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a b s t r a c t

Free-surface slumps of viscoplastic fluid, modelled using a Herschel–Bulkley constitutive law, are studied
as they flow from rest, behind a rapidly removed dam, along an inclined two-dimensional channel. These
dam-break flows are eventually arrested and attain a final, static state in which the streamwise pressure
gradient and the along-slope component of gravitational acceleration are balanced by the yield stress.
The shapes of the arrested free surfaces are compactly represented as Lambert- W functions and are
characterised by two dimensionless parameters that measure the magnitude of the slope relative to the
initial aspect ratio of the release and the magnitude of the yield stress relative to the weight of fluid layer.
These states are only attained asymptotically for long times after the release and perturbations to the
final profiles are shown to decay as 1/tn, where n is the power index in the Herschel–Bulkley model. This
analysis requires careful formulation, because, formally, within a diminishing boundary layer close to the
front of the motion, the size of the perturbation exceeds the arrested state. Thus, while straightforward
linearisation of the governing equation is possible within the bulk of the flow outside of the boundary
layer, this must be matched asymptotically to the solutions within the boundary layer close to the front.
The presence of this region does not obviate computation of the rate of approach to the arrested state, but
is required to permit complete calculation of the evolving shape of the free surface.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many materials such as muds, volcanic lava, concrete and var-
ious food stuffs exhibit mechanical features typical of viscoplastic
fluids (see [1] for a recent comprehensive review). These materi-
als only flow once a yield stress has been exceeded and exhibit
a non-linear dependence of shear stress upon the rate of strain.
It is common to adopt an empirical constitutive law to model
the flow of such materials: for example, the Herschel–Bulkley
model, employed in the analysis below, captures the key fea-
tures of viscoplastic flow in terms of three empirically fitted
parameters. However it is important to bear in mind that this,
and other similar constitutive laws, are not explicitly linked
to any microscopic model of the material. For instance, con-
centrated particulate suspensions show evidence of yielding as
the configuration of the particles changes upon the action of
shear and the inter-particle contacts are rearranged, but cur-
rently there is not a widely accepted mathematical model to
link this micro-mechanics to the bulk motion. The concept of a
yield stress, therefore, is often interpreted as an extrapolation of
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measured shear stresses to the case of vanishing rates of strain
[1].

Free surface flows of viscoplastic materials have wide applica-
tion to geophysical and industrial situations [1–3] and in recent
years considerable progress has been made in developing con-
sistent mathematical models of their motion when the flows are
relatively shallow and predominantly parallel to the underlying
boundary [4]. Viscoplasticity affects these flows in important ways:
first the shear stresses developed within the flow diminish as the
free surface is approached and so fluid close to the surface must
exhibit ‘unyielded’ behaviour. Furthermore it is possible that the
yield stress is nowhere exceeded within the material, in which case
the motion is arrested. This means that flows evolve temporally and
spatially from a source, finally arresting to form a static layer.

The Bostwick consistometer features flows with this kind of
behaviour: it is a device used to investigate the flow and arrest
of food stuffs [5] and to deduce their ‘viscosity’ and yield stress.
The material to be measured is loaded behind a dam in a two-
dimensional channel and the flow is initiated by its rapid removal.
Measurements are taken of the distance that the material has prop-
agated along the channel after a fixed period of time (typically
30 s) and then the rheological properties are deduced. The Bost-
wick consistometer, and its axisymmetric counterpart, the Adams
consistometer [6], as well as the generic slump test for concrete, are
therefore simple devices for exploring the rheology of viscoplastic

0377-0257/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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materials—but the relationship between the measurements they
produce and the underlying rheology is non-trivial [5,7]. Part of
the difficulty is that the rheology is attempted to be deduced from
a single measurement of the length slumped after a certain time
(the ‘Bostwick length’), whereas Herschel–Bulkley models of vis-
coplastic materials feature three empirical parameters. Balmforth
et al. [7] explored the possibility of deducing extra information
by taking measurements at more than one time: an alternative
strategy might be to repeat the test with different channel incli-
nations.

Flows generated by the instantaneous release of an initially sta-
tionary material behind a dam (‘dam-break’ flows) are an important
fundamental problem in fluid modelling, not just because of their
direct application, but also because they are temporally and spa-
tially evolving and provide considerable insight into the balance
of forces driving the motion. They have been a focus of much
recent research and yield results that can be compared directly
to experiments and to numerical simulations of the motion. In
fact the various dam-break solutions provide important test cases
for numerical solvers, which are then applied to more compli-
cated problems. Important studies of this type of motion have
included: inertially dominated flows [8–10], viscously dominated
flows [11,12], the collapse of granular columns [13–15] and the flow
of viscoplastic fluids [7,16,17].

The transient motion of relatively thin and slow moving slumps
of viscoplastic material down slopes have been analysed theoreti-
cally by a number of researchers to reveal the rate of propagation
and the form of the final arrested state. Liu and Mei [18] studied
the transient slump into a channel that has a pre-existing layer of
fluid and they showed how the slump is progressively slowed and
then finally arrested as the driving forces are no longer able to sur-
mount the yield stress. Huang and Garcia [16] analysed the motion
along an initially fluid-free channel: their calculations revealed that
strong curvatures in the free surface are only found close to the
propagating front and this permitted a simplified analysis of the
motion in which the front was handled separately and matched to
the interior. Their analysis is appropriate for relatively steep slopes
and these results are recovered in this study within an appropriate
asymptotic regime that is identified below. A similar mathematical
model was presented by Balmforth et al. [19], who also treated three
dimensional flows down planes and over gently varying topography
to calculate the lateral and downstream spreading.

Flows of yield stress materials down slopes have also been
investigated experimentally. Often these relatively small-scale
experiments have employed clay dispersions and have measured
the flow speed and runout length, following the release of a volume
of material (see, for example [16,18–21]). Liu and Mei [18] released
mud into a sloping channel and showed that the profile of the mate-
rial, once the flow had arrested, was quite similar to the theoretical
predictions, for which the rheology of the mud was independently
determined. Huang and Garcia [16] studied the transient problem
by measuring the position of the front of the flow at various times
after release and found that its position was reasonably well pre-
dicted by their theory. Relatively little attention has been paid to the
approach of these flows to their final, static states, although slumps
of concentrated suspensions of particules, possibly released with
significant inertia, have been shown to arrest abruptly [22,23]. A
recent study, however, has studied the flow of Carbopol down an
inclined plane and taken measurements of the position of the front
over relatively long timescales (> 105 s) [21]. Most notably for the
current contribution, Cochard [21] appears to show that the final
state is approached asymptotically.

