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a b s t r a c t 

Dynamic settling is the phenomenon whereby a relatively dense particle settles through a sheared flow 

of a non-Newtonian fluid at a speed that depends on the shear rate of the background flow. This means 

that due to the nonlinear rheology, the settling velocity may vary spatially and temporally as the back- 

ground shear rate of the suspending fluid varies, an effect which does not occur in Newtonian fluids. In 

this contribution, the consequences of this dependency are explored for a dilute suspension of particles 

released uniformly from a source in a sustained and externally-driven flow of shear-thinning fluid. It is 

shown theoretically that the concentration field does not remain uniform, but evolves downstream, al- 

lowing calculation of the runout length, settling times and distribution of the deposited particles. Flows 

with a velocity maximum are demonstrated to affect the concentration field very strongly as they de- 

velop a ‘kinematic barrier’ over which settling times are considerably lengthened. Flows with bi-disperse 

suspensions are shown to produce deposits that vary non-monotonically in thickness and composition 

with distance downstream, an effect which is solely due to dynamic settling. Finally flows of viscoplastic 

fluids which exhibit yielded and unyielded regions may accentuate the role and effects of the kinematic 

barrier to settling. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The transport of relatively dense particles in a flow of a shear-

hinning or viscoplastic fluid occurs in many natural and indus-

rial settings. Examples include the transport of cuttings by drilling

ud [1] , proppant emplacement in hydraulic fracturing (e.g. [2] ,

ection 6.2), the transport of coarse material such as sand and

ravel in a fine-grained slurry [3,4] or debris flow [5,6] and the

andling of two-phase materials in food processing [7] . Key ques-

ions for modelling such flows include the distance that particles

an be transported before settling out, the time they take to do

o, the geometry of the deposit, and the distribution of grain sizes

ithin it. 

A small particle suspended in an otherwise quiescent non-

ewtonian fluid will typically settle in a laminar regime at a con-

tant speed [8–10] , unless the gravitational stress that the dense

article exerts is unable to overcome the yield stress of the sus-

ending fluid [11] . However, if the fluid is not quiescent then the

onlinearity of the rheology means that the background flow af-

ects the settling. In a flow which is sheared on a rather larger
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cale than the scale of the particle, the background shear rate de-

ermines the local viscosity of the fluid, which in turn determines

he settling velocity. An extreme case occurs when the fluid has a

ield stress, in which case small suspended particles may be sup-

orted indefinitely when the fluid is static, but then settle when

he fluid is set in motion by forces that exceed the yield stress. 

This dependence of settling velocity on the background flow is

ometimes referred to as ‘dynamic settling’ and has been known

or many years in the oil and process engineering communities

2,12–15] . Because it allows particles to be carried long distances

n relatively low-shear flows, it can be a desirable effect in, for ex-

mple, the transport of drill cuttings; however, it is among the fac-

ors implicated in undesirable phenomena such as barite sag [16] .

Confusingly, it may act in conjunction with Boycott settling, also

eferred to in the literature as ‘dynamic settling’.) Under the name

f ‘competence variation’ [5] , it has also been proposed as a mech-

nism for inverse grading in deposits from muddy flows. 

Despite these applications, dynamic settling has hitherto re-

eived relatively little attention from fluid dynamicists. Notable

xperimental contributions have included those of Merkak et al.

17,18] , who studied experimentally the flow and sedimentation of

mall particles suspended in a viscoplastic gel, and that of Ovar-

ez et al. [19] has examined experimentally the shear-induced sed-
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s  
imentation of relatively small particles in yield stress fluids us-

ing MRI to determine the evolving concentration within a sheared

Couette device. The most substantial modelling contribution has

been that of De Angelis and Mancini [20] (and see also the re-

view by [4] ), who used an empirical settling velocity correlation to

calculate the trajectories of particles settling within a viscoplastic

pipe flow and feeding a mobile dense layer at the bottom of the

pipe, under which a static deposit grew. 

In this contribution, we analyse a simple model of dynamic set-

tling in horizontal shear flows of a shear-thinning fluid, and inves-

tigate the fate of particles as they are transported downstream and

settle out of suspension. This model reveals that dynamic settling

may have a number of interesting consequences, including strong

effects on transport distances, the development of statically unsta-

ble particle concentration gradients within the flow, and the for-

mation of deposits that neither thin nor become finer monoton-

ically with distance downstream from the source. The latter two

effects cannot occur with particles settling from a flowing Newto-

nian fluid, for which the settling velocity is constant and increases

monotonically with particle size. Instead the development from a

uniform source of statically unstable concentration gradients and

spatially varying deposits is due to dynamic settling. The vital cou-

pling in shear flows of shear-thinning fluids that leads to these

phenomena is that the settling velocity is reduced in regions of

low shear rates and thus these zones can act as ‘kinematic barri-

ers’ to settling particles. 

The situation is more complicated when the suspending fluid

possesses a yield stress, because relatively heavy particles could be

fully supported within unyielded regions and even if they are of

a sufficient submerged weight to overcome the yield stress, their

sedimentation is affected by the yield stress [11] . In this study,

we examine theoretically how a yield stress, and associated un-

yielded regions within a flow with spatially varying shear rates,

influence dynamic settling. We focus on particles that are not ar-

rested within the unyielded regions (unlike [20] ) and we examine

how the yield-stress effects complement the kinematic barrier due

to the shear-thinning properties of the fluid. 

We formulate a model for the flow in Section 2 , basing our ex-

position on power-law fluids. We show in the appendix that an

equivalent analysis can be carried out for fully developed flows of

any generalised Newtonian fluid, but for the purposes of discussing

the interplay of dynamical processes in these flows, we employ the

simple power-law rheology (and later when analysing viscoplas-

tic flows, the Herschel–Bulkley rheology). We tackle theoretically

three related problems, which illustrate the consequences of dy-

namic settling. First we analyse settling within a horizontal free-

surface flow driven by a constant pressure gradient ( Section 3 ).

We show how a non-uniform distribution of concentration arises

due to dynamic settling effects. We then analyse the suspension

within a two-dimensional channel, also driven by a constant pres-

sure gradient ( Section 4 ). The imposition of a no-slip condition at

the upper surface retards the fluid motion and introduces an in-

terior velocity maximum. We show that the maximum distance

propagated by the particles within the channel flow is always less

than in a free-surface flow of the same depth, driven by the same

pressure gradient, but that the time taken for full settling to oc-

cur is always increased. However, somewhat counter-intuitively, for

strongly shear-thinning fluids, the median of the depositional flux

can be further from source in the channel flow than in the free-

surface flow. We analyse a dilute bidisperse suspension ( Section 5 )

and show that dynamic settling alone can lead to compositional

variations within the deposit. Finally in Section 6 we demonstrate

the effects of a yield stress on settling through a horizontal chan-

nel flow, focusing on the role of the unyielded plug at the centre

of the channel. 
i  
. Formulation 

We study the sedimentation of dilute suspensions of relatively

ense particles within a shear flow of a non-Newtonian fluid, the

otion of which is driven by an imposed horizontal pressure gra-

ient. The particles are transported by the flowing interstitial fluid,

ut due to their excess density settle under the action of gravity

nd form a deposit on the underlying boundary. 

