and one boundary condition to be applied. We denote the
discrete times by tn, the values at these discrete times Qn

e =Qe(tn), and the difference
over a time step of size 1t by 1Qn

e = Qn+1
e − Qn

e . To be consistent with the time
stepping of the ordinary differential equation (ODE) portion of the DAE (2.13a) is
discretised using Euler’s method, and for the algebraic portion (2.13b) we enforce
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f = 0 at time tn+1 using a single step of the Newton–Raphson method with initial
guess of the difference 1Qn,0

e . This results in the explicit scheme[
L(Qn

e, tn)

F(Qn
e +1Qn,0

e , tn+1)

]
1Qn

e =
[

C(Qn
e, tn)1t

F(Qn
e +1Qn,0

e , tn+1)1Qn,0
e − f (Qn

e +1Qn,0
e , tn+1)

]
,

(2.14)
where F = ∂f /∂Q and is non-vanishing, which is similar to the poststabilisation
method with one iteration of projection (Ascher & Petzold 1998, § 10.2).

As we are solving an ODE on a manifold (2.13) using Euler’s method, we can
show the problem under consideration has sufficient smoothness conditions so that the
method has a truncation error of O(1t). Similarly, if 1Qe

n
is the limit of iterating

(2.14) with the output 1Qn being taken as the next input 1Qn,0
e (the implicit version

of (2.14)), then we can show that the Newton–Raphson portion of our method will
provide f (Qn+1, tn+1) = O(‖1Qe

n − 1Qn,0
e ‖2) and then if ‖1Qe

n − 1Qn,0
e ‖ = O(1t),

we deduce that the convergence to the manifold is second order. Finally we can use
the fact that, as time evolves, we are repeatedly performing Newton–Raphson steps on
very similar problems to improve the scheme further. By taking our guess to be the
value of a recent time step, for example 1Qn,0

e =1Qn−1
e , then f (Qn+1, tn+1)=O(1t4)

and the scheme provides fourth order convergence to the manifold.
To use this method with the Runge–Kutta time steps from Shu & Osher (1988)

some modifications must be made. These time steps are composed of multiple Euler
time steps, which we shall denote by the operator E, and the intermediate results by
Q(i)

e where Q(0)
e =Qn

e . The intermediate results are from computations of the form

Q(i+1)
e = ηiQ(0)

e + (1− ηi)E(Q(i)
e ), (2.15)

where 06 ηi6 1. Based on the results presented in Kunkel & Mehrmann (2006, § 5.2)
we argue that it is appropriate to approximately enforce f (Q(i+1)

e , t(i+1))= 0, where t(i)
is the time at which Q(i)

e is an approximation, rather than f (E(Q(i)
e ), t(i)+1t)= 0 as in

(2.13). We therefore use a modified version of our scheme suitable for the application
of (2.15), specifically[

L(Q(i)
e , t(i))

(1− ηi)F(Q(i)?
e , t(i+1))

]
1Q(i)

e =
[

C(Q(i)
e , t(i))1t

(1− ηi)F(Q(i)?
e , t(i+1))1Q(i),0

e − f (Q(i)?
e , t(i+1))

]
,

(2.16a)
where

Q(i)?
e = ηiQ(0)

e + (1− ηi)(Q(i)
e +1Q(i),0

e ), (2.16b)
and E(Q(i)

e )=Q(i)
e +1Q(i). The initial guesses are taken as 1Q(i),0

e =1Q(0)
e , except for

when i= 0 in which case 1Q(0),0
e =1Qn−1

e .
The numerical scheme has been validated against a variety of known solutions,

but for the purposes of this paper we simply observe the excellent correspondence
between the simulations and analytic solutions at early times (see §§ 3.2 and 3.3),
and the convergence to the asymptotic wave structure at late times, for the particular
problem considered here.

3. Draining over a weir
In this section we analyse the unsteady drainage of a reservoir from lock-release

initial conditions over a weir of dimensionless height D and width w. We use the
method of characteristics and hodograph techniques to construct the motion during the
initial phases (§§ 3.1 and 3.2), while the motion at late times is found asymptotically
(§ 3.3). We also present results from the direct numerical integration of the governing
equations.
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FIGURE 2. The characteristic plane for the unsteady draining of fluid from a partially
confined reservoir with barrier height, D=0.05 and width w=1. In this figure we plot and
label the uniform, simple and complex wave regions following the initiation of the flow.
We also plot the characteristics bounding the wave regions; the suffices a and b denote
the α- and β-characteristics and are plotted with dashed and solid lines, respectively.
(These characteristic curves are defined in § 3.) Additionally we label key points in the
characteristic plane, which occur at the boundaries of the wave regions.

3.1. Initial motion: t6 1
The drainage condition (2.3) yields Froude numbers in the range 06Fr< 1 (provided
D> 0) and so at that boundary (x= 1) there is one outflowing characteristic direction
and one inflowing. This means that it is straightforward to construct the initial solution
(valid for t 6 1) since the characteristic variable α is determined by the initial
conditions. Thus throughout the portion of the domain associated with the initial
conditions, we find that α = 2 and within this portion there is a rarefaction centred
on x= 1, which we term simple wave region S1. Within S1, −26 β 6 β∗, where β∗
is a function of D and w and is the maximum value of β in this region, determined
from (2.3) with α = 2. (Since 0 6 Fr < 1, we can show that −2 6 β∗ < −2/3.) The
solution for the velocity and height fields within S1 are given by

u= 2
3

(
1+ (x− 1)

t

)
and h= 1

9

(
2− (x− 1)

t

)2

, (3.1a,b)

for xb1≡ 1− t< x< xb2≡ 1+ (2+ 3β∗)t/4 (see figure 2). Upstream of this rarefaction,
the fluid remains undisturbed from its initial state with h= 1 and u= 0; we denoted
this uniform region as U1. Downstream of the rarefaction, there is a uniform region
attached to the right boundary (x=1), within which u=1+β∗/2 and h= (2−β∗)2/16;
we denote this as region U2. Example profiles of height and velocity are plotted in
figure 5. We observe that the fluid slumps gravitationally, progressively mobilising
fluid within the reservoir and that its motion is ‘choked’ by draining at the outflow.
These solutions for the flow are valid until the rearward propagating characteristic
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FIGURE 3. The hodograph plane for the unsteady draining of fluid from a partially
confined reservoir, with barrier height, D= 0.05 and w= 1. In this figure, the solid line
corresponds to the free-draining boundary at x= 1 and the dotted line to the impermeable
boundary at x= 0. Uniform regions are depicted by points in the hodograph planes and
are labelled Ui (i = 1 − 4), while simple wave regions correspond to dashed straight
line segments aligned with the axes and are labelled Si (i = 1 − 3). Finally, complex
wave regions are labelled Ci (i= 1− 3). This figure shows the wave pattern that emerges
following flow initiation and the first three reflections from the end wall and free-draining
boundary. This pattern of successive reflections will continue indefinitely, approaching the
end state in which the fluid is quiescent and of depth equal to the barrier height; this is
where the two boundary curves intersect at α =−β = 2

√
D.

reaches the back wall of the reservoir, which occurs at t = 1. Thereafter there are
reflections from this wall and the motion becomes more complicated.

3.2. Motion for t> 1
When t > 1, the structure of the solution for the height and velocity fields is
altered due to reflection first from the back wall of the reservoir and then from
the free-draining boundary at the front. It is useful to treat this dynamics in the
characteristic plane (figure 2) and in the hodograph plane (figure 3), both of which
reveal the successive wave reflections. As described above, the initial phase of the
motion involves a simple wave region, S1, sandwiched between two uniform regions,
U1 and U2, which are attached to the boundaries of the reservoir. In the hodograph
plane, a simple wave region corresponds to a line segment parallel to the coordinate
axes and S1 is given by α= 2 and −26β 6β∗. Uniform regions correspond to points
in the hodograph plane; U1 is given by (α, β)= (2,−2) and U2 by (α, β)= (2, β∗).
Complex wave regions correspond to connected domains in the hodograph plane
(see figure 3).

The reflection from the back wall generates a complex wave region C1, which
is bounded by the characteristic curve on which α = 2. We denote that curve
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parametrically by xa1(β) and ta1(β) and it is straightforward to show that

ta1 = 8
(2− β)3/2 and xa1 = 1+ 2(2+ 3β)

(2− β)3/2 . (3.2a,b)

The region, C1, is also bounded by the characteristic on which β = β∗, denoted by
xb2(t), which occurs at the leading edge of the rarefaction fan in the simple wave
region, S1 (see figure 2). It is given from (3.1) by xb2 = 1+ (2+ 3β∗)t/4. The curve
xa1 intersects xb2 at the point P2 with coordinates, (x, t) = (1 + 2(2 + 3β∗)/(2 −
β∗)3/2, 8/(2 − β∗)3/2). Thereafter xa1 follows a straight line that bounds the uniform
region, U2 until reaching the outflow at x = 1. In this portion the characteristics are
given by

x− xa1(β∗)
t− ta1(β∗)

= 6+ β∗
4

, (3.3)

and the point, P3, at the outflow is (1, 16/[(6 + β∗)(2 − β∗)1/2]). The complex
wave region, C1, may be calculated using the Riemann function, integrated around a
trajectory in the hodograph plane, as demonstrated by Hogg (2006); it is compactly
given by

t(α, β)= B(2,−2; α, β), (3.4)

and the solution for x is given by integrating along α-characteristics from the back
wall, using (2.6a) to show

x(α, β)= (3α + β)
4

t(α, β)− α
2

t(α,−α)− 1
4

∫ β

−α
t(α, b) db. (3.5)

In the characteristic plane, the continuation of the β = β∗ characteristic beyond P2
bounds the region C1 (see figure 2). It meets the back wall at P4= (0, tb2(−β∗)), where

tb2(α)= B(2,−2; α,−β∗). (3.6)

The β-characteristics starting from the uniform region, U2 generate the simple wave
region, S2, within which −β∗ 6 α 6 2 (see figures 2 and 3). The trajectory of the
characteristic from point P3 on which β = β∗ is denoted by (xb3, tb3) and satisfies

∂xb3

∂α
= (α + 3β∗)

4
∂tb3

∂α
. (3.7)

However on α-characteristics within S2, we also find that

x− xb2

t− tb2
= 3α + β∗

4
. (3.8)

Thus we may establish

tb3 − tb2 = −8(2+ 3β∗)
(6+ β∗)(α − β∗)3/2 , (3.9)

and then xb3 − xb2 may be deduced from (3.8). This β-characteristic, (xb3, tb3), forms
one of the boundaries to the complex wave region at the front, C2, and to the uniform
region, U3, adjacent to the back wall. In particular the point P5 is determined by the
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Unsteady draining of reservoirs over weirs and through constrictions 882 A9-13

first location along this characteristic on which the velocity vanishes, which is given
by α =−β =−β∗. Beyond P5, the β-characteristic is a straight line given by

x− xb3(−β∗)
t− tb3(−β∗) =−

β∗
2
. (3.10)

This straight segment intersects the back wall at point P7 = (0, tb3(−β∗) + 2xb3
(−β∗)/β∗).