In this study we analyse the flow along an inclined plane of a
viscoplastic material, released from rest behind a instantaneously
removed lockgate. The fluid is assumed to form a relatively thin

film so that the predominant forces driving the motion along the
plane are the streamwise pressure gradients due to variations in
the thickness of the film, supplemented, or moderated, by gravi-
tational acceleration depending on whether the plane is inclined
downwards or upwards and resisted by ‘viscous-like’ stresses. We
neglect the inertia of the flowing material. Our particular focus is to
analyse the approach of the mobile layers towards the final arrested
state in which the pressure gradient, gravitational acceleration and
yield stress are in balance. Our key result is that this final state is
only approached asymptotically in time, with perturbations decay-
ing algebraically and at a rate that we calculate analytically. This
result has immediate implications for the interpretation of mea-
surements from devices such as the Bostwick consistometer, but
also explains what has been observed in numerical computations
[16,19]. It is the counterpart of what has been established on hori-
zontal surfaces [17]. The methodology used to establish the results
in this paper is rather more careful than what has been used in
previous studies. As the final state is approached, we show that the
precise balance in the dynamics close to the front of the motion is
different from those in the interior. This is handled analytically by
introducing matched asymptotic expansions between the interior
and the region close to the front. It is noteworthy that although
from different contexts and thus having very different structures,
this approach of matching an interior solution to a model with
a different balance of forces close to the front of the flow where
the depth of the moving fluid becomes small, has been employed
before. For example, Hogg and Pritchard [10] examined the effects
of drag on an inertial dam-break flow, Hocking [24] showed the
effects of surface tension on a viscous flow and, as described above,
Huang and Garcia [16] demonstrated that for sufficiently steep
slopes the ‘viscous’ stresses due to the curvature of the interface
may be neglected, apart from within regions close to the front. In
this study we show that this new region is sub-dominant and thus
while it controls the profile of the interface close to the front, it
does not contribute to the leading order expression for its speed,
unless the yield stress is vanishingly small and the fluid is flowing
up an inclined plane to approach a state in which its final interface
is horizontal.

The paper is structured as follows. First we formulate the
problem and identify the dynamical regime under consideration
(Section 2). Two important dimensionless parameters emerge:
these measure the inclination of the plane and the magnitude of
the yield stress. The final arrested state in then constructed in Sec-
tion 3. This has been formulated before (see, for example [2,18,19]).
Here we write it in compact form, expressing the profile in terms of
a Lambert- W function (see Appendix A). There are two real-valued
branches of this function and we show that these correspond to
the static profile on upwardly and downwardly sloping planes. This
compact form significantly aids the analysis that follows in Section
4, in which we calculate the approach to the arrested state. We study
the perturbations to the final state and examine how they vary with
time. This analysis requires a careful consideration of the magni-
tude of the final state and the perturbation close to the front and
the development of asymptotic expansions that match between the
frontal region and the interior. Throughout Sections 3 and 4 we treat
two-dimensional slumps along planes inclined upwards and down-
wards. A different analytical approach is required for some of the
analysis of the motion along upwardly inclined planes. This arises
because the flows are resisted by gravity in addition to the vis-
cous stresses and even without a yield stress, the material can form
a trivial arrested state with a horizontal surface. Also throughout
this paper, we develop asymptotic expressions for various quanti-
ties that emerge from the analysis to show how they depend on
slope and yield stress. Finally we summarise the results and draw
some conclusions in Section 5.
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2. Formulation

We analyse the two-dimensional, gravitationally driven, free-
surface slump and arrest of a volume of fluid with Herschel–Bulkley
rheology on an inclined plane to calculate how far the fluid prop-
agates before it arrests and the rate at which the arrested state is
approached. The fluid is released from rest within a reservoir, the
lockgate of which is instantaneously removed at t = 0 to gener-
ate the free-surface flow along the inclined plane. As it propagates,
the thickness of the flowing layer thins and eventually the driv-
ing forces, which are the streamwise gradients of the hydrostatic
pressure and gravitational acceleration, if the plane is sloping
downwards, are unable to surmount the yield stress of the material
and thus the motion is arrested. However as we will demonstrate
below the arrested state is only approached asymptotically, as
t → ∞.

The fluids under consideration in this study are characterised by
a Herschel–Bulkley rheology and thus the shear stress tensor, �ij , is
related to the strain rate tensor, �̇ij , by

�ij =
{

(�0 + �n|�̇ij|n)�̇ij/|�̇ij|, |�ij| > �0,
0, |�ij| < �0,

(2.1)

where �0 is the yield stress, �n is the consistency and n is the index
of the Herschel–Bulkley material. (In this expression | · | denotes the
second invariant of the tensor.) The flow propagates along a plane
inclined at an angle � to the horizontal and we orientate the coor-
dinate axes so that the x-axis is the streamwise coordinate along
the plane and the z-axis is perpendicular to the plane (see Fig. 1).
The fluid is of density � and gravitational acceleration is denoted
by g. The thickness of the fluid is denoted by h(x, t) and the initial
distribution of fluid within the reservoir is given by

h(x, 0) =
{

h0 + x tan �, 0 < x < x0,
0, x0 < x.

(2.2)

The motion is characterised by five dimensionless parameters:
the aspect ratio � = h0/x0; the Reynolds number, Re = �Ux0/�,
where � is the effective viscosity for a Herschel–Bulkley fluid,
� = �n(U/h0)n−1 and U = �g cos � h3

0/[�x0] is a velocity scale for
the motion; the rheological index of the Herschel–Bulkley fluid, n;
and of most significance for the analysis that follows, the slope, S
and the Bingham number, B, defined by

S = x0 tan �

h0
and B = �0

��gh0 cos �
. (2.3)

Fig. 1. The configuration of the flow.

Note that S > −1 by virtue of the initial condition and that the
parameter, B, measures the magnitude of the yield stress relative to
the weight of the flowing layer. The dynamical regime under con-
sideration corresponds to relatively thin flows (� � 1), so that the
pressure is hydrostatic to leading order, and to situations with neg-
ligible inertia (�2Re � 1) so the motion is dynamically controlled by
a balance of downslope acceleration and streamwise pressure gra-
dients with the divergence of viscous stresses. (This balance yields
the velocity scale, U, introduced above.) In this regime the shear
stress is then given to leading order by

�xz = �g

(
sin � − cos �

∂h

∂x

)
(h − z), (2.4)

and motion occurs provided the shear stress exceeds the yield stress
at some point within the flow, a condition that requires

�g cos � h

(
tan � − ∂h

∂x

)
> �0. (2.5)

Provided the yield stress is exceeded, then to leading order the
down-slope velocity exhibits a shearing region close to the basal
boundary, overridden by a plug-like region (see, for example [18]).
At the yield surface between the two, the velocity field and shear
stress are continuous. As demonstrated by Balmforth and Cras-
ter [4], this interface is a ‘fake’ yield surface above which there is
‘pseudo-plug flow’, with the deviation from a truly rigid, plug-like
region being represented at higher asymptotic orders.

