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A B S T R A C T

Free-surface flows of yield-stress fluids down inclined planes are modelled under the assumptions that they
are shallow and sustained by a uniform oncoming stream to determine the steady state that emerges as the
flow passes topographic features. In general, the flow may surmount the topography and be deflected around it
depending on the thickness of the oncoming flow, the lateral extent and elevation of the mound, the inclination
of the plane, and the magnitude of the yield stress relative to the gravitational stress of the flowing layer. Flows
deepen upstream of mounds, with amplitude increasing with increasing yield stress. In the absence of a yield
stress, flows around isolated mounds exhibit a maximum thickness at a location that is displaced laterally and
downstream of the mound due to flow diversion. However, the location of the maximum thickness differs for
yield-stress fluids: with increasing yield stress, the flow thickens immediately upstream of the mound and the
deflected flux is diminished, leading to a sharp transition in the location of the maximum. Larger amplitude
mounds may not be surmounted at all, leading to ‘dry zones’ downstream into which no fluid flows. It is shown
that the steady shape of the dry zone is dependent on the initial condition, because the transient evolution
towards it depends upon the plug at its margin, which is not unique. The results are computed by numerical
integration of the governing equations and through their asymptotic analysis in various flow regimes to draw
out the interplay of the dynamical processes.
. Introduction

The effects of topography are ubiquitous in gravity-driven geophys-
cal flows including avalanches, mudflows, lahars, lava flows, glaciers
nd ice sheets, while also playing a key role in coating and film deposi-
ion processes [1,2]. These problems have sometimes been modelled as
he interaction of Newtonian viscous fluids with topography, which has
ielded important insights such as the sensitive dependence of the flow
hickness on the steepness of the topography and the very gradual re-
urn to constant thickness sheet-flow downstream in three-dimensional
eometries [3–7]. However, many of the flows of interest exhibit non-
ewtonian behaviour, which has a strong effect on the motion [8–
1]. In this article, we analyse the steady, gravitationally-driven, free-
urface flow of a yield-stress fluid interacting with various topographic
eatures on an inclined plane, complementing and contrasting with the
ecent study of the Newtonian analogue of this problem [7].

The importance of topography in directing, splitting and chan-
elling volcanic lava flows has led to great efforts to measure the
levation near volcanoes at high resolutions in order to predict flow
outes [12–14]. Significant efforts have also been made to determine
he bed elevation underlying ice sheets and the topography for the
ikely paths of debris flows [15,16]. Hazard assessments are strongly
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informed by topographical effects; for example depressions can focus
the flow and enhance the likelihood of inundation [17]. Constructed
mounds, barriers, and even depressions produced by aerial bombing
have been deployed to defend against lava flows and we aim to inform
improved design practices [18,19]. There are many numerical tools that
determine how lava, fluidised debris and ice sheets flow over a specified
and detailed input topography [20,21]. Our approach complements
these studies by analysing a model of shallow flow over and around
an idealised topographical feature in which we draw out the effects of
a yield stress in flowing material. This provides simple generic insights
to a wide range of geophysical and industrial applications.

Our analysis builds on much previous research of shallow free-
surface flows. The motion of a viscous Newtonian fluid on an smooth
inclined plane has been studied in the shallow regime and has pro-
vided a useful base for exploring the diversion of such flows around
obstacles [22,23]. Hinton et al. [7] showed that isolated mounds divert
the viscous flow, which then returns to its unperturbed behaviour
further downstream. Shallow viscous films flow over topography that
is everywhere downhill but when there is an uphill region, the flow
either forms an upstream deep pond to surmount the mound or there
is a dry zone in its lee depending on the lateral extent of the mound.
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In flows where surface tension plays a key role, dry zones can be
sustained even on planar horizontal and inclined surfaces [24,25].
Cylindrical and oblique obstructions to the shallow flow have also been
analysed [26–30].

Studies of Newtonian fluids on inclined planes have been extended
to treat many different rheological and non-isothermal aspects of envi-
ronmental flows [10,31,32]. The shallow flow of a viscoplastic fluid
over an inclined plane has a velocity profile consisting of an upper
region where the velocity gradient is negligible and a lower region
with parabolic profile (Fig. 1(a)) [33]. At first sight, it seems that the
upper layer is a plug whilst nearer the base the fluid yields owing
to gradients of the hydrostatic pressure. However, asymptotic analysis
in the lubrication regime reveals that this upper layer is actually a
‘pseudo-plug’ held just above the yield stress and the magnitude of
the velocity gradients are negligible but non-zero; the two regions are
separated by a ‘fake’ yield surface [34]. Only the leading order velocity
profile is needed for analysing the behaviour of the free surface.