Constructing the solution within the complex wave region, C2 entails the use of the
Riemann function (2.7) and the conversion of the boundary conditions into hodograph
variables. In particular the free-draining condition, given by (2.3), may be written as

dx
dα
= 0 on β = βs(α), (3.11)

We note that given a barrier height, D, that βs(α) determines a curve in the
hodograph plane such that βs(2)= β∗ and that β(2

√
D)=−2

√
D, the latter condition

corresponding to no flow when the fluid depth matches the height of the barrier. (This
function, βs(α), is plotted as a solid curve in figure 3 for D= 0.05.) From (2.3), we
also find that

dβs

dα
= (Fr4/3 − 1/w2/3)(Fr− 2)− 2DFr1/3/h
(Fr4/3 − 1/w2/3)(Fr+ 2)− 2DFr1/3/h

, (3.12)

and this implies that dβs/dα = −1 when Fr = 0. Thus the curve βs approaches its
end point at βs = −2

√
D tangentially to the line β = −α (see figure 3). (The case

without a barrier is different: when D= 0, the outflow Froude number, Fr, does not
vary with the flow depth, h and so the boundary curve, βs, is a straight line of gradient
dβs/dα= (Fr− 2)/(Fr+ 2).) Using the characteristic equations (2.6a) and (2.6b), we
can show that the boundary condition (3.11) is given by

2(α + βs)

(
∂t
∂α
+ dβs

dα
∂t
∂β

)
+ (βs − α)

(
∂t
∂α
− dβs

dα
∂t
∂β

)
= 0 on β = βs(α). (3.13)

The other perimeter data in the hodograph plane are supplied by t = tb3(α) along
β = β∗. We then integrate around the closed curve OQRT , as depicted in figure 4.
The coordinates of these points in the hodograph plane are O, (2, β∗); Q, (α, β∗);
R, (α, βs); and T , (αs, βs). The curves OQ, QR and RT correspond to straight line
segments in the hodograph plane aligned with one of the coordinate axes, and the
curve RT corresponds to the free-draining boundary condition (α = αs and β = βs).
Integration of (2.8) around OQRT yields

t(α, βs)= B(α, β∗; α, βs)tb3(α)+ B(2, β∗; α, βs)tb3(2)
(

2+ β∗
2− β∗ −

1
2

)
+B(αs, βs; α, βs)t(αs, βs)

(
1
2
− (αs + βs)

αs − βs

)
−
∫ α

2

(
∂B
∂a
− 3B

2(a− β∗)
)

tb3(a) da

−
∫ 2

αs

t(as, bs)

2(as − bs)

(
(3as + bs)

(
∂B
∂a
− B

as − bs

)
+ (as + 3bs)

dbs

da

(
∂B
∂b
+ B

as − bs

))
da. (3.14)
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FIGURE 4. Sections of the hodograph plane showing: (a) the closed curve OQRT , which
is used to construct the solution in the complex wave region, C2; and (b) the rectangle
VWXY , which is used to construct the solution in C3.

In the first integral of (3.14), the Riemann function and its derivative are evaluated
at b = β∗, whereas in the final integral of (3.14), the Riemann function and its
derivatives are evaluated along the curve TO given parametrically by a = as and
b = bs. Before we can use this expression to evaluate t at a general position within
the complex wave region, C2, we must first evaluate the time field along the boundary
curve TO (ts(α)≡ t(α, βs(α))). Setting α=αs in (3.14), we derive an integral equation
for ts of the form

ts(α)= f1(α)+
∫ α

2
f2(a, α)ts(a) da, (3.15)

where f1 and f2 are functions determined from (3.14). This is a Volterra integral
equation of the second kind and is readily solved by iteration; we find numerical
convergence to a relative tolerance of 10−12 within 10 iterates. Example solutions are
plotted in figures 5 and 6.

Given ts(α), the dependent variables can be evaluated immediately by numerical
quadrature, using (3.14) for t(α, β) and integrating along an α-characteristic using
(2.6a) to determine x(α, β), with condition x = xb3. This enables the boundary to
C2 to be computed as the α-characteristic on which α =−β∗, starting from P5. The
α-characteristic reaches the free-draining boundary at P6 = (1, ts(−β∗)).

Finally we note that we also construct the characteristic on which α = −β∗
emanating from the point P7 at the back wall. This curve denoted parametrically by
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FIGURE 5. The height, h(x, t) and velocity, u(x, t), as functions of position at various
instances of time, t= 1, 2, 3, 4 and 5 (labelled (i)–(v), respectively) for D= 0.05 and w= 1.
The solid line depicts the solution calculated using the quasi-analytical hodograph methods,
while the dot-dashed line depicts the solution from the direct numerical integration of the
shallow-water equations (2.1a)–(2.1b). We note that there is negligible difference between
the curves, which overlie each other; the largest differences occur close to positions in
the profiles where the solutions have discontinuous gradient. Such features are captured
exactly by the analytical approach, whereas the numerical results are slightly smoothed.
The dashed line indicates the height of the barrier (D= 0.05).

(xa3, ta3) is determined from the characteristic equation (2.6a), which here yields

∂xa3

∂β
= (−3β∗ + β)

4
∂ta3

∂β
. (3.16)
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FIGURE 6. The height at the free-draining boundary, h(1, t), as a function of time
for (a) various barrier heights, D, and w = 1; and (b) various constrictions, w, and
D=0.1. The solid lines correspond to results from integration in the hodograph plane and
the dot-dashed lines correspond to numerical integration of the shallow water equations
(2.1a)–(2.1b). The quasi-analytical hodograph calculations were performed until the end
of region U4, but the numerical computations were continued over much longer times.
We note the very close agreement between the two approaches, with the only very slight
differences occurring at the junctions of the intervals during which the height is uniform
or decreasing.

Also in the simple wave region, S3, in which α =−β∗, we have that

x− xa2

t− ta2
= −β∗ + 3β

4
. (3.17)
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Hence we deduce that

ta3 − ta2 =− 2
β∗

xb3(−β∗)
( −2β∗
−β∗ − β

)3/2

, (3.18)

and then xa3 follows from (3.17). The uniform region adjacent to the free-draining
boundary corresponds to (α, β) = (−β∗, βm), where βm = βs(−β∗). Then we may
determine P8 as (xa3(βm), ta3(βm)) and P9 as (1, ta3(βm)+ 4(1− xa3(βm))/(βm − 3β∗)).

The construction of the solution may be extended to the complex wave region C3
using the boundary data along the α- characteristic on which α=−β∗; these data are
xa3(β) and t= ta3(β), and are derived above. In addition we enforce the impermeability
of the back wall (2.2) by imposing symmetry on the t-variable, so that t(α, β) =
t(−β,−α). We then integrate around a rectangle in the hodograph plane, VWXY , with
edges aligned with the coordinate axes (see figure 4). The vertices of the rectangle are
at V= (−β∗, β∗), W= (α, β∗), X= (α, β) and Y= (−β∗, β). The characteristic data t=
ta3(β) provide the solution on the boundary segment YV , while the imposed symmetry
determines the solution on the boundary segment VW, t(α, β∗)= t(−β∗,−α)= ta3(−α).
We may then integrate (2.8) around VWXY to yield

t(α, β) = B(α, β∗; α, β)ta3(−α)+ B(−β3, β; α, β)ta3(β)

−B(−β∗, β∗; α, β)ta3(β∗)− I1 − I2, (3.19)

where the integrals I1 and I2 are given by

I1 =
∫ α

−β∗

(
− 3B

2(a− β∗) +
∂B
∂a

)
ta3(−a) da, (3.20)

I2 =
∫ β∗

β

(
− 3B

2(−β∗ − b)
− ∂B
∂b

)
ta3(b) db. (3.21)

In the integrand of I1, b = β∗, whereas in the integrand of I2, a = −β∗. This
construction is essentially the same as was used to derive (3.4) (Hogg 2006). The
evaluation of x(α, β) follows immediately by integrating along α-characteristics (2.6a)
and using the boundary condition that x(α,−α)= 0.

The description of the solution presented in the previous paragraphs completes the
computation of the flow fields for the first three reflections; subsequent reflections
could in principle be computed using an identical formulation to find the complex
wave regions next to the free-draining boundary and then to calculate the solutions
close to the back wall. In the hodograph plane we can see that this sequence of
regions forms an infinite ‘staircase’ towards the final state in which the fluid is
quiescent of a flow depth equal to the height of the barrier. Notably, each reflection
will generate uniform regions adjacent to the boundaries.

We illustrate the solution by plotting the solutions for the height and velocity fields
as function of position at various fixed times for D= 0.05 (see figure 5). The profiles,
plotted at times t= 1, 2, 3, 4 and 5, draw from the uniform, simple and complex wave
regions illustrated in figure 2. We note that they feature the uniform regions adjacent
to the boundaries and that they illustrate the wave reflections along the reservoir. For
example, we see that the flow oscillates so that at times it is thickest close to the
end wall, while at other times it is thickest close to the free-draining boundary. We
also plot the height at the draining boundary, h(1, t), as a function of time for various
barrier heights and a constant width, w= 1, (figure 6a) and for various constrictions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f B

ri
st

ol
 L

ib
ra

ry
, o

n 
16

 Ja
n 

20
20

 a
t 1

7:
16

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.808
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


882 A9-18 E. W. G. Skevington and A. J. Hogg

and a constant barrier height, D= 0.1 (figure 6b). We note that this height at the end
of the channel has intervals within which it is constant, followed by periods within
which it declines; this is in accord with the description that we have developed above.
The successive wave reflections lead to uniform regions adjacent to the boundaries
within which the height and velocity are constant; in figure 6, we observe the height
variation within regions, U1, C2 and U4 (see figure 2) and we have calculated these
using the techniques described above. In principle we could extend this further, but in
this study we access later times numerically and through using a different analytical
approach (§ 3.3).

3.3. Late times: numerical results and asymptotic analysis
From the structure of the hodograph solution we anticipate that at late times we will
continue to see a ‘staircase’ of uniform and complex wave regions. This is consistent
with our numerical simulations, computed up to time t=100, and presented in figure 7.
In this figure we plot the height excess over the barrier and the velocity incident on
the barrier as functions of time for a selection of barrier heights. (We have introduced
a time offset, t0 and have also plotted the asymptotic trends, which are introduced and
deduced below.) It is evident from these plots that the solution tends rapidly towards
a power law, around which there are strong, but decaying, oscillations, whose period
and shape are functions of the barrier height, D.