We introduce the following dimensionless variables

{x, z, h, t, �xy} =
{

x0x′, h0z′, h0h′,
x0t′

U
, �g cos � h0� ′

xy

}
. (2.6)

Henceforth all variables will be assumed to be dimensionless
and for notational clarity, the primes will be dropped.

The equation governing the evolution of the height, h(x, t), is
derived by integrating the downslope velocity field over the depth
of the fluid layer to calculate the volume flux per unit width and
then the temporal rate of change of h(x, t) is equal to the spatial
divergence of the volume flux. Following [18], this gives

∂h

∂t
= − n

1 + 2n

∂

∂x

[(
S − ∂h

∂x

)−2(
h

(
S − ∂h

∂x

)
− B

)1+1/n

×
(

h

(
S − ∂h

∂x

)
+ n

1 + n
B

)]
. (2.7)

This equation is to be solved in the region where the yield stress
is exceeded, given in dimensionless form by

S − ∂h

∂x
>

B

h
. (2.8)

The yielded region ranges between the front, xf(t), where
h(xf, t) = 0 and either a yield point, xy(t), where h(xy, t) = h(xy, 0),
or the back of the lockgate (x = 0), if the entire fluid is in motion.
In both of these cases we also demand that at x = xy(t) or x = 0,
respectively, there is no flux of fluid per unit width, given by

S − ∂h

∂x
= B

h
. (2.9)

The flow arrests when all of the material exhibits the balance
between gravitational acceleration, pressure gradient and yield
stress, given by (2.9).

In formulating the asymptotic expansions that lead to this math-
ematical model of the motion, we have implicitly assumed that
S = O(1), which implies that the gradient of the slope is compa-
rable to the initial aspect ratio and this is assumed to be small.
Thus to leading order, the dimensionless shear stress is given by
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�xz = (S − ∂h/∂x)(h − z). We note that flows over horizontal planes
may still be modelled in this formulation by taking the limit
S → 0 and thus the dimensionless shear stress is given by �xz =
−∂h/∂x(h − z) [17]. Flows down steep slopes (S � 1) may also be
studied: while S � |∂h/∂x| throughout most of the current, it is not
the case close to the front of the current, where it will be shown
below that ∂h/∂x becomes unbounded and thus we retain both
terms in the expression for the dimensionless shear stress. Some
previous studies of flows down steep slopes have employed the
approximation that �xz = S(h − z) (e.g. [16]) and this means that the
front is no longer identified as the the position where the height of
the flowing layer vanishes, but rather is found by enforcing con-
servation of mass throughout the flow. Such models do not resolve
the shape of the interface close to the front, but remain accurate
because the frontal region is of negligible extent. Finally we note
that (2.7) and (2.9) predict the divergence of the gradient of the
interface as the front is approached (see below). This is a common
feature in models of thin film flows of viscous fluids. The diver-
gence may be regularised by reinstating dynamical terms that are
no longer asymptotically small, or by including physical processes
that do not feature in the original model, such as surface tension.
The analysis of viscous flows in the absence of a yield stress indi-
cates that the inclusion of capillarity does not significantly modify
the predictions of the motion; rather it introduces a new sub-
dominant asymptotic region close to the front [24]. We emphasise
that capillary effects will be neglected in this paper.

The evolution of the flow from initial conditions (2.2) may be cal-
culated by numerically integrating the partial differential Eq. (2.7).
To this end it is useful to introduce a rescaled coordinate

	 = [x − xy(t)]
[xf(t) − xy(t)]

, (2.10)

so that the computational domain is 0 ≤ 	 ≤ 1. Considerable care
is needed in adequately resolving the height close to the front and
to the yield point, where the curvature is high and the local power
series expansions of h(	, t) exhibit fractional powers [17]. In this
study we adopt the numerical scheme proposed by [7]: the re-
scaled spatial coordinate is discretised onto a non-uniform grid
with grid-points clustered at the front of the flow (	 = 1), typi-
cally according to 	i = 1 − [(N − i)/(N − 1)]3 with i = 1 ≤ i ≤ N. The
speeds of the front and the yield point are determined by evalu-
ating the governing equation at 	 = 0 and 1, respectively. Time is
stepped forward using a fifth-order backward differentiation for-
mula (Gear’s method). The results shown in Section 4 with N = 200
are typically produced in runtimes of a few minutes.

In this contribution we first analyse the arrested state and then
show how to calculate analytically the approach to that arrested
state.

3. The arrested state from dam-break initial conditions

3.1. Flows down inclined planes (S > 0)

From dam-break initial conditions (2.2), the fluid attains an
arrested profile h∞(x), which satisfies

h∞

(
S − ∂h∞

∂x

)
= B. (3.1)

This may be integrated subject to the condition at the front, xf∞,
namely h∞(xf∞) = 0 to give

h∞(x) = B

S
[1 + W0(−e−1+S2(x−xf∞)/B)], (3.2)

where W0 denotes the Lambert- W function (see Appendix A and
[25]). This expression produces identical arrested profiles to those

presented by [2,18], but here we have expressed h∞(x) as an explicit
function and this compact form is useful in the analysis that follows.
The expression is valid for xy∞ ≤ x ≤ xf∞, where xy∞ denotes the
arrested position of the yield point. It is possible that the entire
fluid was in motion before arrest, in which case the active region is
0 ≤ x ≤ xf∞—and this case will be treated below.

We may evaluate xy∞ and xf∞ by requiring that h∞(xy∞) =
h(xy∞, 0), which is represented by

1 + Sxy∞ = B

S
[1 + W0(−e−1+S2(xy∞−xf∞)/B)], (3.3)

and by enforcing conservation of volume per unit width, which
gives∫ xf∞

xy∞
h∞ dx = (1 − xy∞) + S

2
(1 − x2

y∞). (3.4)

Thus by employing (A.2) to evaluate (3.4) and using (3.3), we
deduce that the active region xa∞ ≡ xf∞ − xy∞ is given by

xa∞ = (S + 1)2

2B
, (3.5)

and thence the arrested yield point is given by

xy∞ = 1
S

[
B

S
(1 + W0(−e−1−S2(S+1)2/[2B2])) − 1

]
. (3.6)

Whether the entire material takes part in the slump is deter-
mined by the magnitudes of the Bingham number, B and the slope,
S. In particular there is a critical Bingham number, Bc(S), for which
xy∞ = 0, such for that B > Bc there exists an arrested interior yield
point. This critical Bingham number is implicitly determined by