We analyse the motion of the fluid and suspension in two spa-

ial dimensions, with the coordinate axes aligned such that the x

xis is horizontal and streamwise, while the z axis is vertical; unit

ectors aligned with the x and z axes are denoted by ˆ x and ˆ z , re-

pectively. The fluid motion is steady and fully developed so that

he velocity field is given by u = u (z) ̂ x . It is driven by a sustained

ressure gradient, −G ̂ x . The deviatoric shear stress is denoted by

xz and momentum balance leads to 

∂τxz 

∂z 
= −G. (1)

he concentration of particles suspended in the fluid is denoted by

 ( x, z, t ) and the equation governing its evolution is 

∂C 

∂t 
+ ∇ · ( u p C ) = 0 , (2)

here the velocity field with which the concentration is advected

s denoted u p . The diffusivity of the solid phase has been neglected

ecause the particles are assumed to be sufficiently large that they

re not affected by molecular fluctuations within the fluid. The

uspension is dilute so that there are negligible interactions be-

ween the individual particles, and the inertia of the particles is

lso assumed negligible, so that the drag and gravitational forces

hat act upon them are in balance. Thus we write the instanta-

eous relationship between the velocity of an individual particle,

he velocity of the fluid and gravitational settling 

 p = u ̂  x − w s ̂  z . (3)

n contrast to settling through fluid of Newtonian rheology, the set-

ling velocity of the particles depends upon the motion of the in-

erstitial fluid and the consequences of this dependence will be ex-

lored below. The particles settle out of the flow to the underlying

oundary and build up a deposit of thickness η( x, t ). Its growth is

etermined by the settling flux at the boundary and is given by 

( 1 − φb ) 
∂η

∂t 
= w s C(x, η, t) , (4)

here φb is the volume fraction of particles within the deposit. 

In this study we calculate the unsteady development of the

uspension and the deposit due to a sustained source of parti-

les imposed at x = 0 and initiated at t = 0 . We thus impose that

(0 , z, t) = C 0 and that initially the flow is otherwise free of parti-

les, C(x, z, 0) = 0 . The deposit is also initially of vanishing thick-

ess (η(x, 0) = 0) . Since the flows are dilute, the growth of this

eposit does not significantly alter the geometry of the bound-

ry unless the motion is sustained for a long duration, and conse-

uently it does not feed back upon the motion of the fluid phase.

xpressed dimensionally this criterion requires that the deposit

epth is much less than the flow depth ( η � h ), which in turn

emands that the duration of the flow must be much less than

 (1 − φb ) / (w s C) . 

To progress we adopt a particular rheology; the analysis could

e performed rather generally (see Appendix ), but for the simplest

xposition of the ideas, we focus on a power-law rheology, which

ncompasses the key feature of shear thinning — and it is this

roperty that plays a vital role in what follows. We therefore as-

ume that the interstitial fluid is of power-law rheology with flow

ndex n and consistency K n , which is extended to include a yield
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tress in Section 6 . The fully developed flow is then governed by 

∂ 

∂z 

( 

K n 

∣∣∣∣∂u 

∂z 

∣∣∣∣
n −1 

∂u 

∂z 

) 

= −G. (5) 

he model of the settling velocity plays an important role in what

ollows and leads to different behaviour from the Newtonian coun-

erpart. Here we argue that settling is determined by a balance be-

ween the gravitational forces and the ‘viscous’ drag on the parti-

le. Thus it must be inversely proportional to the ‘local’ viscosity

f the fluid. For a power-law fluid, the effective local viscosity in a

imple shear flow is K n | ∂ u/∂ z| n −1 and then the settling velocity is

nversely proportional to | ∂ u/∂ z| n −1 (see Ovarlez et al. [19] ). Cru-

ially it is dependent upon the shear rate of the suspending fluid

rovided n � = 1 (i.e. provided the fluid is non-Newtonian). The set-

ling velocity of an individual spherical particle in an imposed lin-

ar shear flow has been computed by Childs [21] . When the par-

icle of radius a is sufficiently small that the shear rate associated

ith its settling is much less than the shear rate of the background

ow ( w s / a � ∂ u / ∂ z ), the numerical results of Childs [21] confirm

he dimensional reasoning above. However as the background flow

eakens, there is a need to amend the settling rule and to include

 settling term which is independent of ∂ u / ∂ z . 
Here, we introduce a semi-empirical model for the settling

peed, which was demonstrated by [21] to capture its full three-

imensional numerical evaluation and which encompasses the

hear-rate dependence described above. We write 

 s = 

�ρga 2 

K n 

∣∣∣∣∂u 

∂z 

∣∣∣∣
1 −n 

w sa + a 

(
�ρga 

K n 

)1 /n 

w sb , (6)

here �ρ denotes the excess density of the particle, g gravita-

ional acceleration and w sa and w sb are dimensionless constants,

ependent on n . The two terms in (6) respectively represent the

ettling velocity in the regime of very large and vanishing shear

ates in the externally imposed flow. Here we have simply summed

he contributions from each regime to produce this empirical ex-

ression for the settling velocity. The regime of interest in this

tudy corresponds to when the stress exerted by the particle due

o its excess density is much less than the stress driving the chan-

el flow, �ρga � Gh and in this regime the settling velocity as-

ociated with the first term on the right hand side of (6) far ex-

eeds the second term, except in regions where the velocity gradi-

nt vanishes. In fact in the analysis that follows, any dimensionally

onsistent relationship between the settling speed, the local shear

nd the properties of the particles and the fluid could be employed

ithin the same framework without significantly altering the re-

ults; the key dependency is merely that the settling velocity de-

reases with decreasing shear rate. 