In what follows we investigate the asymptotic form of the solutions for the height
and velocity fields trends at late times after the flow initiation. For this analysis we
utilise a multi-scale asymptotic expansion in time to capture the progressive unsteady
draining of the reservoir and the more rapid oscillations, the amplitude of which decay
temporally and the phase speed of which approach a constant value dependent upon
the barrier height. This analysis is based upon embedding a set of time scales into the
dependent variables and then examining their evolution at relatively late times. We first
construct these appropriate time scales, then present the resulting expansion with the
algebraic details confined to appendix B. Finally we compare the asymptotic forms to
the numerical simulations.

We investigate the solution at late times, where t=O(1/ε) and ε is a small, arbitrary
ordering parameter (0<ε�1). In the end, the solutions cannot depend upon ε, but its
introduction is useful in organising the magnitude of various terms. We also introduce
the following set of time scales, T̂n(ε, t) (n= 0, 1, 2, . . .), such that at the long time
scale of interest T̂n = O(εn−1). Provided that all variables other than t and T̂n are
independent of ε we can always express the time scales as

T̂n(ε, t)= εn−1ωn(εt), (3.22)

where ωn are functions of order unity when t = O(1/ε). For the purposes of
constructing an asymptotic expansion the time scale T̂1 = ω1(εt) is equivalent to
T̃1 = εt. Therefore, without loss of generality, we take

T̂0 = ε−1ω0(T1), T̂1 = εt, T̂n = εn−1ωn(T1), n ∈ {2, 3, . . .}, (3.23a−c)

where ω′n 6= 0, n ∈ {0, 2, 3, . . .}.
For most problems multi-scale asymptotics fails to produce a closed system of

equations for high-order corrections involving high-order time scales, as mentioned in
Bender & Orszag (1999, § 11.2). To understand why this is, we consider a problem
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FIGURE 7. (a) The elevation of the fluid layer above the barrier relative to the height
of the barrier, h(1, t)/D − 1; and (b) and the velocity at the outflow u(1, t)/

√
D as

functions of time for w= 1 and D= 0.9, 0.7, 0.5, 0.3, 0.1 (denoted (i)–(v), respectively).
The solid lines are from numerical integration of the governing equations and reveal
strong oscillatory behaviour superimposed upon progressive decay of each variable. The
dashed-dot lines are the single-scale asymptotic solution from (3.26a,b).

in m time scales which, at each order, generates r new arbitrary functions dependent
on m − 1 time scales (the dependence on one of the time scales being set at that
order), along with s solvability conditions providing restrictions on the functions
introduced at lower order. Considering an expansion including N terms, and ignoring
contributions independent of N, this means there is a total of r(m − 1)N functional
dependencies and sN solvability conditions, resulting in [r(m− 1)− s]N undetermined
dependencies. To stress how pathologically bad this lack of closure is, we observe
that if a full set of O(N) time scales is used then we will have O(N2) undetermined
dependencies. If we are to have a closed expansion, introducing the same number of
dependencies and conditions as we increase from order N to N + 1, we must have
m= 1+ s/r.
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For many problems, such as the one considered here, s= a and thus we require two
time scales. We anticipate that, as with many of the problems discussed in Kevorkian
& Cole (1996), the time scale T̂0 is the time scale in which oscillations and waves
occur, T̂1 governs the amplitude of these waves, and higher-order time scales act as a
phase shift to T̂0 in the form of a strained coordinate (Hinch 1992, § 7.1). This results
in the two-scale ansatz: that all time dependencies can be expressed by the time scales

T0 = k0T̂0 + k2T̂2 + k3T̂3 + · · · = ε−1ω0(T1)+ εω2(T1)+ ε2ω3(T1)+ · · · , (3.24a)
T1 = T̂1 = εt, (3.24b)

where the coefficients for the linear combination kn have been absorbed into ωn.
Our asymptotic analysis then proceeds by assuming that the height and velocity

fields are dependent on both time scales T0 and T1 as well as the spatial variable x.
We substitute series expansion of the form (B 9b) into the governing equations
(2.1a)–(2.1b) and deduce expressions that satisfy the boundary conditions and remain
bounded as time evolves. These latter ‘secular’ conditions are key to determining the
functions, ωn, and the decaying amplitudes of the wave-like behaviour.

It is convenient to write the solutions for the dependent fields as the sum of two
contributions,

h= ha + hw and u= ua + uw, (3.25a,b)

where ha and ua are asymptotic components of the solutions that depend on T1 (and
will be henceforth termed the ‘single time-scale asymptotics’) and hw and uw are the
wave-like components. From appendix B, we find that correct to O(1/(

√
D(t− t0))

5)

ha(x, t)
D
= 1+ 27

2w2(
√

D(t− t0))2
+ 27(3x2 + 5)

2w2(
√

D(t− t0))4
, (3.26a)

ua(x, t)√
D
= 27x

w2(
√

D(t− t0))3
, (3.26b)

hw(x, t)
D

= 1

(
√

D(t− t0))3
[F(η)+ F(ξ)]

+ 1

(
√

D(t− t0))4

[
w2

9
(F(η)2 + F(ξ)2)+ 3x(F(η)− F(ξ))

]
, (3.26c)

uw(x, t)√
D
= 1

(
√

D(t− t0))3
[F(η)− F(ξ)]

+ 1

(
√

D(t− t0))4

[
w2

9
(F(η)2 − F(ξ)2)+ 3x(F(η)+ F(ξ))

]
, (3.26d)

where

ξ(x, t)=√Dt− 27

4w2
√

D(t− t0)
+ x, and η(x, t)=√Dt− 27

4w2
√

D(t− t0)
− x.

(3.27a,b)
The variable t0 denotes a temporal offset that we are free to choose. The arbitrary
function F is related to the initial conditions that gave rise to the unsteady draining
flow. In terms of the variables in the appendix B, it is given by F(y) = DF̂3(y −
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√

Dφ), and is thus of period 2. The function is affected by the choice of t0 via the
transformation

t0 7→ t0 + k, leads to F 7→ F+ 27k

2
√

Dw2
. (3.28)

Thus we may choose F to have zero integral over each period by choosing t0, which
means that the wave component oscillates around the single-scale component. From
(3.26) we see that D only affects the scales of h, u and t, which is equivalent to
choosing to make the variables dimensionless with respect to HD rather than H. The
constant small parameter ε used to compute the solution at the time t must have
magnitude approximately 1/t for εt to be order unity. We define the time dependent
small parameter εt to mean the value of ε which rescales t to exactly unity, taking
into account appropriate scales and offset, that is

εt = 1√
D(t− t0)

. (3.29)

We compare these asymptotic results with the numerical simulations as follows: we
suppose that we know t0 as well as the dependent variables at some comparison time
t = tc, given by h(x, tc), u(x, tc), and we use these fields to determine the function
F over a single period. The differences between the numerically computed fields and
the single-scale asymptotic components, hwn = h(x, tc)− ha(x, tc) and uwn = u(x, tc)−
ua(x, tc) are added and subtracted to give

hwn(x, tc)

2D
+ uwn(x, tc)

2
√

D
= F(ηc)

(
√

D(tc − t0))3

+ 1

(
√

D(tc − t0))4

[
w2F(ηc)

2

9
+ 3xF(ηc)

]
, (3.30a)

hwn(x, tc)

2D
− uwn(x, tc)

2
√

D
= F(ξc)

(
√

D(tc − t0))3

+ 1

(
√

D(tc − t0))4

[
w2F(ξc)

2

9
− 3xF(ξc)

]
, (3.30b)

where ξc(x)= ξ(x, tc), ηc(x)= η(x, tc). These expressions apply for 06 x6 1. We may
write (3.30a) and (3.30b) in a compact way by introducing the period 2 function S(y),
defined by

S(y)= (√D(tc − t0))
3

[
hwn(|χ |, tc)

2D
− sgn(χ)

uwn(|χ |, tc)

2
√

D

]
, (3.31)

where y=√Dtc − 27/(4w2
√

D(tc − t0))+ χ and −1< χ < 1. Therefore the function
F satisfies the following quadratic equation,

F2(y)− 2BF(y)−C= 0, (3.32)

where

B= 27χ − 9
√

D(tc − t0)

2w2
, and C= 9

√
D(tc − t0)

w2
S(y). (3.33a,b)
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Barrier height Offset, t0 Offset, t0 εt εt Relative difference
D (tc = 0) (tc = 100) (tc = 0) (tc = 100) in t0 (%)

0.1 −6.3243 −6.8821 0.500 0.030 8.11
0.3 −5.4772 −5.7104 0.333 0.017 4.08
0.5 −5.8963 −5.9839 0.240 0.013 1.46
0.7 −7.1605 −7.1895 0.167 0.011 0.40
0.9 −11.8471 −11.8498 0.089 0.009 0.02

TABLE 1. The temporal offset, t0, for various values of the barrier height D with w= 1,
computed using (3.35) enforced at time tc = 0 and tc = 100. (For the latter, the dependent
variables, h and u, were evaluated from the numerical simulations.) The corresponding
values of εt are also given, along with the relative difference in the two computed values
of t0.

We expect that F∼ S for tc� t0, which selects the solution to (3.32) given by

F= B+
√

B2 +C. (3.34)

Finally, we evaluate the temporal offset, t0, by imposing∫ 2

0
F(y) dy= 0. (3.35)

In table 1 we present the evaluation of the temporal offset, t0, for various barrier
heights, D, and uniform width, w = 1, using either the initial conditions (tc = 0) or
the numerically determined profiles at tc = 100. We find that the two values of t0 for
each barrier height are broadly similar; the relative difference is less than 10 % and
systematically decreases with D. The computed value of εt given in table 1 according
to (3.29) provides an indication of the magnitude of the difference between the
numerically computed profiles and their asymptotic forms. Indeed we find that even
using the initial conditions (tc = 0) to determine t0 appears to provide an accurate
means of determining the asymptotic form for the larger barrier heights (D& 0.5).

In figure 7 we have plotted the single time-scale asymptotics, ha and ua (see
(3.26a)–(3.26b)) as functions of time at the end of the domain (x = 1). For these
plots we evaluated the temporal offset using the initial data (tc= 0). We observe that
these asymptotic forms accurately capture the numerical computations over relatively
long computational times, and thus at late times for all barrier heights the outflow
velocity decays with the inverse cube of time, whereas the excess height decays as
the inverse square of time. We further note that there are oscillations of diminishing
amplitude about the progressive decay of the height and velocity fields, which in
these figures correspond to periods during which the outflow velocity and height
remain constant; these oscillations are captured in the wave-like behaviour, hw and
uw and are discussed below.