0 = Bc

S
[1 + W(−e−1−S2(S+1)2/(2B2

c ))] − 1 (3.7)

and plotted in Fig. 2. In the regime S � 1, we determine that

Bc = 1
3

+ 7S

12
+ · · · , (3.8)

which is consistent with the critical Bingham number determined
for dam-break flows over a horizontal surface [17]. Furthermore for

Fig. 2. The critical Bingham number, Bc, as a function of the slope, S, for downslope
slumps. For B < Bc all of the fluid in the reservoir is set in motion during the slump,
whereas for B > Bc only part of the fluid flows. Also plotted are the asymptotic
expressions for the dependence of Bc upon S in the regimes S � 1 (· · · ) and S � 1
(− · − · −).
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relatively steep slopes, S � 1, we find that

Bc = S(1 + e−1−(S+1)2/2 + · · · ) (3.9)

We observe in Fig. 2 that in their relevant regimes these asymp-
totic expressions accurately capture the numerically computed
values.

If B < Bc then at some time during the flow, the yield position
has moved back to the rear wall and thereafter all of the fluid is in
motion. In this case, the arrested position of the front is determined
by using mass conservation and integrating the profile (3.2) to give

B

S
xf∞ − B2

S3

[
1
2

+ 1
2

(W0(−e−1−S2xf∞/B))
2 + W0(−e−1−S2xf∞/B)

]
= 1 + S

2
. (3.10)

It is also possible to deduce asymptotically the arrested front and
yield positions in the regime B > Bc. This gives two possibilities:
when S(1 + S) � B > Bc then

xy∞ = B

S2
+ · · · and xf∞ = (S + 1)2

2B
+ · · · (3.11)

Conversely when B � S(S + 1) and B > Bc, we find that

xy∞ = 1 − (S + 1)2

3B
+ · · · and xf∞ = 1 + (S + 1)2

6B
+ · · · (3.12)

Once again (3.12) is consistent with results in a horizontal
channel[17]. In the regime Bc > B � S2

xf∞ =
(

9(1 + S/2)2

8B

)1/3

+ · · · , (3.13)

while when Bc > B and S2 � B

xf∞ = S

B

(
1 + S

2

)
. (3.14)

We plot the dependence of xf∞ and xy∞ upon B and S in
Figs. 3 and 4, along with some examples of the arrested profiles
(Fig. 5). The latter result, (3.14), recovers the expression derived by
Huang and Garcia [16] for flows down relatively steep slopes.

3.2. Flows up inclined planes (0 > S > −1)

When the fluid is released from rest behind the dam into an
upwardly sloping flume it will also attain an arrested final state
in which the hydrostatic pressure gradients are insufficient to
overcome the combination of the yield stress and gravitational
acceleration. Upslope slumps are somewhat different from their
downslope counterparts because they can still be arrested in the
absence of a yield stress (B = 0), in which case the free surface of
the final state is horizontal. In this situation the final profile is given
by

h∞ =
√

−2S − S2 + Sx, (3.15)

and the length of the intrusion is xf∞ =
√

(2 + S)/(−S). For mate-
rials with a non-vanishing yield stress (B > 0), the arrested profile
also satisfies (3.1). However in this case its solution may be written

h∞(x) = B

S
[1 + W−1(−e−1+S2(x−xf∞)/B)], (3.16)

where W−1 denotes the second real-valued, principal branch of the
Lambert- W function, defined for z < −e−1 (see Appendix A and
[25]). Many of the results of the previous subsection carry over to
the regime −1 < S < 0: inparticular, if B > Bc then there exists an

Fig. 3. The position of the arrested front, xf∞ and yield position, xy∞ , as a function of
the Bingham number, B when S = 10, for which Bc = 10.0000. Also plotted are the
asymptotic approximations for xf∞ and xy∞ in the regimes S(1 + S) � B � Bc and
B � S(S + 1) (· · · ).

interior yield point in the arrested state and xa∞ is given by (3.5)
and

xy∞ = 1
S

[
B

S
(1 + W−1(−e−1−S2(S+1)2/[2B2])) − 1

]
. (3.17)

Thus the critical Bingham number for the existence of this yield
point is given by (3.7), with the Lambert- W function, W0, replaced
by the other real-valued branch, W−1. We plot Bc as a function of S

Fig. 4. The position of the arrested front, xf∞ as a function of the Bingham number,
B when S = 0.1, for which Bc = 0.3936. Also plotted are the asymptotic approxima-
tions for xf∞ in the regimes Bc � B � S2 and S2 � B and Bc � B (· · · ).
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Fig. 5. The arrested profile of fluid h∞(x) for (a) S = 1 and B = 0.5, 2; and for (b)
S = −0.5 and B = 0, 0.08, 0.2. Note that when S = 1, the critical Bingham number
Bc = 1.0752 and thus in (a) all of the fluid in the reservoir flows for B = 0.5, whereas
for B = 2, there is an interior yield position, upstream of which the fluid surface
remains horizontal. Further note that when S = −0.5, the critical Bingham number,
Bc = 0.09634 and so in (b), there is only an interior yield point for B = 0.2. In both
(a) and (b), the initial condition is also plotted (· · · ), noting that the axes are aligned
so that initially the free surface within the reservoir is horizontal.

Fig. 6. The critical Bingham number, Bc, as a function of the slope, S for upslope
slumps. For B < Bc all of the fluid in the reservoir is set in motion during the slump,
whereas for B > Bc only part of the fluid flows. Also plotted are the asymptotic
expressions for the dependence of Bc upon S in the regimes |S| � 1 and 0 < 1 + S � 1
(· · · ).

in Fig. 6, noting that for |S| � 1, the asymptotic behaviour is given
by (3.8), while in the regime 0 < 1 + S � 1,

Bc = 1
2

(1 + S)2 + · · · (3.18)

When B < Bc, all of the fluid is set in motion at some instant
before it arrests. In this case the position of the arrested front is
given by (3.10), again with the Lambert- W function W0 replaced by
W−1. It is noteworthy that by evaluating (3.10) in the limit B → 0, we
find xf∞ =

√
(2 + S)/(−S), recovering the result presented above

for the slump of a viscous fluid in the absence of a yield stress.
There is, however, an important feature that differs between the
arrested profiles with and without a yield stress (B > 0 and B = 0,
respectively). Close to the front (xf∞ − x)/x∞ � 1,

h∞ =
√

2B(xf∞ − x) + · · · when B > 0, (3.19)

whereas

h∞ = S(x − xf∞) when B = 0. (3.20)

This different curvature close to the front will be shown to have
a significant effect on the analysis that follows.