The evolution of yield-stress flows on inclined planes arising from
vents, extrusions and dam breaks have been well-studied [35]. For
example, a finite volume of Bingham fluid released on an inclined
plane eventually comes to rest because gravitational forces no longer
overcome the yield stress [33]. The final profile is sensitive to the initial
condition and subsequent evolution as the regions in which the fluid
never yields must be determined [36,37]. We find that the difficulty
of selecting the correct late-time profile also arises in the steady flow
around topography in the case that there is a dry region (discussed in
Section 5.2). Another challenge associated with calculating the steady
state is the very slow (algebraic) convergence of transient yield-stress
flows to their final shape [38].

The late-time profile of a finite slump of yield-stress fluid on a sur-
face with varying topography was calculated by Balmforth et al. [39].
The role of topography and obstructions on the migration of finite
slumps has also been investigated numerically [40]. Other researchers
have considered viscoplastic flow in open channels [41] and over
substrates such as cylinders and cones, again obtaining various possible
late-time profiles [42,43]. In this paper, we analyse the late-time,
steady flow around a topographic feature emanating from a constant-
flux line source. Our investigation contrasts with previous works by
considering the non-stationary, steady flow around the feature rather
than the final shape of a fixed volume of fluid. We limit the analysis to
a simple Bingham fluid to provide clarity for the effects of a yield stress
on the interaction, noting that the analysis of other viscoplastic models
would be straightforward extensions. We neglect surface tension, which
is unimportant at environmental scales, and inertia on the assumption
that viscous and yield-stress processes are dominant, as is the case for
many lava, mud and debris flows [44].

The paper is structured as follows. In Section 2, we derive the
governing equations and introduce three dimensionless groups that rep-
resent the magnitude of the yield stress relative to viscous stresses, and
the flow thickness and topography amplitude relative to the lengthscale
of the topography. The analysis begins with the case of a topographic
feature that is laterally extensive so that the problem is one-dimensional
(Section 3). We identify that the flow thickness response to the to-
pography is more exaggerated for fluids with higher yield stresses. An
isolated mound (Section 4) leads to both diversion of fluid around
the mound and thickening of the flow upstream. For a Newtonian
fluid, the former is the much stronger effect but in contrast, the latter
plays an increasing role with larger yield stresses. The flow may not
surmount an isolated mound with an uphill zone (Section 5) and instead
is entirely diverted leading to a dry zone in which there is no fluid.
For a yield-stress fluid, the shape of the dry zone is sensitive to the
initial conditions that lead to the steady state (Section 5). We discuss
applications of our results and make concluding remarks in Section 6.
2

2. Governing equations

We consider the flow of a Bingham fluid down an inclined plane
at an angle 𝛽 to the horizontal (Fig. 1). The fluid has density 𝜌 and

e neglect the effects of inertia (i.e. small Reynolds number). The
onstitutive law is given by the Bingham model [45]; the fluid is
igid when the yield stress, 𝜏0, is not exceeded and the stress is a
inear function of the strain rate when the yield stress is exceeded
ith ‘viscosity’ 𝜇. We orientate the coordinate axes as follows: the �̂�
xis is directed down-slope, the �̂� axis cross-slope and the �̂� axis is
erpendicular measured from �̂� = 0 at the topography. The topography
s written as a perturbation to the underlying plane of the form 𝐷𝑚(�̂�, �̂�)
with height scale 𝐷), where 𝑚 → 0 as �̂� → ±∞ (see Fig. 1). The flow
s supplied by a line-source, located far upstream of the topography,
hich delivers a constant flux per unit width, 𝑄0. We consider the

steady flow which develops long after the leading front of the fluid has
passed the topography. In the steady state, the flow thickness above the
topography is denoted by �̂� = ℎ̂(�̂�, �̂�).

We assume that the flow is relatively shallow and apply the lubri-
cation approximation, corresponding to the velocity component in the
̂ direction, �̂�, being much smaller than that in the �̂� and �̂� directions
(�̂�, �̂�, respectively), �̂� ≪ �̂�, �̂�. The pressure is then hydrostatic to leading
order. Combined with Bingham’s model this formulation furnishes the
well-known velocity profile shown in Fig. 1 [34]. There is a ‘pseudo-
plug’ in the upper region where the yield stress is just exceeded and
the velocity gradients vanish to leading order. In the lower region, the
yielded fluid has a parabolic velocity profile to leading order [34].

Far upstream of the topography, the steady flow has constant thick-
ness, 𝐻∞, and the flux balance in the �̂� direction is given by [33,34]

𝑄0 =
𝜌𝑔 sin 𝛽
6𝜇

(𝐻∞ −𝐻𝑌 )2(2𝐻∞ +𝐻𝑌 ), (1)

where

𝐻𝑌 =
𝜏0

𝜌𝑔 sin 𝛽
(2)

is the constant thickness of the ‘pseudo-plug’ far upstream and 𝐻𝑌 <
𝐻∞ by assumption (see Fig. 1). Eq. (1) may be used to obtain the
thickness 𝐻∞ given the flux, 𝑄0 and the yield stress, 𝜏0.