At late times when the depth of the fluid at the outflow is close to the barrier height
(h − D� 1), we find that the velocity field satisfies u ∼ w(h − D)3/2/D. Thus the
flow speed is weakening and eventually viscous stresses, which are not included in
the dynamical model, may become non-negligible. We show in appendix A how to
assess their magnitude within the shallow flow over the crest of the weir and for the
typical parameter values at environmental scales, viscous effects appear negligible until
h−D∼ 10−3.
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101 102

√
D(t - t0)

100

10-2

10-4

u(
1,

 t)
h(

1,
 t)

/D
3/

2

FIGURE 8. The rescaled volume flux of fluid leaving the domain at the outflow,
u(1, t)h(1, t)/D3/2, as a function of rescaled time

√
D(t − t0) with the temporal offset,

t0, calculated from the initial profile, for D = 0.1, 0.3, 0.5, 0.7 and 0.9 (solid lines) and
w= 1. The asymptotic form, ua(1, t)ha(1, t)/D3/2, is plotted with a dot-dashed line. In this
figure, the curves from the different numerical computations overlay at late times and it
is hard to distinguish them, indicating a universal behaviour that is accurately represented
by the asymptotic form.

The rescaled volume flux at the outflow boundary, u(1, t)h(1, t)/D3/2 is plotted in
figure 8 as a function of rescaled time

√
D(t − t0) for various values of the barrier

height, D. In this plot we have calculated the offset time, t0 from the initial profile
(i.e. tc = 0), according to the procedure described above; values of t0 are given as
the second column of table 1. We note that for

√
D(t− t0)& 4, the evolution follows

a universal behaviour around which each of the separate cases oscillate due to the
successive wave reflections between the back wall and the outflow. Furthermore we
have also plotted the analytically calculated asymptotic form, ua(1, t)ha(1, t)/D3/2,
where ha and ua are given by (3.26a) and (3.26b), respectively. We observe that this
expression accurately matches the computed flux.

The shape of the waveform of the oscillations can also be determined asymptotically
and may in some cases be deduced from the initial conditions. When tc= 0, the fluid
is stationary (u(x, tc)= 0) and the reservoir is of unit depth (h(x, tc)= 1). In this case
using the transform (3.28) and enforcing (3.35) we arrive at

F(y)= 27χ
2w2
≡ 27

2w2

(
y−√Dtc + 27

4w2
√

D(tc − t0)

)
(3.36)

for −1<χ < 1. This function, constructed to be periodic, contains a discontinuity at
χ = ±1. This is exactly the same as what would be produced if we had truncated
our asymptotic expansion at a lower order and included terms up to (t − t0)

−3. To
understand this observation, we note that the rarefaction fan which smooths out the
mismatch between the initial conditions and boundary condition at early times only
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-10
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5
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-5

-10

tc

tc

tc = 0 tc = 10.00 tc = 20.00
tc = 5.00 tc = 15.00 tc = 25.00

tc = 100.00 tc = 0 tc = 4.47 tc = 8.94
tc = 2.24 tc = 6.71 tc = 11.18

tc = 100.00

tc = 0 tc = 3.78 tc = 7.56
tc = 1.89 tc = 5.67 tc = 9.45

tc = 100.00 tc = 0 tc = 3.33 tc = 6.67
tc = 1.67 tc = 5.00 tc = 8.33

tc = 100.00

FIGURE 9. The waveform of the oscillation at long times, F, for barrier of heights
(a) D= 0.1; (b) 0.5; (c) 0.7; and (d) 0.9 and for w= 1. In each figure, the waveform is
extracted from the numerical simulations at seven comparison times tc. For each case the
waveforms converge to a single profile when tc becomes sufficiently large, in accord with
the asymptotic analysis. In (d) the waveform at late times is quite close to the waveform
deduced from initial conditions (tc= 0, dot-dashed line), but for (a–c) there are differences
due to appreciable nonlinear interactions during the initial phases of the motion.

exists because of the nonlinearity of the shallow water equations. A linear system
of hyperbolic partial differential equations would simply advect this mismatch as a
discontinuity. Thus, we should only expect the asymptotic solution to capture this
smoothing behaviour if we expand to sufficiently high order to capture the nonlinear
interaction of the waves, and to calculate (3.26) we only expanded to capture the
nonlinear effects of the boundary conditions and single-scale component, not the
wave component. We therefore find that the asymptotic solution simply advects the
initial mismatch as a discontinuity (which is what we see in figure 9). This failure to
capture the nonlinear self-interaction of the waves means we fail to capture the correct
wave shape over the first few periods. We explore this effect by making comparisons
between the simulation and asymptotic solution at a number of early times to find the
time at which the nonlinear effects become small and consequentially the simulation
results are accurately represented by the asymptotic expressions.

Figure 9 shows the waveform F(y) as computed from the numerical simulations
for a selection of barrier heights, D, and comparison times, tc with w= 1. (The curve
at tc = 0 is given by (3.36) in each case.) For all cases, as time passes, the wave
seen in the simulation converges on a time-independent shape, which is in accord
with the asymptotic analysis. Indeed this confirms that the amplitude of the wave-like
part of the dependent fields, hw and uw, decays as (t− t0)

−3 and that the phase speed
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approaches
√

D (see (3.26c) and (3.26d)). In fact we observe for
√

D(tc − t0) & 10
there is very little change in the computed shape of F, indicating that by that stage
the numerical results are accurately approximated by the asymptotic form. We now
discuss the figures in order of increasing εt (see table 1), i.e. most accurate to least
accurate.

Figure 9(d) shows that for relatively large values of D, the asymptotic expansion
based upon tc = 0 accurately predicts the numerically computed phase speed and the
wave shape. Figures 9(c) and 9(d), in contrast, reveal some discrepancies. Examining
the portions with positive gradient (which correspond to uniform and simple wave
regions in the hodograph solution) we see excellent correspondence between different
times suggesting that we have both the correct phase speed and wave shape for these
portions. However, the portions with negative gradient (corresponding to simple and
complex wave regions) are not very accurate, and these are precisely the regions
in which the nonlinear wave self-interaction is important. Figure 9(a) reveals that
for relatively small values of D, we do not have the correct wave phase speed for
early times, because the simulated waveform drifts off of the predicted wave even
in the positive gradient regions. Furthermore it is evident that the calculation of the
waveform F from the initial conditions (tc = 0) does not provide a useful indication
of the behaviour at later times. Instead one must deduce the asymptotic form from
the profiles at later times, tc, or one must employ a higher-order expansion, to predict
the phase speed accurately.

4. Draining through a constriction
In this section we compute the unsteady drainage that occurs through a constriction

at one end of the reservoir. In this situation, the drainage boundary condition is given
by (2.3) with D= 0 and 0<w6 1, which may be written

w= Fr
(

3
Fr2 + 2

)3/2

. (4.1)

Thus given a relative width of the constriction, w, we may determine the Froude
number and this remains constant throughout the entire motion. We demonstrate below
that many of the features of the unsteady flow over a barrier are reproduced for the
current scenario of flows through constrictions, importantly including the successive
nonlinear wave reflections from the back wall and drainage boundary. There are
differences, however, in the evolution at long times; for flows through a constriction,
the depth of the fluid layer ultimately vanishes and does so in a self-similar way,
reflecting the absence of any additional length scales in the shallow-water model of the
motion. We construct the solutions for the motion using the hodograph transformation
and the method of characteristics, numerical computations and we derive and assess
the linear stability of the similarity solution that governs the dynamics at late times.

4.1. Characteristic and hodograph methods
The draining boundary at x=1 (4.1) imposes a constant Froude number on the flow at
this location and leads to a considerable simplification of the solution derived for flow
over a barrier. In the hodograph plane this boundary condition (4.1) is represented by

βs =− (2− Fr)
(2+ Fr)

α. (4.2)
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FIGURE 10. The characteristic plane for the unsteady draining of fluid from a partially
confined reservoir with constriction width, w = 4/33/2 and Froude number Fr = 0.5. In
this figure we plot and label the uniform, simple and complex wave regions following
the initiation of the flow. We also plot the α- and β-characteristics with dashed and solid
lines, respectively.

It is a straight line, rather than a curved segment as in § 3, and terminates at the
origin.

The solution features a similar pattern of uniform, simple and complex wave regions
(see figures 2 and 10). The key value of the characteristic variable is β=β∗=βs(2)=
−2(2−Fr)/(2+Fr) and the β-characteristics associated with this value bound the first
complex wave region attached to the back wall, C1 and the first complex wave region
attached to the drainage boundary. The construction of the solution for t(α, β) and
x(α, β) in complex wave region C1 is identical to that presented in § 3 (see (3.4)).
The integral equation for t(α, β) within region C2 is, however, somewhat simpler
than (3.14), because the boundary condition is enforced along a straight line in the
hodograph plane. For a flow through a constriction with Froude number Fr, it is given
by

t(α, βs) = B(α, β∗; α, βs)tb3(α)+ B(2, β∗; α, βs)tb3(2) 1
2(Fr− 1)

+B(αs, βs; α, βs)t(αs, βs)
1
2(1− Fr)−

∫ α

2

(
∂B
∂a
− 3B

2(a− β∗)
)

tb3(a) da

−
∫ 2

αs

t(as, bs)

2

(
(1+ Fr)

∂B
∂a
+ (Fr− 1)(Fr− 2)

(Fr+ 2)
∂B
∂b
− 3Fr

2a
B
)

da. (4.3)

As in § 3, we evaluate this expression numerically by first computing ts(α) =
t(α, βs(α)), which is the t-field along the boundary (x = 1), before employing
numerical quadrature to determine both t(α, β) and x(α, β). Numerical iteration is
used to find the solution for t(α, βs(α)) – we find that a converged solution to within
a tolerance of 10−12 is typically found within 6 iterative steps. In the hodograph
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2 4
t
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0.6

0.4

0.2

h(
1,

 t)

0

Fr = 0.1

Fr = 0.3
Fr = 0.5
Fr = 0.7
Fr = 0.9

FIGURE 11. The height at the free-draining boundary, h(1, t), as a function of time for
various values of the outflow Froude number, Fr (and consequentially varying constriction
widths, w). The solid lines correspond to results from integration in the hodograph plane,
where the dot-dashed lines correspond to numerical integration of the shallow water
equations (2.1a)–(2.1b). The quasi-analytical hodograph calculations were performed until
the end of region U4, but the numerical computations were continued over much longer
times. We note the very close agreement between the two approaches, with the only very
slight differences occurring at the junctions of the intervals during which the height is
uniform or decreasing.

plane, the complex wave region C2 forms a triangle given by {(α, β) : β∗ 6 β 6
βs(α),−β∗ 6 α 6 2} and we note that βm = βs(−β∗)= 2[(2− Fr)/(2+ Fr)]2.

Having numerically evaluated the solution in region C2 we can compute the α-
characteristics, x= xa2 and x= xa3 on which α=−β∗ (see figures 2 and 10). The latter
bounds the complex wave region C3 and using (3.19) we may evaluate the solution
within it. These steps then complete the computation of the solution following the first
three reflections from the boundaries.