4. Approach to the arrested state

We numerically integrate the governing equation from initial
conditions (2.2) for a Bingham fluid (n = 1), slope S = 1 and (a)

Fig. 7. The evolution of the profile of fluid, h(x, t), released from rest behind a lock-
gate, and flowing down a slope (S = 1) for (a) B = 0.5 at times t = 0.01, 0.05, 0.1, 0.2,
0.4816, 1, 5, 10, 50, 100, 500, 1000, 5000, 10,000 and (b) B = 2 at times t = 0, 0.01,
0.05, 0.1, 0.5, 1, 5, 10, 50, 100. The flows approach an arrested state, here plotted with
a thicker line. Note that for (a), the yield point reaches the back of the lock (x = 0)
at t = 0.4816.



Author's personal copy

A.J. Hogg, G.P. Matson / J. Non-Newtonian Fluid Mech. 158 (2009) 101–112 107

B = 0.5 and (b) B = 2 (see Fig. 7(a) and (b)). When S = 1, the crit-
ical Bingham number for the existence of an interior yield point
is B ≡ Bc = 1.0752. Thus in Fig. 7(a) and B = 0.5, we observe that
the yield point moves backwards to the rear wall, reaching it at
t = 0.4816; thereafter the entire fluid is set in motion. From Fig. 7(a)
and (b) it may be observed that the fluid evolves from the initial con-
dition, at rest within the reservoir, and approaches the final arrested
state—and it is this evolution that is considered in this section.

We examine how the height of the flowing layer, treated as a
function of the rescaled spatial variable, 	, and the positions of the
front and yield points approach their arrested states h∞, xf∞ and
xy∞, respectively. If B < Bc, it is sufficient to set xy = 0 for suffi-
ciently long times, however if B > Bc then xy(t) must always exceed
xy∞. Thus we define the following perturbation variables, h̃(	, t),
x̃f(t) and x̃y(t), to these arrested states

h(	, t) = h∞(	) + �h̃(	, t), xf(t) = xf∞ − �x̃f(t) and

xy(t) = xy∞ + �x̃y(t), (4.1)

where � is an ordering parameter. In the analysis that follows, we
assume that � � 1, so that deviations from the final states are rel-
atively small. These definitions imply that the length of fluid in
motion is given by

xa(t) = xa∞ − �(x̃f(t) + x̃y(t)) ≡ xa∞ − �x̃a(t). (4.2)

In the following subsections we treat separately flows with and
without a yield stress. Although there is common methodology
between these two subsections, the details of the calculations are
different in important ways that are linked to the differing curva-
tures at the fronts of the flows.

4.1. Yield stress flows (B > 0)

We substitute (4.1) into (2.7) and linearise on the assumption
that h∞(	) � �h̃(	, t), which is certainly valid away from the front
provided � is sufficiently small. At the front (	 = 1), h∞ vanishes
and it will be shown below that the solution in this region requires
special attention. However sufficiently distant from the front, we
obtain the following expression at leading order

∂h̃

∂t
− B

h∞

(
1 − h∞S

B

)(
	

dx̃a

dt
− dx̃y

dt

)
= − n

1 + n

�1/nB1/n

xa∞
∂

∂	

×
[

h2
∞

(
h̃

h∞
+

(
1 − h∞S

B

)
x̃a

xa∞
− h∞

Bxa∞
∂h̃

∂	

)1+1/n
]

. (4.3)

Importantly we note that the leading order terms in the per-
turbation variables on the right-hand side of (4.3) have exponent
1 + 1/n, whereas those on the left-hand side are of exponent 1. The
leading order form of the boundary conditions are no flux of fluid
at 	 = 0, which corresponds to

∂h̃

∂	

∣∣∣∣
	=0

− Bxa∞
h∞(0)2

h̃(0, t) = B

h∞(0)

(
1 − h∞(0)S

B

)
x̃a. (4.4)

At the front of the flow we enforce h(1, t) = 0 for all times and
this forces the perturbation to the height profile to vanish here,

h̃(1, t) = 0. (4.5)

We comment that potentially we should not enforce (4.5) on this
perturbation function, h̃(	, t), the governing equation for which is
derived by linearisation of (2.7) under the assumption that h∞ �
�h̃. This regime can not be guaranteed at this stage of the anlaysis.
However we will show below that a more appropriate asymptotic
analysis close to the front produces a more complete solution that
turns out to be consistent with this boundary condition. If B > Bc

we have one further boundary condition, that the height must be
equal to the height of fluid in the reservoir at 	 = 0 for all time, and
hence

h̃(0, t) = Sx̃y. (4.6)

To solve (4.3) subject to these boundary conditions, we con-
struct a solution in separable form, h̃(	, t) = A(	)G(t), x̃f(t) = F(t)
and x̃y(t) = H(t), where F, G, H → 0 as t → ∞. Upon substitution
into (4.3) and (4.4) it is found that F(t), G(t) and H(t) must differ
only by a multiplicative constant and thus we write

h̃(	, t) = S E(	)F(t), (4.7)

x̃f(t) = F(t), (4.8)

x̃y(t) = 
F(t), (4.9)

where 
 is a constant to be found. If B < Bc then 
 = 0 because the
yield point reaches the back wall within finite time and thereafter
xy = 0. Substitution of these separable forms (4.7)–(4.9) into (4.3)
and separation of terms yields

1
F1+1/n

dF

dt
= − n

1 + n

�1/nB1/n

xa∞
(d/d	)[h2∞((SE/h∞) + (1 − (h∞S/B))((1 + 
)/xa∞) − (Sh∞/Bxa∞)(dE/d	))1+1/n]

SE − (B/h∞)(1 − (h∞S/B))(	 − 
(1 − 	))
, (4.10)

with boundary conditions given by

S
dE

d	

∣∣∣
	=0

− Bxa∞S

h∞(0)2
E(0) = B

h∞(0)

(
1 − h∞(0)S

B

)
(1 + 
), (4.11)

E(1) = 0, (4.12)

and if B > Bc and hence 
 /= 0,

E(0) = 
. (4.13)

The left-hand side of (4.10) is solely a function of time and the
right-hand side solely a function of 	 so they must both be equal to
a constant, −˛�1/n, and we obtain an ordinary differential equation
for F(t),

1
F1+1/n

dF

dt
= −˛�1/n ≡ − n

1 + n
�1/nS(2+n)/n 1

k(B, S)
, (4.14)

where k is a separation constant that is a function of B and S. Inte-
gration of this equation leads us to the solution:

F(t) = 1
�

(
n

˛t

)n

, (4.15)

where the constant of integration has been set to zero. This is appro-
priate because the constant sets the origin of time, but we are only
interested in large time so we may choose it arbitrarily. We note
that ˛ must be positive to allow this solution to be be valid for
arbitrary n. We also note that F ∝ �−1—and so the perturbation �h̃
becomes independent of �, as required, because � is an arbitrary
ordering parameter.

