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Abstract: Turbulent suspensions of sediment are investigated to establish the characteristic length and time scales on which they adjust from
one state to another. The suspensions are modeled by using a simple closure for the turbulent fluctuations in which the average flux of
sediment is treated as a diffusion process. A key dimensionless settling parameter, which is closely related to the Rouse number, measures
the magnitude of the settling to diffusive fluxes of particles. It is shown how the length and time scales on which the suspension responds are a
function of the settling parameter and the assumed form of the eddy diffusivity, and that the predictions are broadly in accord with laboratory
experiments. It is further established analytically that, in the regimes of the settling parameter much greater or much less than unity, the
timescale of response is independent of the form of the eddy diffusivity. This motivates the use of simple eddy diffusivity laws to provide
generic insight to the unsteady evolution of complex suspension and sedimentation problems. DOI: 10.1061/(ASCE)HY.1943-7900
.0000532. © 2012 American Society of Civil Engineers.
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Introduction

Accurate modeling of suspensions of sedimentary particles in a tur-
bulent flow is an important challenge in coastal and hydraulic en-
gineering. In particular, quantitative predicting the rate at which
sediment is eroded or deposited is key to assessing morphological
change resulting from variations in environmental conditions. In
this paper, the authors analyze the response of suspensions result-
ing from spatial and temporal changes in the suspending flow and
identify how the length and time scales on which the suspension
responds depend on the settling velocity of the suspended particles,
the mean velocity of the suspending fluid, the depth of the flow and
the intensity of the turbulence (as measured through the magnitude
of the turbulent friction velocity).

Mathematically modeling dilute turbulent suspensions of non-
cohesive particles poses many challenges because of the absence of
complete models that capture fully the complicated interactions be-
tween the fluid and the particles (Dyer and Soulsby 1988; Fredsoe
and Deigaard 1992). However, a common approach is to assume
that the turbulence-induced flux of particulate may be expressed
as a diffusive flux, with the sediment diffusivity (more commonly
termed the eddy diffusivity) determined empirically (Dyer and
Soulsby 1988). Conservation of particulate mass leads to an
advection-diffusion-settling equation in which the unsteady varia-
tion of the concentration of particles is balanced by advection, with
the mean fluid flow, settling, and diffusion resulting from the

effects of the turbulence. This has led to predictions of fully devel-
oped profiles of sediment concentration that compare reasonably
well with experimental measurements, when coupled with appro-
priate empirical expressions for the magnitude of the turbulence
effects (Rouse 1938; van Rijn 1984b; Dyer and Soulsby 1988).

Difficulties inevitably exist with this approach to modeling tur-
bulent suspensions. It depends crucially on the specification of the
eddy diffusivity, which is often related to the eddy viscosity, which
in turn prescribes the rate at which the fluid momentum is mixed.
The theoretically predicted, steady-state profiles of sediment de-
pend strongly on the boundary conditions imposed at the bed.
However, these bed conditions are also not firmly established (Dyer
and Soulsby 1988). In addition, it is difficult to account for particle
interactions, which play a role in nondilute suspensions. [The re-
cent approaches by Drew (1983), Jenkins and Hanes (1998), and
Hsu et al. (2004) address the latter by utilizing Favre averaging of
the turbulent fluctuations and by introducing an explicit expression
of momentum balance for the suspended particles.] Despite these
difficulties, a diffusion-based model of turbulent suspensions is
widely employed (Soulsby 1998) and provides insight into the evo-
lution of suspensions. This paper will pursue this approach.

This paper analyzes the response of a suspension of sediment in
a turbulent flow to a change in the flow speed, and consequently a
change in the ability of the turbulent fluctuations to support the
relatively dense particulate material (or to a change in the sediment
supply) so that the suspension is no longer in equilibrium. These
types of flow changes can occur in a number of physical settings.
For example, tidal flows vary temporally and spatially, and both
Prandle (1997) and Pritchard (2006) analyzed the temporal re-
sponse of suspensions in this setting. Large-scale particulate flows
such as dilute turbidity currents progressively decelerate and lose
their particle-bearing capability. This leads to sedimentation of par-
ticulate material and the formation of a deposit along the underly-
ing boundary. Motivated by this application, Sumner et al. (2008)
conducted experiments to study the rate of growth and composition
of the deposit from a polydisperse suspensions within an annular
flume. By decreasing the rate of its rotation, they generated
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suspensions that were dependent only upon time and the vertical
coordinate. Suspensions within steady but spatially evolving flows
have also been studied in the laboratory. Depositional flows were
created by introducing a sediment excess at a location. This is sub-
sequently deposited downstream as the suspension adjusts to a new
equilibrium (Apmann and Rumer 1970; Jobson and Sayre 1970b;
Ashida and Okabe 1982; Celic and Rodi 1988). However, non-
uniform erosional flows have been created by studying flow and
sediment transport when the basal boundary abruptly changes
from nonerosional to erosional (van Rijn 1984a; Ashida and Okabe
1982).

The analysis in this paper of the response of suspensions from
one state to another builds on some previous studies. By using a
model in which the eddy diffusivity is constant, Tu et al. (1993) and
Pritchard (2006) analytically calculated the temporal response of a
suspension, whereas Stansby and Awang (1998) numerically deter-
mined timescales when the eddy diffusivity varies quadratically
with distance from the boundary. For a steady but spatially evolving
flow that encounters an abrupt change in sediment supply, Mei
(1969) and Hjelmfelt and Lenau (1970) calculated the response
by using a diffusion model of the sediment suspension, whereas
Celic and Rodi (1988) tackled the problem numerically by using
a more complete model of flow and sediment dynamics. Finally,
Claudin et al. (2011) have results that encompass temporal and spa-
tial adjustments, recovering many of the previous results, and
illustrate that they and reproduce some previous experimental
observations.

The calculations in this paper are similar in approach to the
aforementioned new studies, differing somewhat in the choice of
the boundary condition. (In this paper, a flux boundary condition
is applied at the erodible bed, rather than a reference concentration,
which will be subsequently explained.) What is crucial is that it is
shown analytically that the length and time scales of response do
not depend strongly on the precise form of the eddy diffusivity and
are independent of this form in the regimes when the settling veloc-
ity of the particles is much greater than or much less than the bed
friction velocity. This relative invariance of these scales to the pre-
cise empirical representation of the eddy diffusivity is an important
result and permits rather general conclusions to be drawn about the
unsteady and inhomogeneous behavior of the suspension. The rel-
ative invariance to the form of the eddy diffusivity is reminiscent of
the results of Dyer and Soulsby (1988) in which they calculated the
distribution of steady suspensions and the associated particulate
fluxes for a variety of assumed forms of the diffusivity. They
showed that for these steady states, the functional form plays
only a relatively weak role in determining the overall characteristics
of the suspension. In this paper, a somewhat analogous result is
established for the unsteady and inhomogeneous response of a
suspension.