We illustrate the solution by plotting the temporal variation of the height at
the draining boundary, h(1, t), for various values of the Froude number, Fr, and
consequentially, the constricted width, w (see figure 11). We observe that the height
at that location features periods during which it is constant, corresponding to the
uniform regions in figure 10, and periods when it declines. We have computed the
first three phases using quasi-analytical techniques described above; in principle these
could be continued for later times, but in this study we compute the evolution using
the direct numerical integration of the governing shallow-water equations (2.1a)–(2.1b).
We note the close correspondence between the two approaches, with the only apparent
differences visible in figure 11 occurring when the solution changes from one wave
region to another (and the temporal gradient of the height is discontinuous).
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4.2. Long time evolution: similarity solution
After relatively long times, the flow evolves from its initial conditions to a state in
which the motion is well captured by similarity solutions that are constructed below.
These extend the solution developed by Momen et al. (2017) for an unconstricted
outflow, in which the Froude number is unity, to a more general case where the
Froude number is given by (4.1). As shown by Momen et al. (2017), for this class
of similarity solution, the spatial coordinate, x, is not geared to time and the height
and velocity fields have the following form,

h(x, t)= Ĥ(x)
t2

and u(x, t)= Û(x)
t
, (4.4a,b)

where Ĥ(x) and Û(x) are to be determined. This dependence on t is required in order
to satisfy the drainage condition, u(1, t)=Fr

√
h(1, t), and to balance the terms in the

momentum equation (2.1b). On substitution into the governing equations (2.1a) and
(2.1b), we find that

dĤ
dx
= ÛĤ

Û2 − Ĥ
and

dÛ
dx
= Û2 − 2Ĥ

Û2 − Ĥ
, (4.5a,b)

together with the boundary conditions at the back wall and at the outflow, respectively
given by

Û(0)= 0 and Û(1)= Fr
√

H1, (4.6a,b)

where H1= Ĥ(1). We progress by introducing V̂ = Û2/Ĥ and then on the assumption
that dĤ/dx does not vanish, we find that

dV̂

dĤ
= V̂ − 4

Ĥ
. (4.7)

Integrating (4.7), and imposing Ĥ =H0 when V̂ = Û = 0 at x= 0, we deduce that

V̂ = 4

(
1− Ĥ

H0

)
. (4.8)

The latter boundary condition (4.6) demands that V̂ =Fr2 when Ĥ=H1 at x= 1, and
thus from (4.8), we find that

H1

H0
= 1−

(
Fr
2

)2

. (4.9)

To obtain Ĥ(x) we rewrite (4.8) in terms of Û

Û = 2
√

Ĥ

√
1− Ĥ

H0
, (4.10)

and substitute into (4.5a) to derive the implicit solution

x√
H0
=−π

2
+ 2

√
Ĥ
H0

√
1− Ĥ

H0
+ arcsin

√
Ĥ
H0
. (4.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f B

ri
st

ol
 L

ib
ra

ry
, o

n 
16

 Ja
n 

20
20

 a
t 1

7:
16

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.808
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Unsteady draining of reservoirs over weirs and through constrictions 882 A9-29

0.2

(i)
(ii)
(iii)
(iv)

(v)

(i)
(ii)
(iii)
(iv)
(v)

0.4
x x

0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

Ĥ(
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FIGURE 12. The similarity functions (a) H(x)−H1 and (b) U(x) as a function of distance
from the back wall, x, for various Froude numbers at the constriction (x= 1): (i) Fr= 0.1;
(ii) Fr= 0.3; (iii) Fr= 0.5; (iv) Fr= 0.7; and (v) Fr= 0.9.

The value of H0 is found by setting x = 1 and substituting (4.9) into the above
equation, which yields

H0 =
−π

2
+ Fr

√
1−

(
Fr
2

)2

+ arccos
Fr
2

−2

. (4.12)

The velocity field Û(x) is found from (4.10). The solutions for various values
of the Froude number are plotted in figure 12. We note that the fluid decreases
in depth monotonically from the rear of the flow to the front. This generates a
streamwise pressure gradient that accelerates the flow and drives the fluid through the
constriction. Lower values of the Froude number, corresponding to smaller widths at
the constriction, lead to reduced velocities and weaker pressure gradients.

These similarity solutions are compared with the results from the numerical
integration of the governing equations; in figure 13, we compare the numerically
determined height at the outflow with the prediction from the similarity solution.
In this study we have integrated numerically from lock-release initial conditions,
which are evidently not in self-similar form of (4.4); thus we find that the similarity
solutions is approached progressively. We also note that the self-similarity functions
(4.4) are only defined up to an arbitrary origin in time; in other words, we could
replace t with t − t̂0 in (4.4) and the same solutions are maintained. Evidently at
sufficiently long times, t � |t̂0|, this makes negligible difference to the predictions
of the similarity solutions, but at short times, we may select t̂0 to closely match the
evolution from lock-release conditions at relatively short times. In figure 13 we have
chosen t̂0 =−√H1, so that the similarity solution predicts a height of unity at x= 1
and t= 0 and we note that this leads to a close correspondence with the numerically
computed value (see figure 13). For relatively small values of the Froude number,
Fr, the magnitude of the temporal offset, t̂0 is quite large; its effect is that the long
time, self-similar form in which h(1, t) is proportional to 1/t2 is not realised until
very late times (and in the case Fr= 0.1, beyond the computational range plotted in
figure 13).

The similarity solution captures the leading-order decay of the dependent variables.
However it does not include the oscillations that occur as fluid sloshes between the
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FIGURE 13. The height at the outflow, h(1, t), as a function of time for various values of
the Froude number: (i) F = 0.1; (ii) F = 0.3; (iii) F = 0.5; (iv) F = 0.7; and (v) F = 0.9.
The solid line plots the results from the numerical integration of the governing equations
initiated with lock-release conditions and the dotted lines plot the similarity solution,
H1/(t+√H1)

2.

back wall and the drainage boundary. These oscillations are manifest as intervals
during which the height at the drainage boundary remains constant (figure 13).
Interestingly, and in contrast to the draining flow over a barrier § 3, they appear not
to have a fixed period, but rather the duration between them progressively increases.
This observation will be studied in the next subsection.

4.3. Linear stability of similarity solution
We may analyse the progressive approach of the draining dynamics through a
constriction to the similarity solution (4.4), by computing the linear stability of
the latter. Following Grundy & Rottman (1985) and Mathunjwa & Hogg (2006),
we introduce a small perturbation to the solutions for the height and velocity fields,
denoted by H̃(x) and Ũ(x) respectively, so that

h= Ĥ(x)
t2
+ δ H̃(x)

tγ+2
and u= Û(x)

t
+ δ Ũ(x)

tγ+1
, (4.13a,b)

where δ is a small ordering parameter (δ � 1) and γ is to be determined. On
substitution into the governing equations (2.1a) and (2.1b) and after linearisation, we
find that

−(2+ γ )H̃ + d
dx

(
H̃Û + ŨĤ

)
= 0, (4.14)

−(1+ γ )Ũ + d
dx

(
ŨÛ + H̃

)
= 0. (4.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f B

ri
st

ol
 L

ib
ra

ry
, o

n 
16

 Ja
n 

20
20

 a
t 1

7:
16

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.808
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Unsteady draining of reservoirs over weirs and through constrictions 882 A9-31

0.2 0.4
Fr

0.6 0.8 1.0

2.0

1.5

1.0

0.5

Re
(©

)

0

Re(©)

Im(©)

Im
(©

)

600

500

400

300

200

100

0

FIGURE 14. The exponent, γ , as a function of the Froude number, Fr.

The boundary conditions represent no flow at the back wall, Ũ(0) = 0, and the
linearised drainage condition is given by

2Û(1)Ũ(1)= Fr2H̃(1). (4.16)

Straightforwardly, we note that γ = 1 is a solution, with H̃ = 2Ĥ and Ũ = Û; this
corresponds to the introduction of a shift of the temporal origin, which, as discussed
above, does not change the similarity solution. In addition, γ = 0 is a solution with
Ũ=dÛ/dx and H̃=dĤ/dx; this corresponds to a translation of the x-axis. Both of the
these solutions are inevitably found in the study of the stability of similarity solutions
and do not reveal the linear stability properties (Mathunjwa & Hogg 2006). Instead
we seek non-trivial solutions to (4.14)–(4.15), which determine the exponent, γ , as an
eigenvalue.

We determine the eigenvalue, γ , through numerical integration of (4.14)–(4.15),
using the solution for Ĥ(x) and Û(x) given by (4.10) and (4.11); in this computation,
we allow the eigenvalue and functions to be complex valued, noting that since
the governing equations have real-valued coefficients, they are also satisfied by the
complex conjugates of the solutions. We plot the value of γ with the smallest real
part in figure 14 as a function of the drainage Froude number, Fr. We note that
Re(γ ) > 0 and thus the similarity solutions are linearly stable; in other words, all
disturbances decay more rapidly than the solutions itself. In fact, we note that Re(γ )
is only relatively weakly dependent upon Fr. However the eigenvalue also has a
non-vanishing imaginary part and its relatively strong variation is also plotted in
figure 14.

We may use this solution to analyse the oscillations noted above in the numerically
determined solution to the drainage from lock-release initial conditions (figure 13).
Denoting the ratio between successive times at which the height at the end of the
domain exhibits a spatially uniform region by R, we find that

R= exp
(

2π

γI

)
, (4.17)
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FIGURE 15. The ratio of successive times at which the height at the outflow exhibits
periods during which it is constant, R, as a function of the Froude number, Fr. The inset
figures show the numerically determined ratio, Rn, as a function of the oscillation number
n (shown with symbols) and the theoretical prediction (dashed line) for Fr= 0.1 and Fr=
0.5.

where γI ≡ Im(γ ) denotes the imaginary part of the exponent γ . In figure 15 we plot
R as a function of the Froude number, Fr; we observe that the ratio of successive
periods increases monotonically with Fr. We also examine this ratio in our numerical
results by computing Rn = (tn − t0)/(tn−1 − t0), the ratio of the nth to (n− 1)th times
at which the period of a constant fluid depth at x = 1 starts as a function of n for
Fr= 0.1 and Fr= 0.5 (see inset figures in figure 15). In both cases we find that the
numerically determined ratio approaches the asymptotic prediction; initially there are
differences because the motion is strongly nonlinear, but these diminish as the flow
evolves into a state that is accurately represented by this linearised analysis. We note
that for Fr= 0.1 there are many oscillations observed during the computational period,
because the ratio, R is quite close to unity. In contrast, when Fr = 0.5, the ratio of
the successive oscillations is larger and so fewer can be determined in the numerical
results before their amplitude has very substantially diminished.