We now identify the dimensionless variables. The charac-

eristic streamwise velocity is based upon the pressure gra-

ient, G , the consistency, K n , and the flow depth h and is

iven by U = (Gh n +1 /K n ) 1 /n , while the settling velocity scale is

 = w sa �ρga 2 (Gh ) (1 −n ) /n /K 

1 /n 
n . Vertical lengths are scaled with

espect to the flow depth h and horizontal lengths with respect to

 U/ W . Finally times are scaled by h/ W, the concentration field by

 0 and the deposit thickness by hC 0 / (1 − φb ) . Dimensionless vari-

bles are therefore defined by 

ˆ x , ̂  z , ̂  t , ˆ u , ˆ w s , ˆ η, ˆ C 
}

= 

{
x W 

h U 

, 
z 

h 

, 
Wt 

h 

, 
u 

U 

, 
w s 

W 

, 
hC 0 

(1 − φb ) 
, 

C 

C 0 

}
. (7) 

he governing equations are then given by 

∂ 

∂ ̂  z 

( ∣∣∣∣∂ ̂  u 

∂ ̂  z 

∣∣∣∣
n −1 

∂ ̂  u 

∂ ̂  z 

) 

= −1 , (8) 
∂ ̂  C 

∂ ̂  t 
+ 

ˆ u 

∂ ̂  C 

∂ ̂  x 
− ∂ 

∂ ̂  z 

(
ˆ w s ̂  C 

)
= 0 , (9) 

∂ ̂  η

∂ ̂  t 
= 

ˆ w s (0) ̂  C ( ̂  x , 0 , ̂  t ) , (10) 

here ˆ w s = (∂ ̂  u / ∂ ̂  z ) 1 −n + ε and ε = (�ρgaw sb ) / (Ghw sa ) . The lat-

er is assumed to be small ( ε � 1) and potentially dependent on

 . The concentration field initially vanishes ( ̂  C ( ̂  x , ̂  z , 0) = 0 ) and for
ˆ 
 > 0 , a vertically uniform source is imposed, ˆ C (0 , ̂  z , ̂  t ) = 1 . The ve-

ocity field is subject to boundary conditions at the top ( ̂ z = 1)

nd bottom ( ̂ z = 0) of the flow, which are problem-specific and

ill be introduced when needed. The deposit initially vanishes

( ̂  η( ̂  x , 0) = 0) and under the assumption that the deposit depth

s much less that the channel depth, we have evaluated the set-

ling flux at z = 0 , rather than z = η. It is also useful to define the

teady concentration field, ˆ C ∞ 

( ̂  x , ̂  z ) , which is attained after the ini-

ial transient has decayed. From henceforth we drop the caret no-

ation and will assume, unless stated otherwise, that all variables

re dimensionless according to the definitions in (7) . 

.1. Construction of solution 

We form the solution for the concentration field, C ( x, z, t ), and

he deposit, η( x, t ), by taking the Laplace transform with respect to

 . Thus we define 

 (x, z, p) = 

∫ ∞ 

0 

C(x, z, t ) e −pt d t , (11)

nd the governing Eq. (9) becomes 

p C + u (z) 
∂ C 

∂x 
− w s 

∂ C 

∂z 
− ∂w s 

∂z 
C = 0 , (12)

ubject to C (0 , z, p) = 1 /p. We now introduce characteristics pa-

ameterised by s and ξ such that (12) may be written as 

d x 

d s 
= u (z) , 

d z 

d s 
= −w s (z) , 

d C 

d s 
= −p C + 

d w s 

d z 
C , (13) 

subject to x = 0 , z = ξ and C = 1 /p at s = 0 for 0 < ξ < 1 . (14) 

t is straightforward to integrate (13) subject to (14) to yield 

 = 

1 

p 
exp 

(
−ps + 

∫ s 

0 

d w s 

d z 
d s 

)
. (15) 

nverting the Laplace transform then gives 

(x, z, t) = H(t − s ) 
w s (ξ ) 

w s (z) 
, (16)

here the characteristic variables s and ξ are functions of x and z

nd are implicitly given by (13) and its associated boundary condi-

ion (14) , and H(s ) is the Heaviside step function. The dimension-

ess deposit is given by 

(x, t) = 

∫ t 

0 

H(t − s ) w s (ξ ) d t, (17)

nd we will sometimes plot η( x, t )/ t as a function of x , noting that

η(x, t) 

t 
→ w s (0) C ∞ 

(x, 0) as t → ∞ . (18)

e observe from (16) that settling through Newtonian fluid, for

hich the settling velocity is constant, yields a concentration of

articles that either vanishes (if s ( x, z ) > t ) or takes the value unity

if s ( x, z ) < t ); the latter occurs at locations reached by the ad-

ected suspension. Conversely for a non-Newtonian fluid, the con-

entration field varies spatially, thus illustrating immediately the

ontrol that the rheology of the interstitial fluid has on the sus-

ension and the distribution of the deposit. 
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Fig. 1. (a) The characteristics in the ( x, z ) plane; and (b) contours of the steady- 

state concentration field for a sustained release of particles from x = 0 in fluid with 

power-law index n = 1 / 3 and settling parameter ε = 0 . 01 . Characteristics are plot- 

ted for ξ = 0 . 1 − 1 (with intervals of 0.1) and the contours of C ∞ are plotted for 

C ∞ = 0 . 1 − 0 . 9 (with intervals of 0.1). The characteristic from z = 1 (corresponding 

to ξ = 1 ) bounds the region within which the concentration field is non-vanishing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) The characteristics in the ( x, z ) plane; and (b) contours of the steady- 

state concentration field for a sustained release of particles from x = 0 in fluid with 

power-law index n = 2 / 3 and settling parameter ε = 0 . 01 . Characteristics are plot- 

ted for ξ = 0 . 1 − 1 (with intervals of 0.1) and the contours of C ∞ are plotted for 

C ∞ = 0 . 1 − 0 . 9 (with intervals of 0.1). The characteristic from z = 1 (corresponding 

to ξ = 1 ) bounds the region within which the concentration field is non-vanishing. 
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3. Free-surface flows 

We now apply our formulation to free-surface flows driven by

a constant pressure gradient. The dimensionless velocity field sat-

isfies a no-slip condition (u (0) = 0) and vanishing shear stress at

the free surface (∂ u/∂ z(1) = 0) ; it is given by 

u = 

n 

1 + n 

(
1 − ( 1 − z ) 

(1+ n ) /n 
)
, (19)

while the settling velocity is then given by 

w s = (1 − z) (1 −n ) /n + ε. (20)

The characteristics in terms of the parameters s and ξ are deter-

mined by ∫ ξ

z 

d z ′ 
w s (z ′ ) = s and x = 

∫ ξ

z 

u (z ′ ) 
w s (z ′ ) d z ′ . (21)

The concentration field is provided by (16) . It is insightful to

plot the characteristic curves in the ( x, z ) plane and examples for

n = 1 / 3 and 2/3 are plotted in Figs. 1 and 2 . In these figures we

immediately note the effect of the non-Newtonian rheology of the

suspending fluid. As commented above, for a Newtonian fluid (n =
1) , the concentration field either vanishes or adopts the scaled

source value of unity. In contrast for shear-thinning fluids ( n < 1),

the concentration varies spatially. This arises because the settling

velocity is shear-rate dependent and in these shear flows for which

the shear rate is spatially variable, the settling velocity also varies
patially. In particular, close to the free surface, where the shear

ate vanishes, the settling velocity is very strongly diminished and

his has a very significant effect on the concentration field when

 ≤ 1/2. In fact we note from Figs. 1 and 2 that the concentration

eld may increase with distance from the underlying boundary in

ome or all of the flow even though it was vertically uniform at

ource, which has the potential to develop gravitationally-induced

verturning as the flow develops. We may calculate the vertical

radient of the steady concentration field from (16) 