The paper is structured as follows. A model of a turbulent dilute
suspension is first introduced, along with the relevant boundary
conditions. Also, the key dimensionless parameter, the Rouse num-
ber, is identified, which measures the settling velocity relative to the
turbulent bed friction velocity. Then the response of the suspension
to an abrupt change in the bed friction velocity or to the supply of
sediment is analyzed. The suspension tends toward a new steady
state and the difference between the initial and final states decays
exponentially in time or space. This is followed by calculating the
length and time scale of response as the longest characteristic scale
in the exponential decay. The scales of response for varying forms
of eddy diffusivity are evaluated as a function of a settling param-
eter, which is closely related to the Rouse number. It is demon-
strated that the scales of response are independent of the
functional form of the diffusivity to the leading order when the

regimes of the settling parameter are much greater or much less
than unity. The theoretical findings for the longest length and time
scales on which the suspension responds are compared with data
drawn from a series of previously published laboratory experi-
ments. Finally, the results are summarized and some conclusions
are drawn.

Modeling Dilute Suspensions in Turbulent Flows

The average concentration, ϕðx; z; tÞ, of a dilute monodisperse
suspension of particles within a turbulent flow with mean flow field
of u ¼ ðuðzÞ; 0Þ can be modeled by using an expression of mass
conservation, which is given by

∂ϕ
∂t þ u

∂ϕ
∂x � ws

∂ϕ
∂z ¼ ∂

∂z
�
Kz

∂ϕ
∂z

�
þ ∂
∂x

�
Kx

∂ϕ
∂x

�
ð1Þ

This equation is applied between the erodible bed, located at
z ¼ 0, and the free surface at z ¼ h. In this expression, ws denotes
the settling velocity of the sediment and Kz and Kx denote the ver-
tical and horizontal eddy diffusivities, respectively. Transport asso-
ciated with vertical diffusion [ð ∂∂z ðKz

∂ϕ
∂zÞÞ] is often assumed to far

exceed the streamwise diffusive flux [ð ∂∂x ðKx
∂ϕ
∂xÞÞ], and therefore

the latter is often neglected (Mei 1969; Jobson and Sayre
1970a; Stansby and Awang 1998). In this paper, the concentration
field has been averaged over the eddy turnover time and is assumed
to evolve on slower timescales. The diffusive flux,�Kz∂ϕ∕∂z, rep-
resents the vertical flux of sediment resulting from turbulent fluc-
tuations. It is equal to the average of the product of the fluctuations
of the vertical velocity and the concentrations fields. Representing
this transport as a diffusion process is rather crude and fails to cap-
ture some features of the dynamics of the suspension; however, it is
a commonly used empirical closure of turbulent models and may
provide useful quantitative predictions in many situations (Soulsby
1998). Molecular diffusive effects are neglected, which for sand-
sized particles in water are certainly negligible and the settling
velocity is determined by balancing the submerged weight with
the drag. If the sediment is spherical and sufficiently small (for-
mally measured by the Reynolds number on the basis of the settling
velocity and particle size as a much smaller unity), then this balance
yields Stokes’s settling velocity, ws ¼ gðρs � ρf Þd2∕½18μ�, where g
denotes gravitational acceleration; d, the diameter of the particle; ρs
and ρf , the densities of the sediment and suspending fluid, respec-
tively; and μ, the dynamic viscosity of the fluid. If the particle
Reynolds number ðρf wsd∕μÞ is not small, then the settling velocity
more generally may be calculated by using empirical drag laws
(Soulsby 1998).

It is possible to write the eddy diffusivity (Soulsby 1998) as

Kz ¼ κu�ðtÞLf
�
z
L

�
ð2Þ

where κ ¼ 0:4 is von Kármán’s constant; u�ðtÞ denotes the time-
dependent bed friction velocity, as related to the bed shear stress;
τ0 ¼ ρf u2�; L is an appropriate lengthscale for the flow, which is
often chosen to be h; and f ðz∕hÞ is a shape function that attains
a maximum value of unity. For simplicity only planar beds are
treated so that no form drag exists and the basal shear stress is equal
to the skin friction (Fredsoe and Deigaard 1992).

It is further assumed that the particle concentration is suffi-
ciently dilute to have a negligible effect on flow velocity. For steady
flows, the shear stress must vary linearly between the bed and free
surface and is given by τ ¼ τ 0ð1� z∕hÞ. The velocity field is then
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found by using the eddy viscosity formulation τ ¼ ρνe∂u∕∂z,
where νe is the empirical eddy viscosity. The eddy diffusivity,
Kz, is often assumed to be equal to the eddy viscosity νe; however,
the authors note that several studies have investigated situations
when their ratio is not unity and may vary systematically with prop-
erties of the suspension (Dyer and Soulsby 1988). For the purpose
of this investigation and to yield the results on the invariance of the
length and time scales to function form of eddy diffusivity, it is not
necessary to invoke this assumption.

Boundary Conditions

Because the flow is dilute, the depth of any material deposited from
the flow is assumed negligibly small in comparison with the flow
depth, which remains constant. This implies that any material
deposited from suspension or eroded from the bed is “lost” or
“gained,” respectively, from the model. The advection-diffusion-
settling in Eq. (1) is solved by using two boundary conditions that
are applied at the bed (z ¼ 0) and at the free surface (z ¼ h), and a
condition for the initial suspension of particles.