In order to complete the solution we must solve the spatial ordi-
nary differential equation given by setting the right-hand side of
(4.10) equal to −˛�1/n and solving with appropriate boundary con-
ditions in order to determine the value of −˛. This is subsequently
done in the remainder of this section but we already have demon-
strated an important result: all the perturbation variables decrease
as 1/tn for t � 1.
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We may simplify the differential equation governing E(	) and
determine k and 
 by making the following change of independent
variable: we take the variable E(	) to be a function of

W ≡ W(−e−1−S2xa∞(1−	)/B), (4.16)

where W denotes the appropriate real-valued branch of the
Lambert- W function (i.e W ≡ W0 when S > 0 and W ≡ W−1 when
S < 0). The yield point, or back of the channel, at 	 = 0 corresponds
to W = Wy ≡ W(−e−1−S2xa∞/B), while the front of the current at
	 = 1 corresponds to W = −1. Furthermore we substitute

E(	) = W

1 + W
[P(W) − 1 + (1 + 
)(1 − 	)]. (4.17)

Then the differential equation becomes

P = k

[
(1 + W)2

[
− W2

1 + W
P ′

]1+1/n
]′

, (4.18)

where a prime denotes differentiation with respect to W. The
boundary condition of vanishing height at the front (	 = 1) becomes
P(−1) = 1: in fact this is the only possible condition that keeps E(1),
and thus h̃(1, t), finite. The condition of no-flux at the rear of the
active region become P ′(Wy) = 0. For B < Bc these are sufficient to
determine the solution since the active region includes all of the
fluid. However if B > Bc, we complete the solution by the condition

 = WyP(Wy).

Finally we make one further substitution to simplify the prob-
lem,

I(W) =
∫ W

−1

P(W) dW, (4.19)

which yields

W2

1 + W
I′′ + K

[
I

(1 + W)2

]n/(n+1)

= 0, (4.20)

where K = k−n/(n+1), subject to I(−1) = 0, I′(−1) = 1 and I(Wy) = 0.
(Additionally if B > Bc, 
 = WyI′(Wy).) Thus the problem is reduced
to a relatively straightforward two point eigenvalue problem, which
can be readily integrated numerically to determined the separation
constant, k and the shape of the perturbation to the profile, h̃.

In Table 1 we list the values of the separation constant, K ≡
k−n/(1+n) and 
 for various values of the flow index, n when S = 1
and (a) B = 0.5 and (b) B = 2. The corresponding functions I(W) are
plotted in Fig. 8. We also plot the shape of the perturbation to the
profile of the current (Fig. 9) for n = 1/3, 1 and 3, noting that the
perturbations exhibit highest curvature towards the front of the
current. As a consequence it will be shown that the perturbation to
the height field, �h̃, is actually larger than the final arrested state,
h∞, in the region close to the front, which implies that the lineari-
sation underlying these results fails and the analysis requires more
careful consideration.

It is straightforward to solve the eigenvalue differential equation
in the limits n → 0 and n → ∞. First, when n � 1, the governing
equation becomes linear to leading order and is given by

I′′ + K

W2(1 + W)
I = 0. (4.21)

This may be integrated straightforwardly and the solution may
be expressed in terms of hypergeometric functions; the eigenvalue
K and 
 are given in Table 1, for S = 1 and B = 0.5, 2.

When n � 1, the governing equation may be analysed using
matched asymptotic expansion where the ‘outer’ region −1 ≤
W � Wy is matched to an ‘inner’ region close to the end of the

Table 1
The separation constant K ≡ k−n/(n+1) and 
 at various values of n for S = 1 and (a)
B = 0.5; (b) B = 2

n K

(a)
0 0.1816
1/10 0.1904
1/5 0.1986
1/3 0.2085
1/2 0.2195
1 0.2459
2 0.2802
3 0.3016
5 0.3268
10 0.3538
∞ 0.3931

n K 


(b)
0 4.2776 1.1388
1/10 4.0910 1.0173
1/5 3.9403 0.9254
1/3 3.7794 0.8333
1/2 3.6237 0.7490
1 3.3278 0.6001
2 3.0542 0.4716
3 2.9265 0.4135
5 2.8059 0.3592
10 2.7033 0.3126
∞ 2.5906 0.2601

Fig. 8. The perturbation I(W) as a function of W for S = 1 and (a) B = 0.5; (b) B = 2.
The function I(W) is determined for n = 10, 5, 3, 2, 1, 1/2, 1/3, 1/5, 1/10 (—). Also
plotted are the asymptotic profiles when n = 0 and n → ∞ (· · · ).
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Fig. 9. The perturbation E(	) as a function of the rescaled distance 	 for S = 1 and
(a) B = 0.5; (b) B = 2. The function I(W) is determined for n = 3, 1, 1/3.

domain at W = Wy. Within the outer region, to leading order we
find that

I = K(1 − W) log(−W) + (2K + 1)(W + 1). (4.22)

Matching to the inner region demands that this expression van-
ishes at W = Wy and thus

K = −(1 + Wy)
(1 − Wy) log(−Wy) + 2(1 + Wy)

and


 = 2Wy log(−Wy) − 1 + W2
y

(1 − Wy) log(−Wy) + 2(1 + Wy)
. (4.23)

These asymptotic values agree closely with numerically deter-
mined ones in the regime n � 1.

The separable solution has determined the form of the pertur-
bation to the height and length of the flow as the arrested state is
approached under the assumption that h∞ � �h̃. While this regime
holds in the bulk of the current, it becomes invalid as the front is
approached. This can be demonstrated by examining the behaviour
of E in the regime 1 − 	 � 1, or equivalent I in the regime 1 + W � 1.
We find that

h∞ = (2Bxa∞(1 − 	))1/2 + · · · and

h̃ = SF(t)C

(
2S2

B
xa∞(1 − 	)

)1/[2(n+1)]

, (4.24)

where C = (n + 1)k−n/(n+1)/(n + 2). Thus h∞ ∼ �h̃ when

2xa∞(1 − 	) ∼ (�CF)2(n+1)/n

(
S2

B

)(n+2)/n

. (4.25)

This identifies a region close to the front of the slumping fluid
within which the leading order height, h∞(	), and the perturbation,
�h̃(	, t), are of the same order of magnitude. This means that the
linearizarion used to derive (4.10) is no longer valid; instead the
equations must be analysed within a new asymptotic region close
to the front and matched to the solutions in the interior of the fluid.
To this end, we define a rescaled coordinate,