∂C ∞ 

∂z 
= 

w 

′ 
s (ξ ) 

w s (z) 

∂z 

∂ξ
− w s (ξ ) 

w s (z) 2 
w 

′ 
s (z) . (22)

hen finding ∂ ξ / ∂ z from (21) we find that 

∂C ∞ 

∂z 
= 

−n 

2 w s (ξ ) u (z) 

(1 − n 

2 ) w s (z) 2 

(
1 

F (ξ ) 
− 1 

F (z) 

)
, (23)

here F (z) = −(1 − n 2 ) u (z) /w 

′ 
s (z) n 2 = (1 − z) (2 n −1) /n − (1 − z) 3 .

ince 0 ≤ z ≤ ξ ≤ 1, static instability, ∂ C ∞ 

/ ∂ z > 0, then requires

ither n ≤ 1/2 or when n > 1/2 that z is sufficiently small. Thus we

educe that for strongly shear thinning fluids ( n ≤ 1/2), the con-

entration field exhibits a positive vertical gradient throughout the

ntire domain ( Fig. 1 ). However for more weakly shear-thinning

uids ( n > 1/2), there is only a positive gradient of concentration

n the lower region of the flow ( Fig. 2 ). 
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Fig. 3. The maximum distance propagated by the suspension in a free-surface flow, 

x fm , as a function of the quiescent settling parameter, ε, for fluids with power-law 

indices n = 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 and 0.9. Also plotted are the leading order asymptotic 

predictions of this distance (dotted lines), although these are often overlain by the 

exact results. 
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Fig. 4. The temporal development of the thickness of the deposit as a function of 

distance for (a) n = 1 / 3 and (b) n = 2 / 3 . The ratio of the accumulated deposit to 

time η( x, t )/ t is plotted in (a,b) at t/t f m = 0 . 25 , 0 . 5 , 1 and additional at t/t f m = 2 in 

(b), where t fm is the time at which the flow first reaches its maximum extent ( x fm ). 

Also plotted is the long-time asymptote, w s (0) C ∞ ( x , 0) (dotted lines). 

(  

s  

t  

i  

i  

s  

d  

f

 

t  

h  

d  

c  

fl

∫
 

T

x

I  

t  

x  

f  

1

We may evaluate the maximum downstream distance reached

y the settling particles; this dimensionless distance is given by 

 f m 

= 

∫ 1 

0 

u (z ′ ) 
w s (z ′ ) d z ′ , (24) 

= 

n 

n + 1 

(
1 

ε
F 21 

(
1 , α; 1 + α;− 1 

ε

)
+ 

1 

3 

F 21 

(
1 , 3 α; 1 + 3 α;− 1 

ε

)
− 1 

3 

)
, (25) 

here α = n/ (1 − n ) and F 21 is a hypergeometric function [22] .

his location corresponds to where the characteristic emanating

rom (x, z) = (0 , 1) reaches the lower boundary and it is a function

f the flow-index n and the settling parameter ε. It is insightful to

raw out the leading-order asymptotic dependence of x fm 

upon the

arameter ε, which correct to O (1) is given by 

 f m 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n 

n + 1 

(
nπε(2 n −1) / (1 −n ) 

(1 − n ) sin (nπ/ (1 − n )) 
+ 

n 

2 n − 1 

− 1 

3 

)
, n < 1 / 2 , 

1 

3 

(
log 

(
1 

ε

)
− 1 

3 

)
, n = 1 / 2 , 

n 

n + 1 

(
n 

2 n − 1 

− 1 

3 

)
, n > 1 / 2 . 

(26) 

he numerically evaluated x fm 

and its leading order asymptotic

epresentation are plotted in Fig. 3 , noting that unless ε is rela-

ively large then the two are indistinguishable in this figure. This

alculation brings out clearly that the maximum distance prop-

gated from source is flow index dependent and crucially for

trongly shear-thinning suspending fluids ( n ≤ 1/2), the maximum

istance depends strongly on the quiescent settling parameter, ε.

ndeed when n ≤ 1/2, x fm 

→ ∞ as ε → 0, a result that emerges

ecause the time for a particle to settle away from the free-surface,

here the shear rate vanishes, becomes unbounded in this limit. 

We may also compute t fm 

, which is defined to be the time at

hich the suspension first reaches x fm 

. This time is given directly

rom the characteristic equations; it corresponds to t f m 

= s (x f m 

, 0)

nd may be expressed as 

 f m 

= 

∫ 1 

0 

1 

η(1 −n ) /n + ε
d η = 

1 

ε
F 21 

(
1 , α; 1 + α;− 1 

ε

)
. (27) 

Finally we plot the growth of the deposit scaled by the time,

( x, t )/ t as a function of distance at various instances of t / t fm 
 Fig. 4 ). As t → ∞ , then η( x, t )/ t → w s (0) C ∞ 

( x , 0) but the steady

tate may be approached only gradually. From Fig. 4 we again note

he strong effect of the non-Newtonian rheology of the suspend-

ng fluid. For the Newtonian case (n = 1) , the steady-state deposit

s spatially uniform for x < x fm 

, but for shear-thinning fluids, the

teady-state deposit progressively thins with downstream distance

ue to the inhibited settling velocity of the particles close to the

ree surface ( Fig. 4 ). 

A useful additional measure of the deposits’ extent is the dis-

ance from source by which half of the source flux of particles

ave settled out of the flow to the underlying boundary, x fb . This

istance is determined by finding the elevation at source of the

haracteristic below which the fluid motion carries half of the fluid

ux; z ∗ is given by 

 z ∗

0 

u (z ′ ) d z ′ = 

1 

2 

n 

2 n + 1 

(28)

he median position within the deposit, x fb is then given by 

 f b = 

∫ z ∗

0 

u (z ′ ) 
w s (z ′ ) d z ′ . (29) 

t is immediately evident that for Newtonian fluids the median dis-

ance in the deposit is half of the maximum extent of the deposit,

 f b = x f m 

/ 2 , but for non-Newtonian fluids this distance is straight-

orwardly determined numerically from (29) to find that x fb / x fm 

<

/2. 
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Fig. 5. (a) The characteristics in the ( x, z ) plane; (b) contours of the steady-state 

concentration field; and (c) the steady-state concentration field, C ∞ , as a func- 

tion of downstream distance, x , at z = 0 and z = 0 . 5 for a sustained release of 

particles from x = 0 in fluid with power-law index n = 1 / 3 and settling param- 

eter ε = 0 . 01 flowing within a horizontal channel. Characteristics are plotted for 