The boundary condition at the free surface is given by a zero
flux condition

Kz
∂ϕ
∂z þ wsϕ ¼ 0 at z ¼ h ð3Þ

At the base is the potential for mass exchange because of erosion
and deposition. Thus, the authors impose

� Kz
∂ϕ
∂z ¼ qðtÞ at z ¼ 0 ð4Þ

where qðtÞ is the basal flux function. In this paper, a popular
empirical closure is used for qðtÞ, which expresses the erosion
rate of the flow (Dyer and Soulsby 1988; Pritchard and Hogg
2002) in the excess Shields parameter, ðθ� θcÞ, where θ ¼ ρu2�∕
½ðρs � ρÞgd� and θc is the critical Shields parameter for incipient
motion. This erosion rate models the vertical flux of particulate
material at the flow bed, and is given by

qðtÞ ¼
(
me

�
θðtÞ
θc

� 1
�
p

for θðtÞ ≥ θc

0 for θðtÞ < θc
; ð5Þ

where me is a dimensional constant, specifying the capacity of the
flow (van Rijn 1984a). The exponent p is a dimensionless param-
eter that is typically in the range of p ¼ 1 to 3.5 (Pritchard and
Hogg 2002).

The suspensions analyzed in this paper are potentially unsteady
and the changes were investigated to the concentration of sediment
as the conditions of the flow were varied. This suggests that it is
inappropriate to specify a reference concentration at the base of the
flow ðz ¼ 0Þ in which the concentration is determined as a function
of the instantaneous Shields parameter. This is easily justified by
considering the response of the suspension to an instantaneous
change in the ability to suspend material. For example, a reference
concentration relationship would instantaneously adjust to a new
concentration value at the bed. In the interior above the boundary,
however, the concentration can only adjust progressively through
settling and diffusive processes. If the ability to support sediment
were abruptly decreased, then the imposition of the reference con-
centration might indeed introduce a gravitationally unstable vertical
profile of concentration. The basal concentration is instead better
specified although a flux condition in which the vertical flux of
particulate is determined by a function that reflects the conditions
at the bed and by the ability of the flow to erode particles [see Cao
and Carling (2002) and references therein].

Dimensional Analysis

Vertical length and time scales of the flow are rendered dimension-
less by the flow depth and the terminal settling velocity. In this way
their dimensionless counterparts are given by T ¼ wst∕h and
Z ¼ z∕h. The dimensionless downstream flow velocity, U, is ex-
pressed as the ratio of the flow velocity to u�∕κ, so that
U ¼ κu∕u�. This choice anticipates that the flow profile is logarith-
mic [U ¼ logð1þ Z∕Z0Þ]. Furthermore, it is convenient to define
the dimensionless streamwise coordinate, X ¼ κwsx∕ðhu�Þ,
because this choice ensures that the unsteady and streamwise
advective terms in Eq. (1) are free of dimensionless ratios. The
important dimensionless parameter in the problem is the settling
parameter β, which measures the relative magnitude of the advec-
tive (i.e., settling) to diffusive processes. The settling parameter is
given by

β ¼ wsh
Km

ð6Þ

where Km is the maximum magnitude of the eddy diffusivity
[Kzðz; tÞ]. It is time dependent; later, flows will be analyzed in
which the diffusivity is time varying. If L ¼ h (Dyer and Soulsby
1988), then β ¼ ws∕ðκu�Þ and this is the Rouse number of the sus-
pension. The magnitude of the Rouse number and settling param-
eter β provide a measure of the ability of the flow to suspend
particles. The threshold of suspension occurs when u�∕ws ≈ 1;
smaller values of this ratio ðβ ≪ 1Þ corresponding to well-mixed
suspensions having relatively high loads of suspended sediment.
When β ≫ 1, steady suspensions feature only very low loads of
suspended sediment because the flow does not generate sufficient
bed shear stresses to erode and entrain particles.

The streamwise eddy diffusivity, Kx, is assumed equal to γKz,
where in the context of investigating the response of suspensions,
Jobson and Sayre (1970a) and Stansby and Awang (1998) suggest
γ ¼ 0, whereas Claudin et al. (2011) set γ ¼ 1. Further the basal
condition on the concentration field introduces a mass loading
parameter defined as the ratio of me to the settling velocity ws,
(M ¼ me∕ws). This sets the scale of the volume fraction of sedi-
ment and influences the capacity of the flow.

By applying the dimensional scalings, the governing advection-
diffusion-settling equation [i.e., Eq. (1)] is written in the dimen-
sionless parameters listed previously

∂ϕ
∂T þ U

∂ϕ
∂X ¼ ∂

∂Z
�
ϕþ f ðZÞ

β
∂ϕ
∂Z

�
þ Γβ

∂
∂X

�
f ðZÞ ∂ϕ∂X

�
ð7Þ

where Γ ¼ γκ4L2∕h2: This equation is solved on the domain
0 ≤ Z ≤ 1, which is subject to the dimensionless boundary condi-
tions given by f ðZÞ

∂ϕ
∂Z ¼ �Q≡�Mβ

(�
θ
θc � 1

�
p θ ≥ θc

0 θ < θc
at Z ¼ 0 ð8Þ

f ðZÞ ∂ϕ∂Z þ βϕ ¼ 0 at Z ¼ 1 ð9Þ

Eddy Diffusivity Closures

The final requirement to complete this model is specifying the func-
tional form of the eddy diffusivity [f ðZÞ]. The simplest eddy
diffusivity model is to assume that the eddy diffusivity function
is spatially invariant (i:e:; f ¼ 1); this implies that the effects of tur-
bulent resuspension of particulate material is homogenous through-
out the flow. This choice is popular because of its simplicity, but
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many alternative closures exist that capture the effects of the
turbulence more accurately (Dyer and Soulsby 1988). In this
paper, the empirical closures of Rouse (1938) and van Rijn
(1984b) are employed, although the methods presented would work
for any distribution and some of the results illustrate the invariance
of this choice. The normalized Rouse and van Rijn eddy diffusivity
functions are given by, respectively,

f ¼ ðZ þ Z0Þð1� ZÞ�
1
2 þ Z0

2

�
2

and f ¼
8<
:

ðZþZ0Þð1�ZÞ
ð12þZ0

2 Þ2 Z ≤ 1
2 � Z0

2

1 Z > 1
2 � Z0

2

ð10Þ

The authors reiterate that in the dimensionless variables introduced
in this study, all closures have been normalized so the maximum of
f ðZÞ is 1. A roughness height, Z0 ≪ 1, has been introduced so the
eddy diffusivity is strictly greater than zero at the base of the
flow. The van Rijn eddy diffusivity is therefore parabolic in
the region 0 ≤ Z ≤ ð1� Z0Þ∕2, and constant in the region
ð1� Z0Þ∕2 < Z ≤ 1. Therefore, f ðZÞ is continuous and smooth
at Z ¼ ð1� Z0Þ∕2. Dyer and Soulsby (1988) further discuss these
eddy diffusivity closures and other variations. With the Rouse and
van Rijn forms of f ðZÞ, the lengthscale L ¼ h and the settling
parameter, β, is identical to the Rouse number; if the diffusivity
is uniform, then L ¼ h∕6 (Claudin et al. 2011).