5. Summary and conclusions

The fluid mechanics of the gravitationally driven drainage of an initially quiescent
reservoir following the partial removal of its confining dam have been investigated
in detail using the shallow water equations to reveal the temporal and spatial
dependencies of the depth and velocity of the flowing layer. For scenarios in which
the reservoir drains over a barrier and through a constriction, we have shown how the
unsteady motion evolves towards a state in which there is progressive drainage and
relatively rapid wave motions that run between the back wall of the reservoir and the
partially removed dam. When the fluid drains over a weir (a partially removed dam
that leaves a barrier of height D), we find that after sufficient time following the flow
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initiation, the excess height diminishes in proportion to t−2, while the velocity at the
overflow varies as t−3. Relatively fast moving waves propagate between the outflow
and back wall of the reservoir with dimensionless phase speed,

√
D and amplitude

that diminishes as t−3. In contrast when the flow is through a constriction alone
(D= 0 and w< 1), the height of the fluid layer also decreases as t−2, but the velocity
is proportional to t−1. The motion in this scenario becomes self-similar to leading
order after sufficient time has elapsed following initiation. Wave-like disturbances
emerge, but their wave speed diminishes exponentially in time and in relation to the
width of the constricted outflow.

The results have been determined using three approaches, each of which has
necessitated some innovations. First we have used the hodograph transformation to
convert the governing nonlinear partial differential equations to a linear system that
may be tackled using analytical techniques. The solutions are given by quasi-analytical
expressions and are evaluated though numerical quadrature to reveal the initial
gravitational slumping and the onset of the oscillatory behaviour. In principle these
calculations could be extended to much later times, although the oscillations entail
rather tedious analytical bookkeeping. Direct numerical integration of the governing
equations provide solutions as well and we have employed a numerical method that
carefully imposes the boundary conditions at the outflow, while minimising internal
numerical dissipation, so that features with discontinuous gradients of the dependent
variables can be captured accurately. The numerical results, validated by the analytical
results obtained through hodograph techniques, may be extended to late times to reveal
the progressive drainage and the oscillations that manifest themselves as intervals
during which the height and velocity of the fluid layer adjacent to the back wall or
the outflow are spatially uniform. The oscillations persist although their amplitude
diminishes. At late times for flows over a barrier, we have employed a multiple
time-scale asymptotic technique to determine the draining and wave-like motions. The
algebraic details of this asymptotic result are somewhat cumbersome given that the
amplitude and phase are only established by calculating to relatively high order and
using repeated secular conditions to ensure uniformity of the asymptotic expansion,
but the results compactly reveal the oscillations within the reservoir. Furthermore
the asymptotic solutions confirm the accuracy of the numerical computations at late
times. In contrast, flows through constrictions approach a self-similar state at late
times, in which the oscillations can be interpreted as the linear stability of this state.
We showed that the direct prediction of the exponential growth of the period of the
oscillations was realised by the numerical computations. The result and interpretation
have bearings on other inertially dominated, self-similar flows, such as gravity current
dynamics from lock-release initial conditions.

The unsteady fluid mechanics of this study may have important consequences
for the draining of natural-scale reservoirs following the partial removal of their
containing dam. The calculations show that the volume flux of fluid per unit width
leaving the reservoir diminishes temporally and at late times is proportional to t−3 for
both flows over weirs and through constrictions. It would be interesting to test this
and other predictions from our analysis against laboratory or large-scale observations.
The problem is also a useful test-bed solution for numerical integration of either
the shallow-water equations, for which we have established a non-trivial analytical
solution at both early and late times or for other simulations of fluid flow in this
configuration. For example, the OpenFoam library for the direct numerical simulation
of the Navier–Stokes equations identifies unsteady reservoir draining as an important
trial problem and Momen et al. (2017) used this computational library to simulate
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flow over an edge (D= 0, w= 1); it would be also interesting to simulate flows for
the more general problem analysed in this study. There are also several extensions to
flows in related configurations that would be interesting to pursue. For example, how
does the dynamics differ if the reservoir gravitationally slumps and flows towards a
distant barrier, which it may overtop? Furthermore in the Boussinesq regime, how are
the interactions modified if the impinging fluid is able to mix with its surroundings?
Some aspects of this type of motion have been considered by Nabi & Flynn (2013),
in which they model and confirm through experiments the mixing downstream of a
weir. We anticipate that some of our new methodologies and results may be adapted
to these new scenarios.
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Appendix A. Derivation of the outflow boundary condition
The outflow boundary condition at x= 1 can be found in textbooks such as Ackers

et al. (1978) and Dake (1983), and is derived using classical hydrodynamic principles
for inviscid flows. In particular for a steady state, the mass flux is constant and
energy is conserved in regions where the flow varies continuously i.e. away from
hydraulic jumps. Moreover as the fluid flows over a smooth barrier, or through a
smooth constriction, it may accelerate from a subcritical state to a supercritical state
and is therefore critical at some interior location.

The geometry of the barrier or constriction at the outflow is such that the variation
in the width of the channel or the elevation of the bed induces non-negligible lateral
and vertical velocities only over 1 − ε̂ < x < 1, where ε̂ � 1 is a relatively small
dimensionless length, whereas over the bulk of the interior (0 6 x 6 1 − ε̂), the bed
elevation and width are constant and the flow is aligned with the x-axis. We denote
the width of the channel relative to the uniform width in the bulk by ŵ(x), noting that
ŵ(1)= w at the narrowest part of the outflow. Likewise we denote the bed elevation
by D̂(x), non-dimensionalised with respect to the initial depth of the reservoir and
note that D̂(1) = D. We may then extend our shallow water equations to include
width variations; the governing equations (2.1a) and (2.1b) are then given by the
dimensionless Saint-Venant equations (Chow 2009)

∂

∂t
(ŵh)+ ∂

∂x
(uŵh)= 0,

∂u
∂t
+ ∂

∂x

(
u2

2
+ h+ D̂

)
= 0. (A 1a,b)

Respectively these represent the width- and depth-averaged expressions of the
conservation of mass and the balance of streamwise momentum on the assumption
that the contraction in width is much less than the streamwise extent of the reservoir
(W(1− w)/L� 1) so that the lateral velocities remain relatively small. We note that
away from the outflow 06 x6 1− ε̂, ŵ= 1 and D̂= 0 and the governing equations
reduce to (2.1a) and (2.1b). Furthermore the dimensionless extent of the upstream
distance over which the barrier or constriction influences the flow is estimated to
be the greater of the ratio of the barrier height to the streamwise length scale, or
the constricted width to the streamwise length scale, both of which are assumed to
be small. The solutions within the region adjacent to the outflow (1 − ε̂ < x < 1)
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evolve on very short time scales of O(ε̂), because this is the time scale over which
characteristics cross the domain. Conversely within the bulk of the domain, the flow
evolves on time scales of order unity. Therefore, for the purpose of modelling the flow
in the bulk we may consider the flow local to the boundary to be in a quasi-steady
state. In what follows we derive an outflow boundary condition that applies to the
flow at x= 1− ε̂, namely at the upstream location where the channel width and bed
elevation induce non-streamwise velocities.

The steady states of the Saint-Venant equations are given by

uŵh= q,
u2

2
+ h+ D̂= E, (A 2a,b)

for some q and E, which represent the dimensionless volume flux and energy,
respectively. The Saint-Venant equations provide a model for the evolution of a
channel-averaged velocity; if, instead a three-dimensional velocity field had been
modelled using the inviscid Euler equation, then (A 2b) with u2 replaced by |u|2
would represent the application of Bernoulli’s theorem on the surface streamline. In
what follows we relate the flow conditions at the location where the motion begins to
deviate from purely horizontal flow aligned with the x-axis (x= 1− ε̂) to conditions
at the highest and narrowest point of the barrier (x = 1), at which position we
assume that the flow is also only horizontal and aligned with the x-axis. Thus energy
conservation between these two locations is given by (A 2b). We assume that the
inflow at x = 1 − ε̂ is subcritical (slow and deep), and that in x > 1 the bed slopes
downward and the channel widens so that the fluid becomes supercritical (fast and
shallow). At x= 1, E − D(x) is minimised and consequentially so is u2/2+ h. Thus
the flow is critical at the outflow x = 1, and we may write uout =

√
hout. Then by

conservation of volume flux (A 2)

hout =
( q

w

)2/3
, (A 3)

which yields the expression for the energy

E= 3
2

( q
w

)2/3 +D. (A 4)

We construct the boundary condition for the bulk at x= 1− ε̂ using conservation of
energy (A 2b)

u2

2
+ h
∣∣∣∣

x=1−ε̂
= 3

2

( q
w

)2/3 +D, where q=wuouthout = uh|x=1−ε̂. (A 5)

Finally, limiting ε̂→ 0 yields the boundary condition

u2 + 2(h−D)− 3
(

uh
w

)2/3

= 0 at x= 1. (A 6)

The modelling framework in this appendix and in § 2 is built upon the assumption
that the depth of the fluid layer is much smaller than any streamwise or lateral length
scale so that the pressure adopts a hydrostatic distribution. Deviations from this
hierarchy of length scales could lead to head loss (dissipation) which is not included
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in the current description. If we assume that the energy dissipation is of magnitude
1E between the bulk and the outflow, then we have the condition

u2 + 2(h−D)− 3
(

uh
w

)2/3
∣∣∣∣∣

x=1

= 21E. (A 7)

The energy loss, 1E, has been evaluated empirically. Following Zachoval et al.
(2014), we introduce a discharge coefficient Cd given by

uh=
(

2
3

)3/2

Cdw
(

u2

2
+ h−D

)3/2

. (A 8)

This means that the discharge coefficient measures the energy ratio between the
critical outflow and the bulk, where the depths are measured relative to the bed
elevation at the outflow, i.e.

C2/3
d =

[
3
2

(
uh
w

)2/3
]/[

u2

2
+ h−D

]∣∣∣∣∣
x=1

. (A 9)

Note that the numerator in this expression is the energy at the outflow, despite being
evaluated at the bottom of the slope, because the critical energy is only dependent on
the volume flux (which is conserved between the bottom and top of the slope) and the
width of the channel. It is clear from (A 9) that for energy conserving flows Cd = 1.
Rearranging (A 9) using (A 7) we obtain

1E= 3
2

(
1

C2/3
d

− 1
)(

uh
w

)2/3

. (A 10)

Thus we can write the boundary condition in terms of the discharge coefficient

u2 + 2(h−D)− 3
(

uh
Cdw

)2/3
∣∣∣∣∣

x=1

= 0. (A 11)

From the results in Zachoval et al. (2014), we find that 0.83.Cd. 0.95, which gives
us

1.03.
1

C2/3
d

. 1.13. (A 12)

On this basis we conclude that the effect of dissipation can be neglected to a good
approximation. Even if it cannot be ignored then we can simply include it in our
model by modifying the definition of w to be the drainage coefficient multiplied by
the ratio of outflow width to channel width.