ξ = 0 . 1 − 1 (with intervals of 0.1) and the contours of C ∞ are plotted for C ∞ = 

0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 , 1 , 1 . 5 , 2 , 4 , 10 . The characteristic from z = 1 (corresponding 

to ξ = 1 ) bounds the region within which the concentration field is non-vanishing. 
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4. Channel flow 

We now analyse the concentration distribution for two-

dimensional flow along a rigid, horizontal channel, driven by a

constant pressure gradient. No-slip conditions are now enforced at

the boundaries z = 0 , 1 and the velocity profile is given by 

u = 

n 

1 + n 

((
1 

2 

)(1+ n ) /n 

−
∣∣∣1 

2 

− z 

∣∣∣(1+ n ) /n 
)

. (30)

The dimensionless settling velocity is given by 

w s = 

∣∣∣1 

2 

− z 

∣∣∣(1 −n ) /n 

+ ε. (31)

The key feature of the behaviour of suspensions in these channel

flows is due to the velocity maximum at z = 1 / 2 . At this elevation

the local shear rate vanishes and thus the settling velocity is min-

imised. This elevation therefore acts as a ‘kinematic barrier’ to the

settling particles; particles that are released in the upper half of

the flow must settle across this barrier in order to form the de-

posit. Since the settling velocity is minimised at the velocity max-

imum, this elevation and the settling velocity in its region exert

control on the structure of the underlying deposit. There are two

important consequences: the concentration field close to the veloc-

ity maximum may increase above its initial value at source due to

the slow passage of particles across the kinematic barrier and the

deposit on the underlying boundary may not decrease monoton-

ically with distance from source. We emphasise that these flows

are purely depositional and that these features arise due to the

non-Newtonian controls on the settling velocity. It is also notewor-

thy that this phenomenon will occur in any flow with a velocity

maximum; for example, fully developed flows, driven by a constant

pressure gradient, could exhibit a velocity maximum if they satisfy

no slip at their base and experience a resistive stress at their top

surface. 

We compute the characteristics that emerge from the source

and the steady concentration field C ∞ 

( x, z ) for n = 1 / 3 and n = 2 / 3

in Figs. 5 and 6 . We observe a clustering of the characteristics

around the velocity maximum due to the reduced settling veloc-

ity and associated with this phenomenon is an elevated concen-

tration field. Eventually the particles do settle across the velocity

maximum, but the effects of the kinematic barrier manifest them-

selves in the concentration field at the base of the flow and thus

influence the distribution of the deposit (see Figs. 5 and 6 ). 

It is straightforward to deduce the maximum and minimum

values of the steady-state concentration field, C ∞ 

. First, the max-

imum occurs on the characteristic labelled by ξ = 1 at the velocity

maximum (z = 1 / 2) . It is therefore given by 

 max = 

w s (1) 

w s (1 / 2) 
= 

2 

(n −1) /n + ε

ε
. (32)

The minimum occurs on the characteristic labelled by ξ = 1 / 2 at

the base of the flow (z = 0) and is equal to 

 min = 

w s (1 / 2) 

w s (0) 
= 

ε

2 

(n −1) /n + ε
= 

1 

C max 
. (33)

For ε = 0 . 01 and n = 2 / 3 , (C max , C min ) = (71 . 7107 , 0 . 0139) , while

for n = 1 / 3 , (C max , C min ) = (26 , 0 . 0385) . It is thus apparent the

presence of this kinematic barrier can lead to very significant am-

plification of the source concentration as settling is slowed close

to the velocity maximum. 

The maximum distance propagated by the suspension is still

given by (24) , but due to the symmetry of the fluid field about

z = 1 / 2 , this may be written 

x cm 

= 

2 n 

n + 1 

( ∫ 1 / 2 

0 

(
1 
2 

)(n +1) /n + εη2 

η(1 −n ) /n + ε
d η − 1 

24 

) 

. (34)
hen ε � 1, an asymptotic representation of x m 

up to O ( ε) is
iven by 

 cm 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 n 

n + 1 

(
2 −(1+ n ) /n nπε(2 n −1) / (1 −n ) 

(1 − n ) sin (nπ/ (1 − n )) 
+ 

n 

8(2 n − 1) 
− 1 

24 

)
, n < 1 / 2 , 

1 

3 

(
1 

4 
log 

(
1 

2 ε

)
− 1 

12 

)
, n = 1 / 2 , 

2 n 

n + 1 

(
n 

8(2 n − 1) 
− 1 

24 

)
, n > 1 / 2 . 

(35)

Both the exact evaluation of (34) and the asymptotic represen-

ation (35) are plotted in Fig. 7 , noting that the asymptotic formula

rovides an accurate expression for the exact form when ε � 1. As

n Section 3 , this dependence draws out the very significant role

hat the kinematic barrier plays in determining x cm 

when the fluid

s strongly shear thinning (i.e. for n < 1/2, x cm 

→ ∞ as ε → 0). For

ess strongly shear-thinning fluids ( n > 1/2) there is nevertheless a
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Fig. 6. (a) The characteristics in the ( x, z ) plane; (b) contours of the steady-state 

concentration field and (c) the steady-state concentration field, C ∞ , as a func- 

tion of downstream distance, x , at z = 0 and z = 0 . 5 for a sustained release of 

particles from x = 0 in fluid with power-law index n = 2 / 3 and settling param- 

eter ε = 0 . 01 flowing within a horizontal channel. Characteristics are plotted for 

ξ = 0 . 1 − 1 (with intervals of 0.1) and the contours of C ∞ are plotted for C ∞ = 

0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 1 , 1 . 5 , 2 , 5 . The characteristic from z = 1 (corresponding to ξ = 1 ) 

bounds the region within which the concentration field is non-vanishing. 

Fig. 7. The maximum distance propagated by the suspension in a channel flow, x cm , 

as a function of the quiescent settling parameter ε for fluids with power-law indices 

n = 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 and 0.9. Also plotted are the leading order asymptotic predic- 

tions of this distance (dotted lines). 

Fig. 8. The temporal development of the deposit as a function of distance for 

(a) n = 1 / 3 and (b) n = 2 / 3 . The ratio of the accumulated deposit to time η( x, 

t )/ t is plotted at t/t cm = 0 . 25 , 0 . 5 , 1 , 2 , where t cm is the time at which the flow 

first reaches its maximum extent ( x cm ). Also plotted is the long-time asymptote, 

w s (0) C ∞ ( x , 0) (dotted lines). 
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(  

o  
ependence on ε, but the maximum extent remains bounded as ε
 0. The earliest time at which the suspended particles reach the

aximum extent is given by 

 cm 

= 

∫ 1 

0 

1 

| 1 
2 

− z| (1 −n ) /n + ε
d z = 2 

(1 −n ) /n 

∫ 1 

0 

1 

η(1 −n ) /n + 2 

(1 −n ) /n ε
d η. 