Unsteady and Inhomogeneous Flows

The response of the concentration field to changes in the sus-
pending flow field or sediment supply are now examined. To this
end, solutions to the governing advection-diffusion-settling Eq. (7)
are analyzed when an abrupt change occurs in the conditions at
X ¼ 0 or T ¼ 0. This could correspond to an instantaneous reduc-
tion in the bed friction velocity at T ¼ 0 (generating a temporal
response) or a change in sediment supply at X ¼ 0 (generating
a purely spatial response). Such changes alter the ability of the flow
to maintain sediment in suspension and the concentration therefore
progressively adjusts from an initial steady state [ϕ ¼ ϕIðZÞ] to a
new steady state [ϕ ¼ ϕFðZÞ] characterised by the settling param-
eter and the sediment supply. For flows in which the bed friction
velocity is altered, it is possible for the Shields parameter of the new
state to fall below the critical value for erosion from the bed. In this
case, the flow can not steadily suspend any material and so ϕF van-
ishes. By denoting the settling parameter for the initial and final
states by βI and βF , respectively, the steady solutions of Eq. (7),
dependent only on Z, are given by

ϕI ¼
QI

βI
exp

�
�
Z

Z

0

βI
f ðsÞ ds

�
and

ϕF ¼ QF

βI
exp

�
�
Z

Z

0

βF
f ðsÞ ds

� ð11Þ

In this expression,QI andQF denote the dimensionless fluxes of
sediment from the basal boundary in the initial and final situations
given by Eq. (8) and evaluated at the initial and final flow condi-
tions, respectively.

Because the governing Eq. (7) is linear, a solution is sought in
X > 0 for T > 0 of the form

ϕðX; Z;TÞ ¼ ϕFðZÞ þ ϕDðX;Z; TÞ ð12Þ
where ϕD represents a temporally and spatially decaying field as the
volume fraction adjusts from its initial value. Both ϕF and ϕD sat-
isfy the same governing Eq. (7). However, the boundary conditions
applicable to the decaying field are

f ðZÞ ∂ϕD

∂Z ¼ 0 at Z ¼ 0 and f ðZÞ ∂ϕD

∂Z þ βFϕD ¼ 0

at Z ¼ 1 ð13Þ

A separable solution for ϕD is given by

ϕD ¼
X∞
m¼0

X∞
n¼0

PmðXÞRnðTÞSmnðZÞ ð14Þ

Substituting this ansatz into the advection-diffusion-settling
Eq. (7), the components PmðXÞ and RnðTÞ are

PmðXÞ ¼ e�μmX and RnðTÞ ¼ e�λnT ð15Þ
independent of the eddy diffusivity model used. However, the ei-
genvalues μm and λn are dependent on the choice of model. (Here
the eigenvalues are ordered so that μ0 ¼ 0 < μ1 < μ2 < μ3… and
λ0 ¼ 0 < λ1 < λ2 < λ3….) From Eq. (7), the component SmnðZÞ
is determined by the general eigenvalue equation

∂
∂Z

�
f ðZÞ ∂Smn∂Z

�
þ βF

∂Smn
∂Z þ ðλnβF þ μmUβF

þ β2FΓμ2
mf ÞSmn ¼ 0

ð16Þ

subject to the homogeneous boundary conditions (13). In the prob-
lems that follow, the authors are interested in either purely temporal
or purely spatial decay toward the final steady state. These corre-
spond to the two families of functions, S0nðZÞ and Sm0ðZÞ, in which
S00ðZÞ ¼ 0. It is then possible to identify the dominant length or
time scales of the decaying solution, ϕD. These are given in the
smallest nonzero eigenvalues λ1 and μ1 (Pritchard 2006). The di-
mensional length and time scales of the response, xr and tr, are
therefore given as

xr ¼
hu�

κwsμ1
and tr ¼

h
wsλ1

ð17Þ

In what follows solutions are analyzed first for the constant dif-
fusivity before tackling numerically the results for the Rouse and
van Rijn diffusivities. Focus is on computing the timescale on
which the suspension responds and it is demonstrated that this
is independent of the form of the diffusivity in the regimes βF ≪ 1
and βF ≫ 1.

Constant Eddy Diffusivity

For a constant diffusivity [i.e., f ðZÞ ¼ 1], the concentration profile
changes from an initial to final state, given by, respectively,

ϕI ¼ M

�
θI
θc

� 1

�
p
e�βI Z and ϕF ¼ M

�
θF
θc

� 1

�
p
e�βFZ ð18Þ

where θI and θF denote the values of the Shields parameter in the
initial and final states.

The purely temporal case for which the decaying volume frac-
tion was derived by Tu et al. (1993) and Pritchard (2006) is given
by

S0nðZÞ ¼ Bne�
βF
2 Z

�
2αn

βF
cosðαnZÞ þ sinðαnZÞ

�
; ð19Þ

where Bn are constants determined by the initial condition and the
eigenvalue λn is determined by

λn ¼
βF
4
þ α2

n

βF
and tanαn ¼

4αnβF
4α2

n � β2F
ð20Þ
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Fig. 1 plots the variation of the smallest eigenvalue, λ1, as a func-
tion of βF . Following Pritchard (2006), it is possible to show that
the asymptotic behavior in the regime βF ≪ 1

λ1 ¼ 1þ βF
6
þ… ð21Þ

and in the regime βF ≫ 1

λ1 ¼
βF
4
þ π2

βF
þ… ð22Þ

These asymptotic estimates (Fig. 1) capture accurately the
dependence of the smallest eigenvalue λ1 on the settling parameter
βF in their appropriate regimes.