� = 2xa∞(1 − 	)

(�CF)2(n+1)/n(S2/B)(n+2)/n
. (4.26)

We observe because F → 0 as t → ∞, this rescaled spatial coor-
dinate identifies a ‘boundary layer’ close to the front (	 = 1), which
is of progressively diminishing magnitude. The final arrested state
and the perturbation are comparable when � = O(1), both being
O(�1+1/n). Explicitly, we can show that

h∞ ∼ (�FC)1+1/nS1+2/nB−1/n�1/2, (4.27)

�h̃ ∼ (�FC)1+1/nS1+2/nB−1/n�1/[2(n+1)]. (4.28)

We now analyse the governing Eq. (2.7) in terms of independent
variables � and t: we substitute the leading order expressions for
h∞ and we introduce

�h̃ = (�FC)1+1/nS1+2/nB−1/nH(�). (4.29)

This form is consistent with the magnitude of the separable solu-
tion in the interior of the flow and within the ‘boundary layer’, we
find the leading order equation is given by

1
n+1

(
n + 2
n + 1

)1+1/n d
d�

(�1/2 + H)= 1
1 + 2n

d
d�

[(2(�1/2 + H)(d/d�)(�1/2 + H) − 1)
1+1/n

(2(�1/2 + H)(d/d�)(�1/2 + H) + (n/(n + 1)))]

4[(d/d�)(�1/2 + H)]2
, (4.30)

subject to the boundary condition that the height vanishes at the
front, H(0) = 0 and the matching condition that H → �1/[2(n+1)] as
� → ∞. It may be readily verified that this matching condition is
automatically satisfied as the far-field asymptotic of this govern-
ing Eq. (4.30), thus confirming the approach above that allows the
separation constant to be determined without explicitly calculat-
ing the profile within this boundary layer close to the front. The
point � = 0 is a singular point of the differential equation and we
may determine analytically the behaviour in the region � � 1,

H(�) = (n + 2)(2n + 1)n/(n+2)

21/(n+2)(n + 1)(n+1)/(n+2)
�1/(n+2) + · · · (4.31)

Thus the ordinary differential equation may be integrated
numerically from � = ı � 1 to determine fully the perturbation
to height field, h̃ within the region close to the front. We plot the
perturbation, H(�) in Fig. 10 for n = 1/3, 1 and 3.

It is noteworthy that when � � 1, H ∝ �1/(n+2) whereas h∞ ∝
�1/2. Thus as anticipated, sufficiently close to the front the pertur-
bation dominates the arrested state—and therefore this asymptotic
analysis is required to determine fully the approach to the arrested
state. This behaviour close to the front, however, can be antici-
pated. An intruding free-surface flow of a fluid with power law
rheology exhibits h ∼ (xf − x)1/(n+2) (see, for example [17,26,27]),
whereas the arrested state has h ∼ (xf − x)1/2. Thus as the flow of a
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Fig. 10. The perturbation function, H, within the ‘boundary layer’ close to the front of
the flow, as a function of the rescaled spatial coordinate, �, for flow indices n = 1/3,
1 and 3.

Herschel–Bulkley fluid approaches its arrested state, although the
interior becomes close to h∞, there exists a diminishing region close
to the front within which h∞ does not provide the dominant shape
of the interface. Rather, the material here is still flowing and its vis-
cosity exhibits a dependence on the rate of strain similar to a power
law fluid: this requires that h ∼ (xf − x)1/(n+2). This transition is pre-
cisely encompassed by the matched asymptotic analysis developed
above.

4.2. Slumps of fluids in the absence of a yield stress (B = 0)

Slumps of viscous fluid, released from rest behind a dam and
flowing up an inclined plane, reach an arrested final state in the
absence of a yield stress with the free surface lying horizontally. In
this subsection we analyse the approach of such motion towards to
the end state. Much of the methodology is similar to Section 4.1, but
the detailed calculations work out somewhat differently. In fact it
is clear from the results of Section 3 that a different approach will
be required when B = 0, because this is a singular limit of the gov-
erning equations. In physical terms, the difference arises because
in the absence of a yield stress the final state is a horizontal sur-
face, whereas with a yield stress (B > 0) the arrested state exhibits
considerable curvature, especially close to the front.

For flows with vanishing yield stress (B = 0), the governing equa-
tion for the evolution of the shape of the free surface, h(	, t), may
be deduced from (2.7) and is given by

∂h

∂t
− ẋf

xf
	

∂h

∂	
= − n

1 + 2n

1
xf

∂

∂	

[
h2+1/n

(
−� − 1

xf

∂h

∂	

)1/n
]

, (4.32)

where we have substituted −S = � > 0. The final state and the
length of the intrusion along the inclined plane are given by (3.15).
The evolution equation is subject to the following boundary con-
ditions: no flow at the back wall of the lock, ∂h/∂x = −�, at 	 = 0;
vanishing height at the front, h = 0 at 	 = 1; and conservation of
mass per unit width

xf

∫ 1

0

h d	 = 1
2

(2 − �). (4.33)

We analyse how this arrested state is approached by introducing

h = h∞ + �h̃ and xf = xf∞ − �x̃f, (4.34)

where � is an ordering parameter. On the assumption that � � 1
and that h∞ � �h̃, we obtain the following linearised equation:

�
∂h̃

∂t
− �

˙̃xf

xf∞
∂h∞
∂	

= −�1/n n

1 + 2n
�2+1/nxf∞

∂

∂	

×
[

(1 − 	)2+1/n

(
−∂h̃

∂	
+ x̃f�

)1/n
]

, (4.35)

subject to ∂h̃/∂	(0, t) = �x̃f, h̃(1, t) = 0 and∫ 1

0

h̃ d	 = 1
2

�x̃f. (4.36)

We seek a solution of the form h̃ = �x̃f + g1(t)g2(	), but it is not
possible to find a separable solution, g2(	), that remains finite at
both 	 = 0 and 	 = 1. However, while the solution h̃ = �x̃f satisfies
the conditions for no flow at the back wall and conservation of mass
per unit volume, it does not give a vanishing height at the front and
thus can not represent the complete solution. Furthermore in con-
trast to the analysis of Section 4.1, the linearised governing equation
does not permit x̃f(t) to be calculated.