(36) 

e may now evaluate the ratio of the maximum distance propa-

ated by the particles settling within a channel flow to the maxi-

um distance propagated within a free-surface flow, X R = x cm 

/x f m 

,

nd the ratio of the times that it takes to propagate to this dis-

ance, T R = t cm 

/t f m 

. We comment that the distance propagated in

hannel flows is always less than that in free-surface flows ( X R <

). This reflects the role of the no-slip boundary condition at the

pper surface of the channel, which reduces the horizontal flow

peed relative to the free-surface flow for the same driving pres-

ure gradient. However, the time taken for the suspension to travel

his distance is always higher for the channel flows because the

edimenting particles must pass fully across the kinematic barrier

t the velocity maximum ( T R > 1). In the regime ε � 1, we find

hat 

 R = 

{
2 

−1 /n , n ≤ 1 / 2 , 

1 / 4 , 1 / 2 < n, 
and T R = 

{
2 , n ≤ 1 / 2 , 

2 

(1 −n ) /n , 1 / 2 < n. 

(37) 

Finally we analyse the deposit formed by these channel flows

see Fig. 8 ). The most significant feature here is that the depth

f the deposit scaled by time since release, η( x, t )/ t , is no longer
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Fig. 9. The ratio of the median distance of the deposit from source in a channel 

flow to that in a free-surface flow, x cb / x fb as a function of flow index for different 

values of the quiescent settling parameter. 
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monotonically decreasing with distance from source. Instead there

is a local minimum due to suppression of settling as the parti-

cles encounter the kinematic barrier at the velocity maximum, af-

ter which the deposit thickens towards its maximum streamwise

extent. 

As for the free-surface flows, we may determine the median

distance within the deposit, x cb , which is the distance from source

by which half of the source flux of particles has settled to the un-

derlying boundary. For channel flows, this corresponds to the po-

sition at the boundary associated with the characteristic emanat-

ing from z = 1 / 2 , thus giving x cb = x cm 

/ 2 . It is then interesting to

examine the ratio of the median distance within the deposit in a

channel flow to the median distance in a free-surface flow, x cb / x fb ,

which is plotted in Fig. 9 . Here we note that for weakly shear-

thinning fluids, this ratio is less than unity, but that it exceeds

unity for more strongly shear-thinning fluids. Thus although chan-

nel flows do not lead to the suspension propagating further than

their free-surface counterparts, they may nevertheless lead to the

median position in the deposit being further from source. 

5. Bidisperse suspension 

In this section we analyse the evolution of a bidisperse sus-

pension released continuously from the source at x = 0 in a two-

dimensional channel. The suspension comprises two classes of par-

ticles, which differ only in size; the ratio of the diameter of species

2 to the diameter of species 1 is denoted by 
√ 

λ and so that when

non-dimensionalised using the properties of species 1, the settling

velocities are given by 

w s 1 = 

(
∂u 

∂z 

)1 −n 

+ ε and w s 2 = λ

(
∂u 

∂z 

)1 −n 

+ λ(1+ n ) / 2 n ε

(38)

The suspension is assumed to be dilute so that each species

evolves independently, and in this illustrative calculation, we fur-

ther assume that the initial concentrations at the source are equal

and uniform throughout the depth of the flow. 

We compute the settling flux of each species into the deposit,

since this determines its composition. The steady-state settling flux

is given by 

F (x ) = w (0) C (x, 0) = w (ξ (x, 0)) , (39)
bi si ∞ i si i 
here i = 1 , 2 , corresponding to each of the classes of particles.

he characteristic label ξ i ( x , 0) is defined by 

 ξi (x, 0) 

0 

u 

w si 

d z = x. (40)

t corresponds to the characteristic from starting height ξ i which

eaches z = 0 at distance x from the source. We compute the pro-

ortion, ψ( x ) of the settling flux that corresponds to the larger

‘coarse’) particles since λ < 1; it is given by 

(x ) = 

F b1 (x ) 

F b1 (x ) + F b2 (x ) 
, (41)

ith ψ = 1 corresponding to 100% coarse particles in the deposit

nd ψ = 0 to 100% fine particles. 

We evaluate the proportion of coarse particles for bidisperse

uspension in flows with power-law index n = 1 / 3 , 2 / 3 and 1 for

= 1 / 2 (see Fig. 10 ). We note that for all three flows ψ(0) =
 / 3 + . . . when ε � 1, since this corresponds to the settling flux

rom the base of the flow at the source. However further down-

tream the distribution of the deposit depends on the power-law

ow index. For Newtonian fluids (n = 1) , the deposit exhibits two

ompositions. Initially, close to the source, there is a mixture of

oarse and fine particles (ψ = 2 / 3) and this proportion does not

ary until all of the larger particles have settled out. Thereafter

he deposit comprises only fine particles. This distribution featur-

ng two uniform regions is found because for a Newtonian fluid

he settling velocity of each class is spatially uniform. 

The distribution of the composition within the deposit for non-

ewtonian suspension, however, exhibits more complicated vari-

tions. The settling flux of the coarse fraction initially decreases

ith distance from the source due to the inhibition of the set-

ling velocity as the coarse particle sediment from regions with

educed local shear rates. This leads to a reduction of the pro-

ortion, ψ( x ). However the proportion of coarse particles is min-

mised at the location where the characteristic from the velocity

aximum first reaches the bed. Thereafter the proportion, ψ( x )

ncreases with distance downstream until the location is reached

hich corresponds to the maximum distance for the coarse class.

urther downstream the deposit only consists of fine particles. 

This complicated pattern of fining and then coarsening with

ownstream distance is due entirely to the control that the non-

ewtonian rheology imparts on the settling velocity of each class;

here is no need to invoke more exotic physical mechanisms, such

s kinetic sieving and bed remobilisation [5] . 

. Yield stress 

To examine the effects of a yield stress on the dynamic set-

ling processes and the kinematic barrier to settling in regions of

ow shear rates, we analyse the evolution of a suspension of rel-

tively dense particles within the flow of a Herschel–Bulkley fluid

n a horizontal channel. We scale the dimensional variables in the

ame way as Section 2 , where K n is now the consistency parame-

er in the Herschel–Bulkley model. In this problem, however, there

s an important additional dimensionless parameter, B = σY / (Gh ) ,

hich measures the magnitude of the yield stress, σ Y , relative to

he stress exerted by the imposed pressure gradient. Flow occurs if

 < 1/2 and the fully developed velocity field is given by 

 = 

n 

1 + n 

⎧ ⎨ 

⎩ 

(
1 
2 

− B 

)(n +1) /n −
(∣∣ 1 

2 
− z 

∣∣ − B 

)(n +1) /n 
, | z − 1 / 2 | > B (

1 
2 

− B 

)(n +1) /n 
, | z − 1 / 2 | < B. 