The spatial problem is analyzed next under the further
assumption that the velocity field is spatially uniform (Stansby
and Awang 1998; Mei 1969). It is found that

Uμn þ ΓβFμ2
n ¼

βF
4
þ α2

n

βF
and tanαn ¼

4αnβF
4α2

n � β2F
ð23Þ

Fig. 1 plots the dependence of the smallest eigenvalue, μ1, for
various values of Γ. It is also possible to readily identify the asymp-
totic behaviors in the regime βF ≪ 1

μ1 ¼ 1∕U þ
�

1
6U

� Γ
U3

�
βF þ… ð24Þ

whereas in the regime 2U∕
ffiffiffi
Γ

p
≫ βF ≫ 1

μ1 ¼
βF
4U

� π2

UβF
þ… ð25Þ

and finally when βF ≫ 2U∕
ffiffiffi
Γ

p

μ1 ¼
1

2
ffiffiffi
Γ

p � U
2ΓβF

þ… ð26Þ

The regime of βF ≫ 1 is not realized by erosional flows for
which the Shields number does not exceed the critical value for
incipient motion. However, this regime ðβF ≫ 1Þ could be accessed
by releasing suspended sediment into the flow and studying how it
settles out of suspension (see the discussion of experimental studies
in the section “Comparison to Experimental Results”). Claudin
et al. (2011) also calculated the lengthscales of response when
the diffusivity was spatially uniform, establishing the asymptotic
result [Eq. (24)] in the regime βF ≪ 1. Claudin et al. (2011) also
suggested that essentially the same results arose if the velocity field
were logarithmic ðU ¼ logð1þ z∕z0ÞÞ instead of pluglike. This ob-
servation may be demonstrated numerically by calculating the
smallest eigenvalue, μ1 as a function of βF . In Fig. 2, the eigenvalue
μ1, normalized by the average velocity ðR 1

0 UdZÞ, is plotted as a
function of βF for a uniform and logothrimic velocity profile
and close correspondence is shown between the two cases. In fact,
this correspondence is a manifestation of much more general result
that is subsequently established.

(a)

(b)

(i)

(ii)

(iii)

(iv)

(v)

Fig. 1. The smallest eigenvalue (λ1 or μ1) as a function of the settling
parameter when the diffusivity is constant ðf ðZÞ ¼ 1Þ for (a) the purely
temporal problem and (b) the purely spatial problem; In (a) the solid
line corresponds to the exactly computed solution and the dashed
lines correspond to the asymptotic forms in the regimes βF ≪ 1 and
βF ≫ 1; In (b) the solid curves (i)–(v) correspond to the following
values of Γ: (i) Γ ¼ 0; (ii) Γ ¼ 0:001; (iii) Γ ¼ 0:01; (iv) Γ ¼ 0:1;
and (v) Γ ¼ 1

(i)

(ii)

Fig. 2. The smallest eigenvalue for the purely spatial problem, μ1,
normalized by the dimensionless average velocity,

R
1
0 UðZÞdZ, and

plotted as a function of the settling parameter βF when f ðZÞ ¼ 1 for
(i) U ¼ 1 and (ii) U ¼ logð1þ Z∕Z0Þ with Z0 ¼ 10�6
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Spatially Varying Eddy Diffusivities

The time- and lengthscales of response of suspensions are now an-
alyzed by using a spatially varying diffusivity f ðZÞwith a particular
focus on the Rouse and van Rijn distributions introduced previ-
ously in Eq. (10), when the dimensionless velocity field is
U ¼ logð1þ Z∕Z0Þ. By using a boundary value solver in MatLab,
the authors numerically integrated the differential Eq. (16) subject
to (13) to determine the eigenvalues, λn and μm. Some care is re-
quired when using the Rouse diffusivity, which vanishes at Z ¼ 1.
However, this can be tackled by calculating the local expansion of
SðZÞ in this region. In these calculations, the dimensionless rough-
ness is given by Z0 ¼ 10�6; however, similar behavior occurs for
other values. In Figs. 3 and 4, the smallest eigenvalue, λ1 or μ1, is
plotted as a function of the settling parameter, βF , which is identical
to the Rouse number for these diffusivities. Eigenvalues λ1 and μ1

are increasing functions of the Rouse number; that they attain val-
ues for relatively small βF , which are independent of the assumed

form of the diffusivity and of Γ; and that their values for relatively
large values of βF are dependent on Γ.

The authors then determined the asymptotic behavior of the ei-
genvalues λ1 and μ1 and demonstrate that its value in the regimes
βF ≪ 1 and βF ≫ 1 is independent of f ðZÞ.

Asymptotic Solutions for the Regime βF ≪ 1

The smallest nonzero eigenvalues, μ1 and λ1 in the regime βF ≪ 1
may be evaluated by determining the asymptotic forms of the
solution for S01ðZÞ and λ1 and for S10ðZÞ and μ1 in Eq. (16). First,
the temporal problem is treated by posing the following series
expansions:

ϕD ¼ e�λ1Tð~S0ðZÞ þ βF~S1ðZÞ þ β2F~S2ðZÞ þ…Þ ð27Þ

λ1 ¼ λ10 þ βFλ11 þ β2Fλ12 þ… ð28Þ

(a)

(b)

(i)

(ii)

(iii)

Fig. 3. The smallest eigenvalue (λ1 or μ1) as a function of the settling
parameter when the diffusivity is given by the Rouse form for (a) the
purely temporal problem ðλ1Þ and (b) the purely spatial problem ðμ1Þ;
In (a) the solid line corresponds to the exactly computed solution
and the dashed lines (indistinguishable) correspond to the asymptotic
forms in the regimes βF ≪ 1 ðλ1 ¼ 1þ βFλ11 þ…Þ and
βF ≫ 1 ðλ1 ¼ βF∕4þ 1∕ð1þ Z0Þ þ…Þ; In (b) the solid curves
correspond to the following values of Γ: (i) Γ ¼ 0; (ii) Γ ¼ 10�1;
and (iii) Γ ¼ 1

(a)

(b)

(i)

(ii)

(iii)