Explicit account of viscous processes has been ignored in this analysis and
potentially at late times, when the flow is very thin at the crest of the barrier, viscous
stresses could play a dynamical role. To this end we assess when the dimensional
inertial terms of the governing equations, u∂u/∂x, become comparable with the
(currently omitted) dimensional viscous terms, ν∂2u/∂z2, where ν is the kinematic
viscosity. The viscous stresses are largest where the flow is shallowest at the crest of
the barrier, at which location the relevant streamwise dimensional length scale is ε̂L.
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Viscous terms therefore become non-negligible when the reduced Reynolds number,
Re ≡ UH2/(νε̂L), is order unity, where U and H are dimensional estimates of the
velocity and height fields. Inserting our dimensionless expressions for the velocity
and height at the outflow when the height of the fluid layer is comparable with the
maximum barrier height, we find that

Re= (g
′H5)1/2

ε̂Lν
(h−D)5/2, (A 13)

where the reduced gravity is denoted by g′ = 1ρg/ρ and h and D are the
dimensionless height of the fluid layer at the outflow of the domain and the barrier
height, respectively. For free-surface flow of water g′∼ 10 m s−2 and ν∼ 10−6 m2 s−1.
Then for a release of scale height H∼ 10 m and a barrier of streamwise length scale
ε̂L ∼ 100 m, we find that the reduced Reynolds number becomes of order unity
when h−D∼ 10−3. Thus for these parameter values, the neglect of boundary viscous
shear stress is also reasonable until h − D ∼ 10−3. Conversely at laboratory scales,
H ∼ 10 cm and ε̂L ∼ 1 cm, we find that that viscous effects are negligible until
h−D∼ 4× 10−2.

Appendix B. Computation of the asymptotic solution
B.1. Bounded waves with resonant forcing

In order to construct the wave components in the multi-scale expansion of § 3.3
we need to bound the terms in the expansions, producing solvability conditions that
eliminate the secular terms. As we show in the following subsection, the possibility
of secular terms comes from the existence of resonant forcing in the linearised wave
equations. Our analysis often encounters a forced linear wave equation to which we
apply homogeneous boundary conditions. Therefore we first present a general result
that enables the construction of bounded solutions.

THEOREM 1. Let FL,FR,GL,GR :R→R be such that the derivatives F′L, F′R, G′′L, G′′R
have period 2. The solution u(x, t) to the forced linear wave equation

1
4c2

[
∂2u
∂t2
− c2 ∂

2u
∂x2

]
= F′L(ct+ x)+ F′R(ct− x)+ 2x[G′′L(ct+ x)+G′′R(ct− x)], (B 1)

on x ∈ [0, 1] with homogeneous Dirichlet boundary conditions u(0, t)= u(1, t)= 0 is
bounded if and only if

FR(y)− FL(y)+GR(y)+GL(y)+G′R(y)−G′L(y)= 0, (B 2a)
FR(y+ 2)− FR(y)=−[GR(y+ 2)−GR(y)], (B 2b)

FL(y+ 2)− FL(y)=GL(y+ 2)−GR(y), (B 2c)
G′R(y+ 2)−G′R(y)= 0, (B 2d)
G′L(y+ 2)−G′L(y)= 0, (B 2e)

and u is bounded on some (x, t) ∈ [0, 1] ⊗ [t0, t0 + 2/c). Moreover, the solution can
be expressed as

u(x, t) = f (ct− x)− f (ct+ x)+ 2x[FR(ct− x)+GR(ct− x)− FL(ct+ x)+GL(ct+ x)]
+ 2x2[GR(ct− x)−GL(ct+ x)], (B 3)

where f is an arbitrary period 2 function.
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Proof. We begin by simplifying the wave equation to the canonical form by making
the change of variables ξ = ct+ x, η= ct− x, and defining U(ξ , η)= u((ξ − η)/2, (ξ +
η)/2c), resulting in

∂2U
∂ξ∂η

= F′L(ξ)+ F′R(η)+ (ξ − η)[G′′L(ξ)+G′′R(η)], (B 4)

which can be integrated to produce the general solution

U = f̂ (η)+ ĝ(ξ)+ ηFL(ξ)+ ξFR(η)− ηGL(ξ)+ ξGR(η)

+
(
ξη− η

2

2

)
G′L(ξ)−

(
ξη− ξ

2

2

)
G′R(η), (B 5)

where f̂ and ĝ are the arbitrary functions of integration. Imposing the boundary
conditions U = 0 on η= ξ and ξ = η+ 2 yields

ĝ(ξ)=−f̂ (ξ)− ξ(FL(ξ)+ FR(ξ)−GL(ξ)+GR(ξ))− ξ
2

2
(G′L(ξ)−G′R(ξ)), (B 6a)

f̂ (η+ 2) = f̂ (η)− 2FL(η+ 2)+ (η+ 2)(FR(η)− FR(η+ 2))
+ 2GL(η+ 2)+ (η+ 2)(GR(η)−GR(η+ 2))

− 2G′L(η+ 2)+
(

2− η
2

2

)
G′R(η)+

(η+ 2)2

2
G′R(η+ 2), (B 6b)

respectively. Using these it is possible to show that

u(x, t+ 2/c)− u(x, t)=U(ξ + 2, η+ 2)−U(ξ , η)
= 2[FL(ξ + 2)− FR(ξ)−GL(ξ + 2)−GR(ξ)+G′L(ξ + 2)−G′R(ξ)]
− 2[FL(η+ 2)− FR(η)−GL(η+ 2)−GR(η)+G′L(η+ 2)−G′R(η)]
+ (ξ − η)[FL(ξ)− FL(ξ + 2)−GL(ξ)+GL(ξ + 2)]
− (ξ − η)[FR(η)− FR(η+ 2)+GR(η)−GR(η+ 2)]
+ (ξ − η)

2

2
[G′L(ξ)−G′L(ξ + 2)] − (ξ − η)

2

2
[G′R(ξ)−G′R(ξ + 2)]. (B 7)

From here the conditions (B 2) follow. To deduce the form of the general solution
(B 3) we make the substitution

f (y)= f̂ (y)+ y(FL(y)−GL(y)+G′L(y)−G′R(y))−
y2

2
G′R(y), (B 8)

so that (B 6b) enforces f (y + 2) = f (y), and then substitute (B 6a) into (B 5) and
simplify using (B 2). �

B.2. Expansion with multiple time scales
We expand the depth and velocity as sequences of undetermined functions dependent
on the time scales (3.24)

h(x, t)−D= ε2h2(x, T0, T1)+ ε3h3(x, T0, T1)+ · · · , (B 9a)
u(x, t)= ε3u3(x, T0, T1)+ ε4u4(x, T0, T1)+ · · · , (B 9b)
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where we require that hm and um are of order unity so that this is a uniform expansion.
Substituting our expansions into the governing equations we obtain

0 = ∂h
∂t
+ ∂(uh)

∂x
(B 10)

= ε2 dω0

dT1

∂h2

∂T0
+ ε3

[
dω0

dT1

∂h3

∂T0
+ ∂h2

∂T1
+D

∂u3

∂x

]
+ ε4

[
dω0

dT1

∂h4

∂T0
+ ∂h3

∂T1
+ dω2

dT1

∂h2

∂T0
+D

∂u4

∂x

]
+ ε5

[
dω0

dT1

∂h5

∂T0
+ ∂h4

∂T1
+ dω2

dT1

∂h3

∂T0
+ dω3

dT1

∂h2

∂T0
+D

∂u5

∂x
+ ∂(u3h2)

∂x

]
+O(ε6),

(B 11)

0 = 1
D

(
∂(uh)
∂t
+ ∂(u

2h)
∂x
+ h

∂h
∂x

)
(B 12)

= ε2 ∂h2

∂x
+ ε3

[
dω0

dT1

∂u3

∂T0
+ ∂h3

∂x

]
+ ε4

[
dω0

dT1

∂u4

∂T0
+ ∂u3

∂T1
+ ∂h4

∂x
+ h2

D
∂h2

∂x

]
+ ε5

[
dω0

dT1

∂u5

∂T0
+ ∂u4

∂T1
+ dω2

dT1

∂u3

∂T0
+ 1

D
dω0

dT1

∂(u3h2)

∂T0
+ ∂h5

∂x
+ 1

D
∂ (h2h3)

∂x

]
+O(ε6).

(B 13)

The boundary condition at the rear of the lock demands that um vanishes at x = 0,
while the boundary condition at x= 1 yields

0 = u2

2
+ (h−D)− 3

2

(
uh
w

)2/3

(B 14)

= ε2

[
h2 − 3

2

(
Du3

w

)2/3
]
+ ε3

[
h3 −

(
Du3

w

)2/3 u4

u3

]

+ ε4

[
h4 −

(
Du3

w

)2/3 (u5

u3
+ h2

D
− u2

4

6u2
3

)]
+O(ε5). (B 15)

We observe that the governing equations at O(ε2) give h2 ≡ h2(T1). The balances at
higher order will result in inhomogeneous resonantly forced wave equations for um
with inhomogeneous boundary conditions, which we manipulate into the form stated
in Theorem 1. To do this we must homogenise the boundary condition at x = 1,
which at every order is an equation of the form um = 2f (cT0 + 1, T1) where c is
the wave speed and f is a function of period 2 ( f (y + 2, T1) = f (y, T1)) given in
terms of functions from the expansion at lower order. We then make the substitution
ûm = um − x[ f (cT0 + x, T1) + f (cT0 − x, T1)] − x(1 − x)g(x) where the first term
homogenises the boundary condition, and the second term eliminates any functions
from the source terms of the wave equation that cannot be represented by Theorem 1.
From this point on, the process of constructing the solution amounts applying the
boundedness conditions from the theorem as solvability conditions; we find that once
(B 2a) has been enforced then (B 2b) to (B 2e) will automatically be satisfied, and
then using um to find hm which will yield a further unknown function and solvability
condition.
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B.2.1. Leading-order balance
At O(ε3) the governing equations are given by

dω0

dT1

∂h3

∂T0
+D

∂u3

∂x
=− ∂h2

∂T1
and

dω0

dT1

∂u3

∂T0
+ ∂h3

∂x
= 0, (B 16a,b)

while the boundary conditions at this order are given by

u3 = 0 at x= 0 and u3 = w
D

(
2h2

3

)3/2

at x= 1. (B 17a,b)