(42)

n terms of the dimensionless variables adopted here, there is an

nyielded region of width 2 B centred around the middle of the
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Fig. 10. The steady-state proportion of coarse particles in the deposit as a function 

of the distance downstream arising from a sustained release of a bidisperse mix- 

ture with particle size in the ratio 2 −1 / 2 and initial equal volume fractions of each 

species in a horizontal channel flow for (a) n = 1 ; (b) n = 1 / 3 ; and n = 2 / 3 . 
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hannel. Within this region (| z − 1 / 2 | < B ) the shear rate vanishes

nd thus the existence and influence of the kinematic barrier will

e different from what was elucidated in Section 4 where the

hear rate vanished only at z = 1 / 2 . 

Particles are assumed to be sufficiently massive that they settle

hrough the ‘unyielded’ region at a small velocity [11] ; they set-

le through the yielded region at a rate dependent upon the back-

round shear rate, which sets the ‘local’ viscosity. A simple expres-

ion for the dimensionless settling velocity, which captures this ef-

ect, is given by 

 s = 

(
∂u 

∂z 

)1 −n 

+ ε = 

{(
1 
2 

− B − z 
)1 /n −1 + ε, | z − 1 / 2 | > B 

ε, | z − 1 / 2 | < B, 

(43) 
lthough the interpretation of ε is now different from the case of

anishing yield stress ( cf. Section 2 ). This settling law is of course

 very simple expression for the full dynamics. Eq. (43) captures

he dependence of the effective viscosity (and hence the settling

peed) upon the local shear rate ( ∂ u / ∂ z ) when the dimensionless

hear is large and becomes independent of the local shear rate

hen it becomes small. Dimensional analysis asserts that there are

ow two dimensionless ratios characterising the particle motion if

nertial effects are neglected, namely �ρga /( Gh ) and �ρga / σ Y and

he latter of these cannot be vanishingly small or else the parti-

le would not settle through the unyielded region. More accurate

xpressions for the settling velocity could of course be employed

hen they become available, but the important dynamical controls

re encompassed within this simple expression — and here we ex-

lore their consequences. 

We calculate the steady-state concentration, C ∞ 

, using the

ethod of characteristics as in Section 2.1 . We note that the con-

entration field is given by (16) , in which the dimensionless set-

ling velocity is given by (43) . The characteristics are determined

y (13) using the dimensionless flow velocity (42) and settling ve-

ocity (43) . 

For strongly shear-thinning fluids ( n < 1/2), we find that the ef-

ects of a yield stress are relatively minor. The characteristics that

ass through the unyielded region now feature a linear section and

he associated concentration field then develops a region within

hich the concentration adopts its initial value (see Fig. 11 , cf.

ig. 5 ). This region is attached to the source (x = 0) and within the

lug (| z − 1 / 2 | < B ) , where the settling velocity is constant. The in-

roduction of the yield stress reduces the fluid velocity within the

hannel and this could lead to reduced runout distances. However

he yield stress also introduces an unyielded portion of the flow

hrough which the particles settle slowly. This broadening of the

ffective kinematic barrier increases the settling times and thus

ncreases the runout distances. Which of these processes domi-

ate depends upon the values of B and ε; for n = 1 / 3 , B = 0 . 2 and

= 10 −2 (as in Fig. 11 ), we note that the runout length is reduced

y the introduction of the yield stress. 

For weakly shear-thinning fluids (1/2 < n < 1), however, the

ffects are much more significant. Without a yield stress (B = 0) ,

lthough the particles are retarded as they settle through the kine-

atic barrier, their transit time across this zone remains bounded

nd independent of ε when ε → 0. This is not the case for flows

ith a yield stress, for which the time to settle across the un-

ielded plug is proportional to B / ε. This has a profound effect upon

he characteristics, the concentration field and the depositional

ux to the underlying boundary (see Figs. 6 and 12 ). The character-

stics now feature an extended region over which they vary linearly

ith distance downstream, reflecting the transit through the un-

ielded region. The progress through this zone is much slower than

hrough the yielded regions that sandwich it. The concentration

eld shows the consequences of this effect. There is a relatively

arge region ( D 2 in Fig. 12 ) within which the concentration is very

lose to its initial value. This corresponds to the slow settling of

articles through the plug. Below it (region D 1 ), the concentration

apidly diminishes with distance downstream due to rapid settling

f particles close to the source, which are not replenished from

bove until much further downstream. The uppermost region ( D 3 )

s narrow and exhibits high concentrations; particles settle quickly

hrough the yielded region (z − 1 / 2 > B ) , accumulate near the up-

er boundary of the unyielded region and then settle through it

slowly) it in a band of high concentration. At the base of the flow,

he concentration field C ∞ 

( x , 0) initially diminishes with distance

ownstream before reaching a plateau and then increasing again

s those particles initially suspended in the upper portion of the

ow settle through to the boundary. 
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Fig. 11. (a) The characteristics in the ( x, z ) plane; (b) contours of the steady-state 

concentration field and (c) the steady-state concentration field, C ∞ , as a function 

of downstream distance, x , at z = 0 for a sustained release of particles from x = 0 

in a Herschel–Bulkley fluid flowing within a horizontal channel with power-law in- 

dex n = 1 / 3 , dimensionless yields stress B = 0 . 2 and settling parameter ε = 0 . 01 . 

Characteristics are plotted for ξ = 0 . 1 − 1 (with interval 0.1) and the contours of 

C ∞ are plotted for C ∞ = 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 , 0 . 999 , 1 . 001 , 1 . 5 , 2 , 4 and 10. The char- 

acteristic from z = 1 (corresponding to ξ = 1 ) bounds the region within which the 

concentration field is non-vanishing. 
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Fig. 12. (a) The characteristics in the ( x, z ) plane; (b) contours of the steady-state 

concentration field and (c) the steady-state concentration field, C ∞ , as a function 

of downstream distance, x , at z = 0 for a sustained release of particles from x = 

0 in a Herschel–Bulkley fluid flowing within a horizontal channel with power-law 

index n = 2 / 3 , dimensionless yields stress B = 0 . 2 and settling parameter ε = 0 . 01 . 

Characteristics are plotted for ξ = 0 . 3 , 0 . 5 , 0 . 6 , 0 . 7 , 1 . 0 and the contours of C ∞ are 

plotted for C ∞ = 0 . 999 , 1 . 001 . The characteristic from z = 1 (corresponding to ξ = 

1 ) bounds the region within which the concentration field is non-vanishing. Also 

depicted are the domains D 1 , D 2 and D 3 , respectively corresponding to the regions 

within which C ∞ < 0.99, 0.99 < C ∞ < 1.01 and 1.01 < C ∞ . 
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For all flows we may evaluate the maximum value of C ∞ 

within

the suspension; it is given by 

 max = 

( 1 
2 

− B ) (1 −n ) /n + ε

ε
. (44)

The yield stress has thus led to smaller values of the maximum

concentration than found for those suspensions without yield

stress ( cf. (32) ). 