Fig. 4. The smallest eigenvalue (λ1 or μ1) as a function of the settling
parameter when the diffusivity is given by the van Rijn form for (a)
the purely temporal problem ðλ1Þ and (b) the purely spatial problem
ðμ1Þ; In (a) the solid line corresponds to the exactly computed solution
and the dashed lines correspond to the asymptotic forms in the regimes
βF ≪ 1 ðλ1 ¼ 1þ βFλ11 þ…Þ and βF ≫ 1 ðλ1 ¼ βF∕4þ 9π2∕
½4ð1þ Z0Þ2βF � þ…Þ; In (b) the solid curves correspond to the follow-
ing values of Γ: (i) Γ ¼ 0; (ii) Γ ¼ 10�1; and (iii) Γ ¼ 1
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for the unknown functions ~SiðZÞ and constants λ1i. These are sub-
stituted into the governing equations and equated at successive
powers of βF . At Oð1Þ, it is found that

d
dZ

�
f ðZÞ d

~S0
dZ

�
¼ 0; subject to f

d~S0
dZ

¼ 0 at Z ¼ 0; 1 ð29Þ

Therefore, ~S0 ¼ C, a constant that is not yet undetermined. At
OðβFÞ,

d
dZ

�
f ðZÞ d

~S1
dZ

�
þ d~S0

dZ
þ λ10~S0 ¼ 0 ð30Þ

which is subject to f d~S1∕dZ þ ~S0 ¼ 0 at Z ¼ 1 and f d~S1∕dZ ¼ 0 at
Z ¼ 0. Therefore, it is deduced that

~S1 ¼ C1 � C
Z

Z

0

Z 0

f ðZ 0Þ dZ and λ10 ¼ 1 ð31Þ

where C1 is another constant that is not yet undetermined. At
Oðβ2FÞ, the authors found

d
dZ

�
f ðZÞ d

~S2
dZ

�
þ d~S1

dZ
þ λ10~S1 þ λ11~S0 ¼ 0 ð32Þ

which is subject to f ∂~S2∕∂Z þ ~S1 ¼ 0 at Z ¼ 1 and f ∂~S2∕∂Z ¼ 0
at Z ¼ 0. Therefore, it is deduced that

λ11 ¼
Z

1

0

Z
Z

0

Z 0

f ðZ 0Þ dZ
0dZ ¼

Z
1

0

Z 0ð1� Z 0Þ
f ðZ 0Þ dZ 0 ð33Þ

In dimensional variables, the timescale for response is given by

tr ¼
h
ws

ð1� βFλ11 þOðβ2FÞÞ; βF ≪ 1 ð34Þ

At the leading order, the timescale is independent of the form
of the eddy diffusivity f ðZÞ, which influences λ1 only at OðβFÞ.
This implies that at small values of the settling parameter (when
the intensity of turbulence is relatively high), the timescale of
response to change in flow conditions is given by the relatively
slow timescale on the basis of settling through the flow
depth ðh∕wsÞ.

The analysis for the purely spatial problem follows analogous
steps. The volume fraction is posed as ϕD ¼ e�μ1XðŜ0þ
βFŜ1 þ…Þ, the eigenvalue μ1 ¼ μ10 þ βFμ11 þ… and deduced
that

μ1 ¼
1R

1
0 UðsÞdsþ OðβFÞ when βF ≪ 1 ð35Þ

In the dimensional form, the leading order expression for the length-
scale of response is given by

xr ¼
hu�
κws

Z
1

0
UðsÞds ¼ h u

ws
ð36Þ

where u denotes the depth-averaged flow speed. This result for the
lengthscale of response in the regime βF ≪ 1 is independent of the
form of the eddy diffusivity.

Asymptotic Solutions for the Regime βF ≫ 1

The asymptotic solutions for the leading order decay rates λ1 and
μ1 may be determined in the regime βF ≫ 1. In this section, a gen-
eral method is presented for calculating the dependence of λ1 and
μ1 upon βF , which is illustrated for each of the three forms of dif-
fusivity that have been analyzed throughout this paper. However,

the analysis also establishes that the leading order dependence
of the decay rate is independent of the functional form of the
diffusivity.

For the first step, the decaying component of the concentration
field for the purely temporal and spatial problem is written as� ϕDðZ; TÞ

ϕDðX;ZÞ

	
¼

X∞
n¼1

�
e�λnT

e�μnX

	
f ðZÞ�1∕2

× exp

�
�
Z

Z

0

βF
2f ðZ 0Þ dZ

0
�
ψnðZÞ ð37Þ

This transforms the governing equation to

d2ψn

dZ2 þ β2FHnðZÞψn ¼ 0 ð38Þ

where

HnðZÞ ¼
χn

βFf
� 1
4f 2

þ f 02

4β2Ff 2
� f 00

2β2Ff
ð39Þ

and χn ¼ λn or χn ¼ μnU þ μ2
nΓβFf for purely temporal and

spatial problems, respectively. In this expression, a prime denotes
differentiation with respect to Z. The boundary conditions become

fψ0
n � 1

2ðβF þ f 0Þψn ¼ 0 at Z ¼ 0 and

fψ0
n þ 1

2ðβF � f 0Þψn ¼ 0 at Z ¼ 1
ð40Þ

In the regime βF ≫ 1, this problem is now amenable to WKB
techniques (Hinch (1992) for which the asymptotic solution is
given by

ψnðZÞ ¼
1

H1∕4
n

�
C cos

�
βF

Z
Z
H1∕2

n dZ 0
�

þ D sin
�
βF

Z
Z
H1∕2

n dZ
��

ð41Þ

in the regime HnðZÞ > 0, with C and D constants that are not yet
undetermined. If conversely HnðZÞ < 0, then a similar expression
to Eq. (14) exists, but hyperbolic functions replace the trigonomet-
ric functions. To the leading order, the boundary conditions demand
that ψnð0Þ ¼ ψnð1Þ ¼ 0; therefore, if HnðZÞ < 0 for 0 ≤ Z ≤ 1,
then only the trivial solution ψnðZÞ ¼ 0 is found. However, if
HnðZÞ > 0 for 0 ≤ Z ≤ 1, then the boundary conditions may be sat-
isfied if

sin

�
βF

Z
1

0
H1∕2

n dZ

�
¼ 0 ð42Þ

Such a regime occurs for the temporal problem with a constant dif-
fusivity i:e:; f ¼ 1, in which case the leading order eigenvalue equa-
tion for λn is given by

βF

�
λn
βF

� 1
4

�
1∕2

¼ nπ; n ∈ Z ð43Þ

In the regime βF ≫ 1, this leads to λn ¼ 1
4βF þ n2π2

βF
þ…. This

result reproduces exactly the first two terms of the asymptotic
expression derived previously [Eq. (22)].