We define

û3 = u3 − w
D

(
2h2

3

)3/2

x, (B 18)

so that û3 satisfies the linearised wave equation

∂2û3

∂T0
2 − c2 ∂

2û3

∂x2
= 0, (B 19)

where the wave speed c(T1) =
√

D/(dω0/dT1) and there are homogeneous boundary
conditions û3 = 0 at x= 0 and 1. Solving this system yields

u3 = F3(cT0 − x, T1)− F3(cT0 + x, T1)+ w
D

(
2h2

3

)3/2

x, (B 20)

where F3(y+ 2, . . .)= F3(y, . . .). Substituting into (B 16) yields

h3 =
√

D[F3(cT0 − x, T1)+ F3(cT0 + x, T1)] +H3(T0, T1) (B 21)

and then substituting both h3 and u3 into (B 16) and integrating gives

H3 =−
(
∂h2

∂T1
+w

(
2h2

3

)3/2
)(

dω0

dT1

)−1

T0 + A3(T1). (B 22)

The function A3 can be absorbed into F3, so without loss of generality we take A3= 0.
For h3 to be bounded in T0, we deduce that H3 must vanish. This solvability condition
leads to

h2 = 33

2w2(T1 − τ)2 . (B 23)

Thus at O(ε3) we have found that

h2 = 27
2w2(T1 − τ)2 , (B 24a)

h3 =
√

D[F3(cT0 − x, T1)+ F3(cT0 + x, T1)], (B 24b)

u3 = F3(cT0 − x, T1)− F3(cT0 + x, T1)+ 27x
Dw2(T1 − τ)3 . (B 24c)
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B.2.2. Second-order balance
At O(ε4) the governing equations are given by

dω0

dT1

∂h4

∂T0
+D

∂u4

∂x
=− ∂h3

∂T1
and

dω0

dT1

∂u4

∂T0
+ ∂h4

∂x
=− ∂u3

∂T1
. (B 25a,b)

The boundary conditions at this order are given by

u4 = 0 at x= 0 and u4 = h3u1/3
3

(w
D

)2/3
at x= 1. (B 26a,b)

We convert this system into a forced linear wave equation with homogeneous
boundary conditions by introducing

û4 = u4 − 3h3x
D(T1 − τ) (B 27)

and this function satisfies the equation

∂2û4

∂T0
2 − c2 ∂

2û4

∂x2
= 2

∂h3

∂T1
x+ 6

T1 − τ
c2

D
∂h3

∂x
(B 28)

= 2
√

DT0
dc
dT1

[
−∂

2F3

∂y2
(cT0 − x, T1)+ ∂

2F3

∂y2
(cT0 + x, T1)

]
+ 2
√

D
[
−∂F3

∂y
T1(cT0 − x, T1)+ ∂F3

∂y
T1(cT0 + x, T1)

]
+ 6
√

D
T1 − τ

c2

D

[
−∂F3

∂y
(cT0 − x, T1)+ ∂F3

∂y
(cT0 + x, T1)

]
(B 29)

subject to boundary conditions û4 = 0 at x= 0 and 1. Having a non-vanishing source
term proportional to T0 will cause u4 to become unbounded. Supposing that F3 not
constant (and so we do have waves), this means that dc/dT1 = 0 thus ω0 = T1 + φ
for some constant φ (which acts as a phase angle), making a choice of pre-factor.
Equation (B 28) is now in the form required for Theorem 1 with

FL =−FR = 2
√

D
(
∂F3

∂T1
+ 3F3

T1 − τ +
1

(T1 − τ)3
dB3

dT1

)
+GL, (B 30)

and GL=GR arbitrary functions of T1, B3(T1) being an appropriately chosen arbitrary
function introduced by the integration of ∂FL/∂y. Therefore for u4 to be bounded we
require FL =GL, which implies that

F3(y, T1)= F̂3(y)+ B3(T1)

(T1 − τ)3 , (B 31)

where F̂3(y + 2) = F̂3(y). Importantly this shows that the amplitude of the waves
decays with the inverse cubic power of time. This substitution also causes the right-
hand size of (B 28) to vanish, and therefore

u4 = F4(
√

DT0 − x, T1)− F4(
√

DT0 + x, T1)+ 3h3x
D(T1 − τ) , (B 32)
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where F4(y+ 2, T1)= F4(y, T1). Substituting into (B 25) yields

h4 =
√

D[F4(
√

DT0 − x, T1)+ F4(
√

DT0 + x, T1)]
+ 3u3x

T1 − τ −
81x2

2Dw2(T1 − τ)4 +H4(T0, T1) (B 33)

and both h4 and u4 into (B 25) gives

∂H4

∂T0
= −1
(T1 − τ)3

dB3

dT1
, and therefore H4 = −T0

(T1 − τ)3
dB3

dT1
+ A4(T1). (B 34)

Since H4 must remain bounded, we therefore deduce

dB3

dT1
= 0 and H4 = A4(T1). (B 35a,b)

The functions B3 and A4 can be absorbed into F̂3 and F4 respectively, so without loss
of generality we set both to zero. Thus at this order we have deduced

h2 = 27
2w2(T1 − τ)2 , (B 36a)

h3 =
√

D
(T1 − τ)3 [F̂3(

√
DT0 − x)+ F̂3(

√
DT0 + x)], (B 36b)

u3 = 1
(T1 − τ)3

[
F̂3(
√

DT0 − x)− F̂3(
√

DT0 + x)+ 27x
Dw2

]
, (B 36c)

h4 =
√

D[F4(
√

DT0 − x, T1)+ F4(
√

DT0 + x, T1)]
+ 3u3x

T1 − τ −
81x2

2Dw2(T1 − τ)4 , (B 36d)

u4 = F4(
√

DT0 − x, T1)− F4(
√

DT0 + x, T1)+ 3h3x
D(T1 − τ) . (B 36e)

B.2.3. Third-order balance, solvability conditions only
At O(ε5) the governing equations are given by

∂h5

∂T0
+D

∂u5

∂x
=− ∂h4

∂T1
− dω2

dT1

∂h3

∂T0
− h2

∂u3

∂x
and

∂u5

∂T0
+ ∂h5

∂x
=− ∂u4

∂T1
− dω2

dT1

∂u3

∂T0
,

(B 37a,b)

and the boundary conditions are given by

u5 = 0 at x= 0 and u5 =
(w

D

)2/3
u1/3

3 h4 + u2
4

6u3
− h2u3

D
at x= 1. (B 38a,b)

Our intention at this order is not to find explicit solutions for h5 and u5, but rather to
use solvability conditions to deduce the leading-order correction to the phase speed,
ω2 and the relationship between F4 and F̂3. First we convert this system to a forced
linear wave equation subject to homogeneous boundary conditions by substituting
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û5 = u5 −
(

35

2D2w4

w2 − 3
(T1 − τ)5 +

w2

32(T1 − τ)5 [F̂3(
√

DT0 − x)2 + F̂3(
√

DT0 + x)2]

+ 3√
D(T1 − τ)

[F4(
√

DT0 − x, T1)+ F4(
√

DT0 + x, T1)]
)

x

+ x(x2 − 1)
54

D2w2(T1 − τ)5 . (B 39)

The system for û5 is in the form required to apply Theorem 1, with FR=−FL, GL=
GR and

FL = GL + 1

2
√

D

∂F4

∂T1
+ 3F4

2
√

D(T1 − τ)
− 27

8Dw2(T1 − τ)5
dF̂3

dy
+ w2F̂2

3

18(T1 − τ)5

+ 1
2(T1 − τ)3

dω2

dT1

dF̂3

dy
− 1

2
√

D(T1 − τ)3
dB4

dT1
, (B 40)

∂GL

∂y
= 3F̂3

D(T1 − τ)5 , (B 41)

where B4(T1) is an appropriately chosen arbitrary function introduced by the
integration of ∂FL/∂y. The theorem gives us that, for u5 to be bounded, we require
FL =GL. Solving (B 40) as a first-order linear differential equation in F4 produces

F4 =
√

Dw2F̂2
3

9(T1 − τ)4 −
[

27

4
√

Dw2(T1 − τ)4
+
√

Dω2

(T1 − τ)3
]

dF̂3

dy
+ Ĝ4 + B4

(T1 − τ)3 , (B 42)

where Ĝ4(y + 2) = Ĝ4(y). We observe that F̂3 may not be continuous, and its
derivatives may not be bounded, so as a solvability condition we enforce that its
coefficient must be zero, that is

ω2 = −27
4Dw2(T1 − τ) . (B 43)

This expression determines the leading-order correction to the phase speed. The
function Ĝ4 cannot impact the expansion, since it must be bounded, and when we
reassemble h and u and limit ε→ 0, εĜ4→ 0. Therefore, without loss of generality,
we take Ĝ4 = 0, thus

F4 =
√

Dw2F̂2
3

9(T1 − τ)4 +
B4

(T1 − τ)3 . (B 44)

Constructing u5 and h5 and considering the additional requirements such that h5 is
bounded produces the condition

dB4

dT1
=− 33 · 5

4D3/2w2(T1 − τ)2 and therefore B4 = 33 · 5
4D3/2w2(T1 − τ) + B̂4. (B 45)

Similarly to Ĝ4 we can set B̂4 = 0. Thus the expansion is then given by

h2 = 27
2w2(T1 − τ)2 , (B 46a)
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h3 =
√

D
(T1 − τ)3 [F̂3(

√
DT0 − x)+ F̂3(

√
DT0 + x)], (B 46b)

u3 = 1
(T1 − τ)3

[
F̂3(
√

DT0 − x)− F̂3(
√

DT0 + x)+ 27x
Dw2

]
, (B 46c)

h4 = 1
(T1 − τ)4

[
Dw2

9
(F̂3(
√

DT0 − x)2 + F̂3(
√

DT0 + x)2)

+ 3x(F̂3(
√

DT0 − x)− F̂3(
√

DT0 + x))+ 27(3x2 + 5)
2Dw2

]
, (B 46d)

u4 = 1
(T1 − τ)4

[√
Dw2

9
(F̂3(
√

DT0 − x)2 − F̂3(
√

DT0 + x)2)

+ 3x√
D
(F̂3(
√

DT0 − x)+ F̂3(
√

DT0 + x))
]
. (B 46e)

As a final observation, if we make the substitutions

τ = τ̃ + εk, and F̂3 = F̃3 + 27k

2
√

Dw2
, (B 47a,b)

and expand our asymptotic results using

1
(T1 − τ)p =

1
(T1 − τ̃ )p

1
(1− εk/(T1 − τ̃ ))p

= 1
(T1 − τ̃ )p + ε

pk
(T1 − τ̃ )p+1

+ ε2 p(p+ 1)k2

2(T1 − τ̃ )p+2
+ · · · , (B 48)

we find that on collection of terms with the same powers of ε, that the effect on the
expansion is identical to that of the direct replacement τ with τ̃ and F̂3 with F̃3. The
solution is invariant, therefore, with respect to (B 47), and we are free to choose τ
such that ∫ y0+2

y0

F̂3(y) dy (B 49)

takes any constant value. In particular, forcing this integral to vanish leads to a
condition that determines the temporal offset, τ , as described in § 3.3.
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