Finally we compute the median position within the deposit,

here denoted by x ym 

, which is given by the distance downstream at

which the characteristic starting from z = 1 / 2 reaches z = 0 . After

some algebraic manipulation, the median position is given by 

x ym 

= 

n 

1 + n 

(∫ 1 
2 −B 

0 

(
1 
2 

− B 

)(n +1) /n + εη2 

η(1 −n ) /n + ε
d η − 1 

3 

(
1 

2 

− B 

)3 

+ 

B 

ε

(
1 

2 

− B 

)(n +1) /n 
)

. (45)
he last term of (45) is due to the settling across the unyielded

one and when ε � 1, we note that this term provides the lead-

ng order expression for the median distance within the deposit.

n other words the runout distance of the suspension is controlled

ntirely by the settling across the unyielded region. Interestingly

his median distance varies non-monotonically with B when ε � 1

eaching a maximum when B = n/ (4 n + 2) (see Fig. 13 ). This non-

onotonic variation represents the competition between the slow-

ng of the flow as the yield stress increases, leading to particles be-

ng carried less far downstream, and the widening of the kinematic

arrier associated with the unyielded region, which in turn leads

o increased settling times and an increased distance of transport

ownstream. 
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Fig. 13. The scaled median distance within the deposit, εx ym , as a function of the 

dimensionless yield stress, B , for a sustained release of particles from x = 0 in a 

Herschel–Bulkley fluid flowing within a horizontal channel with power-law index 

n = 2 / 3 and settling parameter ε = 0 . 1 , 0 . 01 and 0.001. Also plotted (dotted lines) 

is the local maximum B ≡ B m = n/ (4 n + 2) and εx ym = B m ( 
1 
2 

− B m ) 
(n +1) /n , attained 

as ε → 0. 
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. Conclusions 

In this study, we have constructed a model of the dynamic set-

ling of a suspension of small particles through a sheared flow of a

on-Newtonian fluid. In our model, the large-scale flow determines

he local effective viscosity, and so the settling speed of the parti-

les varies spatially. This generates a number of phenomena that

ould not occur if the suspending fluid were Newtonian. From a

ertically uniform sustained source, a non-uniform concentration

eld develops; this may contain regions in which the concentra-

ion gradient is statically unstable or in which the concentration

s many times higher than it is at source. A key concept to emerge

rom our analysis is that of the ‘kinematic barrier’ to settling which

ccurs near a velocity maximum where shear rates, and thus set-

ling speeds, are low. The kinematic barrier, which is enhanced in

iscoplastic fluids because a plug forms around the velocity maxi-

um, can exert strong controls on the run-out and on the pattern

f deposition from the flow. 

Most of our calculations have been carried out for a power-law

uid rheology. However, the same phenomena could occur in any

hear-thinning generalised Newtonian fluid; all that is needed is

hat the particles are sufficiently small for the larger lengthscale of

he background flow to set the shear rate. We have demonstrated

ow to calculate the solution for any generalised Newtonian fluid

rovided the settling velocity is a function of the shear rate of the

ackground flow. While computations of drag forces, and thus the

ettling velocity, could be performed in principle for any imposed

heology, it would be of considerable interest to have experimental

onfirmation of these flow processes. 

Although this contribution has focussed on fundamental insight

ather than applications, we reiterate that dynamic settling has im-

ortant applications in oil extraction and sedimentology. Here we

ave tackled the simplest flow problems to reveal the rich vari-

ty of effects that could occur, but there remain many interesting

urther problems. These include more concentrated suspensions in

hich the concentration affects both the settling speed and the

ensity of the flow, and the onset of gravitational overturning as

he suspension becomes statically unstable. 
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ppendix A 

In this appendix we extend our theoretical developments so

hat the concentration field may be evaluated in a fully devel-

ped, free surface flow of a generalised Newtonian fluid. In terms

f dimensional variables and denoting the local shear rate by ˙ γ =
 u/∂ z, the governing equation for the motion is 

d 

d z 
( μ( ˙ γ ) ̇ γ ) = −G, (A.1) 

here μ( ̇ γ ) is the local viscosity of the generalised Newtonian

uid. The boundary conditions are μ( ̇ γ ) ̇ γ = 0 on z = h and u (0) =
 and thus the solution for the velocity field may be written 

 = 

1 

G 

∫ ˙ γb 

˙ γ
( μ(q ) q ) 

′ 
q d q, (A.2) 

here μ( ̇ γb ) ̇ γb = Gh and the prime denotes differentiation. In

ection 2 , the solution for the concentration field was derived in

erms of characteristic variables (see (13) and (16) ). Assuming that

he settling velocity may be written as a function of the local shear

ate, w s ≡ w s ( ̇ γ ) , we now change the characteristic variables from

 s, ξ ) to ( ̇ γ , ˙ γ0 ) , where ˙ γ0 is the shear rate at (x, z) = (0 , ξ ) , given

y μ( ̇ γ0 ) ̇ γ0 = G (h − ξ ) . To change variables we note that 

d ̇ γ

d s 
= 

d ̇ γ

d z 

d z 

d s 
= 

Gw s ( ˙ γ ) 

( μ( ˙ γ ) ̇ γ ) 
′ . (A.3) 

n terms of the new characteristic variables 

d x 

d ̇ γ
= 

u ( ˙ γ ) ( μ( ˙ γ ) ̇ γ ) 
′ 

Gw s ( ˙ γ ) 
and 

d z 

d ̇ γ
= − ( μ( ˙ γ ) ̇ γ ) 

′ 

G 

. (A.4) 

t is then straightforward to integrate to find the solution given

y 

 ( ˙ γ , ˙ γ0 ) = 

∫ ˙ γ

˙ γ0 

∫ ˙ γ

q 

( μ(q ) q ) 
′ 
( μ(p) p ) 

′ 
p 

G 

2 w s (q ) 
d p d q, (A.5) 

( ˙ γ , ˙ γ0 ) = − 1 

G 

∫ ˙ γ

˙ γ0 

( μ(q ) q ) 
′ 

d q = 

μ( ˙ γ0 ) ̇ γ0 − μ( ˙ γ ) ̇ γ

G 

, (A.6) 

 ( ˙ γ , ˙ γ0 ) = 

1 

G 

∫ ˙ γ

˙ γ0 

( μ(q ) q ) 
′ 

w s (q ) 
d q. (A.7) 

he solution for the concentration field is compactly written as 

 = H(t − s ) 
w s ( ˙ γ0 ) 

w s ( ˙ γ ) 
. (A.8)
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