However, the function HnðZÞ will generally have regions in
which it is positive or negative, as in the Rouse and van Rijn dis-
tributions introduced previously in Eq. (10). In this case, applying
the WKB method is more complicated because of the form of the
function HnðZÞ as it passes through zero. In the case in which two
zeros exist for HnðZÞ so that HnðZÞ > 0 for Z2 > Z > Z1 (as for
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the Rouse diffusivity), then the eigenvalue equation becomes
[Hinch (1992)]

sin

�
βF

Z
Z2

Z1

H1∕2
n dZ þ π

2

�
¼ 0 ð44Þ

However, if just a single zero exists so that HnðZÞ > 0 for 1 ≥ Z >
Z1 (as for the van Rijn diffusivity), then the eigenvalue equation
becomes [Hinch (1992)]

sin

�
βF

Z
1

Z1

H1∕2
n dZ þ π

4

�
¼ 0 ð45Þ

The eigenvalue may then be evaluated in the regime βF ≫ 1. For
Eq. (44) or Eq. (45) to remain balanced require that
maxðχnf Þ ¼ βF∕4. The leading order eigenvalues can immediately
be deduced for the purely temporal problem

λ1 ¼
βF
4
þ… when βF ≫ 1 ð46Þ

For the purely spatial problem when Γ ≠ 0, then

μ1 ¼
1

2
ffiffiffi
Γ

p þ… when βF ≫ 1 ð47Þ

Both of these results are independent of the form of the eddy dif-
fusivity. When Γ ¼ 0 (Stansby and Awang 1998), then

μ1 ¼
βF

4maxð f UÞ þ… when βF ≫ 1 ð48Þ

In this latter case, a weak dependence exists on the form of the
diffusivity. For the Rouse diffusivity with Z0 ¼ 10�6. It may be
calculated that maxðf UÞ ¼ 13:14, whereas for the van Rijn diffu-
sivity, the authors calculated maxðf UÞ ¼ 13:82.

These results may be established for a general diffusivity f ðZÞ
by using this WKB analysis. To this end, it is assumed that m
regions exist in which HnðZÞ > 0 with HnðZ2j�1Þ ¼ 0 and
HnðZ2jÞ ¼ 0 ð1 ≤ j ≤ mÞ. The WKB eigenvalue equation then
becomes

sin

�
βF

Xm
j¼1

�Z
Z2j

Z2j�1

H1∕2
n dZ þ π

2

��
¼ 0 ð49Þ

In the regime βF ≫ 1, it may be deduced that Eq. (49) can only
remain balanced if maxðχnf Þ ¼ βF∕4, as previously. Therefore,
for the purely temporal problem, the dimensional timescale of
response is given by

tr ¼
4κu�L
w2
s

ð50Þ

whereas for the purely spatial problem, the dimensional lengthscale
of response is

xr ¼
2

ffiffiffiγp κu�L
ws

ðγ ≠ 0Þ xr ¼
4u2�L
w2
s

maxðf UÞ ðγ ¼ 0Þ

ð51Þ

Comparison To Experimental Results

Several experimental studies have measured the spatial develop-
ment of sediment suspensions in response to a sustained change
of boundary conditions and the results of this paper may be com-
pared with these observations. The experiments encompass flows

that are either net depositional (Jobson and Sayre 1970b; Ashida
and Okabe 1982; Celic and Rodi 1988) in which an excess of sedi-
ment is supplied at x ¼ 0 and evolves downstream to a steady state
or they are net erosional (Ashida and Okabe 1982; van Rijn 1984a)
in which an initially sediment-free fluid encounters an erosional
bed at x ¼ 0 and picks up sediment until attaining the steady state.
The former flow may be termed “overcapacity” and deposit until
attaining equilibrium, whereas the latter are “undercapacity” and
erode until attaining equilibrium. The experimental studies report
the suspended sediment flux at various locations downstream of the
point at which sediment is introduced to the flow, crucially over
relatively long distances so that the approach to the downstream
equilibrium may be assessed.

The measured spatial decay of the suspensions toward the
steady state may be compared with the leading order decay rates
predicted by the theoretical calculations. To this end, the leading
order decay rate, μ1, is calculated for a given settling parameter.
In Fig. 5, the predicted lengthscale of response relative to the flow
depth, xr∕h, is plotted as a function of ws∕½κu��, when the dimen-
sionless roughness length Z0 ¼ 10�6, the dimensionless average
flow speed is 12.8, and γ ¼ 1, for each of the forms of the diffu-
sivity investigated in detail in this study. The results for the van Rijn
and Rouse forms are very similar, but the results for the uniform
diffusivity always exceed the predictions for the other two diffusiv-
ity forms by a factor of up to approximately 2 in the range plotted.
The van Rijn model of the diffusivity is selected to compare the
theoretical predictions with the experimental data and the smallest
eigenvalue, μ1, is calculated with the further assumption that the
velocity field is logarithmic [U ¼ logð1þ z∕z0Þ] and that stream-
wise diffusion is included ðγ ¼ 1Þ; however, this latter factor plays
only a negligible effect on the mangnitube of μ1. This indicates that
the attempts to fit the experimental data differ from the results of
Claudin et al. (2011), who employed a uniform diffusivity. All ero-
sional and depositional experiments report the bed friction velocity,
u�, but not all experiments provide the roughness length, which is
required to determine the velocity profile. This may be determined
by imposing a logarithmic dimensionless velocity profile, UðzÞ ¼
logð1þ z∕z0Þ, and requiring that

R
1
0 UðzÞdz gives the reported

dimensionless mean velocity.

(i)

(ii)

(iii)

Fig. 5. The lengthscale of response, relative to the depth of the flow
(xr∕h), as a function of ws∕½κu�� with dimensionless roughness length
Z0 ¼ 10�6, dimensionless average velocity uκ∕u� ¼ 12:8, and γ ¼ 1
for (i) uniform eddy diffusivity; (ii) van Rijn diffusivity; and (iii) Rouse
diffusivity

JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MAY 2012 / 437

Downloaded 24 May 2012 to 137.222.80.119. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



For the depositional studies, the difference between the mea-
sured downstream flux of sediment, qsðxÞ, and its downstream
value, q∞, is plotted as a function of the downstream distance. This
is normalized by the difference between the initial value and q∞,
Δqd ¼ ½qsðxÞ � q∞�∕ðqsð0Þ � q∞Þ [Fig. 6(a)]. In dimensional
variables, the flux is defined by

qsðxÞ ¼
Z

h

0
cudz: ð52Þ

Jobson and Sayre (1970b) also presented data for the spatial
evolution of the normalized cumulative volume of deposited

particles as a function of distance, denoted by 1� ΦðxÞ, and mea-
sured with much greater spatial resolution than the suspended flux
of particles. In Fig. 6, ΦðxÞ is plotted as a function of distance as a
further test of the theoretical predictions because this quantity will
also exhibit the same e-folding lengthscales. Good agreement exists
between the experimental observations and the theoretical predic-
tions [see Fig. 6(a) and Table 1].