The resolution of this difficulty is that the governing equation
can not be linearised close to the front (	 = 1), because in that
region we find that h∞ ∼ �h̃ (cf. Section 4.1). Thus the solution
h̃ = �x̃f is appropriate sufficiently distant from the front, but a dif-
ferent approach is required within the region close to the front. The
size of this region may be estimated as follows:

�xf∞(1 − 	) ∼ ��x̃f. (4.37)

Thus as x̃f is a decreasing function of time, there is a progres-
sively diminishing boundary layer close to the front within which
the arrested final profile and perturbation are of the same order
of magnitude. We analyse this boundary layer by introducing a
rescaled spatial coordinate

� = (1 − 	)
�xf∞x̃f

. (4.38)

Within the boundary layer, h∞ = ��x̃f� and at the edge of the
region the perturbation must match with the solution in the inte-
rior. Adopting � and t as independent variables and substituting
h̃ = ��x̃f(t)Ĥ(�), the leading order terms of the governing equation
are given by

˙̃xf

[
Ĥ − (� + 1)

dĤ

d�
− 1

]
= n

1 + 2n
�1/n�1+2/nx̃1+1/n

f
d

d�

×
[

(� + Ĥ)
2+1/n

(
dĤ

d�

)1/n
]

, (4.39)

subject to Ĥ(0) = 0 and Ĥ → 1 as � → ∞. We may now separate the
functions of the independent variables and thus

˙̃xf

x̃1+1/n
f

= − n

1 + 2n
�1/n�1+2/nk, (4.40)

where k is a separation constant depending on n. This yields

x̃f = 1
�

(
1 + 2n

�1+2/nkt

)n

. (4.41)

Hence the dependence of the perturbation upon t−n is identical
to flows with a yield stress (see Section 4.1). Also we note that the
perturbation �h̃ is independent of �, as is to be expected because �
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Fig. 11. The perturbation function, Ĥ, within the ‘boundary layer’ close to the front of
the flow, as a function of the rescaled spatial coordinate, �, for flow indices n = 1/3, 1
and 3 in the absence of a yield stress (B = 0).

Table 2
The separation constant k at various values of n in the absence of a yield stress (B = 0)

n k

1/5 0.0001993
1/3 0.01840
1 0.6090
3 1.037
5 1.062

is an arbitary ordering parameter. The spatial dependence reduces
to

−k

[
Ĥ − (� + 1)

dĤ

d�
− 1

]
= d

d�

[
(� + Ĥ)

2+1/n
(

dĤ

d�

)1/n
]

. (4.42)

In the regime � � 1, Ĥ(�) = kn/(n+2)(n + 2)1/(n+2)�1/(n+2) + · · ·
and so the complete solution may be computed by numerically
shooting from � = ı � 1 to the far-field and adjusting to the value
of k until the matching condition is satisfied. We plot the form of
the perturbation field, Ĥ(�) in Fig. 11 for n = 1/3, 1 and 3 and give
values for the separation constant k in Table 2.

Once again, we note that the spatial dependence close to front:
when the current is flowing, we require h ∼ (xf − x)1/(n+2) (see
above and [17]) within a diminishing boundary layer as the current
slows and approaches its final state in which h∞ ∼ (xf − x).

5. Summary and conclusions

In this contribution we have analysed the motion and arrest of
fluid released from rest behind a dam and allowed to flow along
an inclined, two-dimensional channel. We have fully characterised
the final arrested profile of the free surface in terms of two dimen-
sionless parameters, S and B, that measure the magnitude of the
inclination of the channel relative to the initial aspect ratio of the
release and the magnitude of the yield stress of the material rela-
tive to the weight of the fluid layer, respectively. This final profile
can be expressed in a compact form in terms of Lambert- W func-
tions, with the two real-valued branches representing slumps up
and downhill. This representation aids the subsequent analysis in
this paper as the approach to the arrested state is considered. Fol-
lowing release, it is possible that not all of the fluid is set in motion
before the stresses drop below the yield stress and the flow arrests.
We show that from dam-break initial conditions we may evaluate a
critical value of the yield stress as a function of the slope, expressed

as Bc(S) in dimensionless variables, such that there is an interior
yield point if this parameter is exceeded.

Turning then to the approach towards the final state, we have
generalised the results for flows along horizontal channels [17] to
show that the state is only attained asymptotically as t → ∞ and
that perturbations decay as t−n. Furthermore we calculate the con-
stant of proportionality (the ‘separation’ constant) in this decay by
solving numerically a relatively simple eigenvalue problem. These
analyses and results do indicate an important feature that was not
noticed before, namely that the perturbation to the final profile is
larger than the final profile itself as the front is approached. This
can be anticipated because in the region (xf∞ − x)/xf∞ � 1, h∞ ∼
(xf∞ − x)1/2 while the flowing state must exhibit h ∼ (xf − x)1/(n+2).
The resolution of this difficulty is to introduce a new asymptotic
region, within a diminishing boundary layer close to the front, and
to match to the interior. It was shown that its effect on the solution
and the calculation of the decay is sub-dominant unless S < 0 and
B = 0, in which case the motion upslope towards a stationary state
with a horizontal interface is crucially dependent upon the profile
close to the front.

The algebraic decay as the arrested state is approached has been
seen in numerical computations [7,16] and there is some evidence of
it in recent experiments [21]. It has some important consequences
in the interpretation of data from devices such as the Bostwick con-
sistometer or other slump-like test, in which material is set into
motion and allowed to flow towards a yield-stress arrested state.
The algebraic decay means that unlike the cessation of flows of yield
stress materials in pipes and channels, for which when the driving
pressure gradient is abruptly removed and the flow stops in a finite
time [28], the free-surface slumps only approach the arrested state
asymptotically.

There are dynamical features that have not been included in this
model and which warrant investigation. For instance, the inertia
of the flowing material may become non-negligible at some stage
during the motion; surface tension effects could become significant
in regions of significant curvature; and these predictions could be
modified during the initial phases of the motion when the flow is
not shallow and the pressure not hydrostatic. Alternatively, and this
may be required to explain the experimental observations of con-
centrated suspensions of particles and clay dispersions that appear
to arrest abruptly (e.g. [22]), it would be interesting to analyse the
flow and arrest of systems under modified constitutive laws that
account in some way for the micromechanics of the particulate
materials.

Appendix A. Properties of the Lambert- W function

The Lambert- W function is defined to be the function satisfying

W(z) exp(W(z)) = z (A.1)

(see [25]). The function has a branch point at z = −e−1 and two
principal, real-valued branches: W0(z) defined for z > −e−1 and
W−1(z) defined for 0 < z < −e−1 (see Fig. 12).

From (A.1), it is straightforward to show that

dW

dz
= W

(W + 1)z
. (A.2)

Furthermore, when ez + 1 � 1,

W(z) = −1 + (2(ez + 1))1/2 − 2
3

(ez + 1) + · · · , (A.3)

and when |z| � 1,

W0 ∼ z and W−1 ∼ log z. (A.4)
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Fig. 12. The real-valued branches of the Lambert- W function, W0(z) and W−1(z), in
the range z < 0.
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