For the erosional flows, the suspended flux normalized by the
equilibrium flux far downstream Δqe ¼ qsðxÞ∕q∞ [Fig. 6(b)] is
plotted as a function of distance downstream. The experiments con-
ducted by Ashida and Okabe (1982) have measurements suffi-
ciently far downstream that the quantity, q∞, may be readily
determined; however, for van Rijn (1984a) some uncertainty exists
in this equilibrium value. The value of q∞ theoretically calculated
by van Rijn (1984a) is in fact exceeded by the measured fluxes.
Several possible reasons may exist for this difference. For example,
the theoretical prediction uses an empirical formula that may be
subject to significant error and the erosive flows generate a scour
pit, which is not included in these computations (van Rijn 1984a).
With these uncertainties, the authors determined a best fit for the
flux far downstream. Reasonable agreement exists between the
experimental measurements and the theoretical predictions [see
Fig. 6(b) and Table 1].

Summary and Conclusions

In this paper, the unsteady response of suspensions to instantaneous
changes in their ability to support material and the spatial evolution
when the sustained supply of sediment is altered has been analyzed.
The turbulence has been modeled by using a simple empirical clo-
sure in which its effect on the relatively dense sediment is captured
through eddy diffusivity. Many closures have been suggested for
this type [Dyer and Soulsby (1988)]. However, results presented
in this paper have utilized three popular forms and established some
general results. For the dimensional timescale of response, tr , it has
been shown that when the settling parameter is small ðβ ≪ 1Þ, tr ¼
h∕ws þ… and when the settling parameter is large ðβ ≫ 1Þ, then
tr ¼ 4κu�L∕w2

s þ…. Pritchard (2006) had previously demon-
strated these dependencies for a constant diffusivity. However, this
paper has extended them to all other forms of diffusivity. The di-
mensional factors in these results may be rationalized as follows:
when the settling parameter is small, the sediment is well-mixed
throughout the fluid depth. Any adjustment therefore requires set-
tling throughout the depth, which occurs on a timescale h∕ws. Con-
versely, when the settling parameter is large, the sediment is
suspended in a boundary layer close to the basal boundary. The
size of this boundary layer is Km∕ws. Temporal adjustment requires
settling over this lengthscale and this occurs on a timescale given
by Km∕w2

s. Focusing next on the spatially evolving problem, when
the settling parameter is small ðβF ≪ 1Þ, the lengthscale of

Table 1. Experimental Conditions, Parameter Values and Calculated
Eigenvalues

Experiment u� ws ws∕½κu�� z0∕h μ1 xr∕h

Jobson and Sayre

(1970b) Data series FS1

4.48 1.05 0.59 0.023 0.386 27.6

Jobson and Sayre

(1970b) Data series CSI

4.51 6.2 3.44 0.023 0.551 3.30

Ashida and Okabe

(1982)

3.54 0.019 1.31 0.006 0.298 16.0

van Rijn (1984a) 4.8 2.2 1.15 0.0013 0.215 25.2

(a)

(b)

(i)

(i)

(ii)

(ii)(iii)

Fig. 6. Comparison of the theoretical predictions and the experimental
measurements for (a) depositional experiments and (b) erosional ex-
periments; In (a) the symbols correspond to the direct measurements
of the relative sediment flux (Δqd: Φ: series FS1, Jobson and Sayre
(1970b); □: series CS1, Jobson and Sayre (1970b); and +: Ashida
and Okabe (1982)]; the connected symbols correspond to the measure-
ments of the cumulative deposit, Φ; and the solid lines correspond to
the exponential decay corresponding to the smallest eigenvalue; In
(b) the symbols correspond to direct measurements of the relative
sediment flux (Δqe: □: van Rijn (1984a); ∘ Ashida and Okabe
(1982; and the solid lines correspond to the exponential increase
C½1� expð�μ1XÞ� associated with the smallest eigenvalue, where
C ¼ 1 for the Ashida and Okabe (1982) data and C takes fitted value
of 1:94 for the van Rijn (1984a) data
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response is utr ¼ uh∕ws because the sediment has to settle through
the entire water column. However, if the settling parameter is large
ðβF ≫ 1Þ, streamwise diffusion dominates streamwise advection
and the lengthscale of response is equal to the size of the vertical
boundary layer, and scaled by the square root of the ratio of the
vertical and streamwise diffusivities, xr ∼ ffiffiffiγp

Km∕ws.
An important consequence of this analysis is the varia-

tion of the timescale of response have different settling velocities.
Provided the concentration is sufficiently dilute, the behavior of each
class of particles may be considered independently and then the re-
sults derived above imply different dependencies of the response
timescale upon the settling velocity, depending on whether the set-
tling parameter for the particular class of particles of interest is much
greater than ormuch less than unity. For polydisperse suspensions of
sediment in a waning turbulent flow in which the particles are pro-
gressively settling out to the underlying boundary, the different
time- and lengthscales for each class will affect the composition
of the underlying deposit. Sumner et al. (2008) recently examined
flows of this type experimentally. They analyzed the deposit formed
under a decelerating flow and they particularly focused on the varia-
tion of the mean grain size with depth through the deposit. The pat-
tern of grading that they observed may be partly attributed to
variations in the response timescale of the particles in suspension
as the flow conditions change; however, direct comparison of the
experimental results and the theoretical predictions developed in this
paper is not possible because the flow speed (and turbulence inten-
sity) changed progressively, rather than instantaneously.

In conclusion, the results in this study have established that some
differences exist in the predictions for suspensions when using dif-
ferent forms for the eddy diffusivity; however, features exist, particu-
larly in the time- and lengthscales of response, that are invariant to
the assumed form of the diffusivity in the regimes of large and small
settling parameter. This suggests that whenmodeling the response of
turbulent suspensions in complex unsteady geomorphological or
sedimentological problems (Huijts et al. 2006), it may be possible
to use the simplest closures for eddy diffusivity if the focus is on the
generic evolution of the suspension rather than on the quantitative
prediction of rates of erosion and deposition.
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