To non-dimensionalise the problem, we scale flow thicknesses with
𝐻∞ and lengths with the streamwise lengthscale of the topography, 𝐿,

(𝑧, ℎ) = (�̂�, ℎ̂)∕𝐻∞, (𝑥, 𝑦) = (�̂�, �̂�)∕𝐿, 𝑚(𝑥, 𝑦) = 𝑚(�̂�∕𝐿, �̂�∕𝐿). (3)

We scale the flux per unit width with 𝜌𝑔𝐻3
∞ sin 𝛽∕(3𝜇), which is the far-

upstream flux per unit width for a constant thickness Newtonian flow.
The Bingham number is

𝐵 =
𝜏0

𝜌𝑔𝐻∞ sin 𝛽
, (4)

which represents the magnitude of the yield stress relative to downs-
lope gravitational stress. Alternatively we can write 𝐵 = 𝐻𝑌 ∕𝐻∞,
which is the ratio of the plug thickness to the flow thickness far
upstream. We note that 𝐻∞ is an increasing function of the yield stress
𝜏0 (see Eq. (1)) and by construction, 0 ≤ 𝐵 < 1. Far upstream, the
dimensionless flow thickness is unity, the yield surface is at 𝑧 = 1 − 𝐵
and the dimensionless flux is (1 − 𝐵)2(1 + 𝐵∕2), which is plotted in
Fig. 1(b); it is a monotonically decreasing function of 𝐵 in [0, 1). Under
his non-dimensionalisation, material that is flowing but with relatively
igh yield stress corresponds to (1 − 𝐵) ≪ 1.

Upon incorporating the topography in the hydrostatic pressure, the
imensionless flux is given by [39]

= 1𝑌 2(3ℎ − 𝑌 )

(

1 −  𝜕ℎ − 𝜕𝑚 , − 𝜕ℎ − 𝜕𝑚
)

, (5)

2 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦
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Fig. 1. (a) Schematic of the steady flow over topography. The �̂� axis is into the page. (b) The far-upstream dimensionless flux, (1 −𝐵)2(1 +𝐵∕2) as a function of the dimensionless
ield stress, 𝐵. (c) ‘Downhill’ topography (green arrows) and ‘uphill’ topography (red arrow).
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0, ℎ − 𝐵
√

(1 − ℎ𝑥 −𝑚𝑥)2 + (ℎ𝑦 +𝑚𝑦)2

)

, (6)

represents the location of the ‘fake’ yield surface and the subscripts
𝑥 and 𝑦 denote 𝜕∕𝜕𝑥 and 𝜕∕𝜕𝑦, respectively. We have introduced the
ollowing two dimensionless parameters, [7]

= 𝐻∞∕(𝐿 tan 𝛽),  = 𝐷∕(𝐿 tan 𝛽), (7)

which represent the flow thickness and amplitude of the topography
relative to the extent of the topography and the gradient of the under-
lying plane, respectively. In the steady state, mass conservation is given
by

∇ ⋅ 𝒒 = 0. (8)

We restrict our attention to topographic features for which 𝑚(𝑥, 𝑦) → 0
as 𝑥 → ±∞. In this case, the flow returns to its unperturbed state
far upstream and downstream of the topography, which imposes the
following boundary condition

ℎ → 1 as 𝑥 → ±∞. (9)

To illustrate the key aspects of the interaction with the topography, we
consider 𝑚(𝑥, 𝑦) = exp(−𝑥2) in Section 3, which is laterally extensive
o that the problem is one-dimensional, and 𝑚(𝑥, 𝑦) = exp(−𝑥2 − 𝑦2)

in Section 4, which is an isolated, axisymmetric feature. We note that
other topographic profiles could easily be considered as well. With
these choices, the topography represents a mound for  > 0 and a
depression for  < 0. We also define the topographic elevation as

𝑇 (𝑥, 𝑦) = −𝑥 +𝑚(𝑥, 𝑦), (10)

hich is analogous to the dimensionless elevation above sea-level
i.e. relative to the dashed horizontal line in Fig. 1(a)). Its dimensional
cale is 𝐿 sin 𝛽. We note that the free-surface elevation is at 𝑇 (𝑥, 𝑦) +
ℎ(𝑥, 𝑦).

Throughout this paper, we focus on  ≪ 1 as this regime, where
he flow is thin relative to the topography, exhibits many interesting
ehaviours such as dry zones and ponding. In addition, in this regime
he topography has a very strong influence on the flow paths. For
elatively thick flows ( ≫ 1), hydrostatic pressure gradients associated
ith thickness variations play the dominant role in steering the motion

ather than the topographic gradients (and very often the perturbations
o the free-surface are negligible).

We solve Eq. (8) numerically and use asymptotic analysis in the
3

egime  ≪ 1 to identify the dominant features of the flow.
. Laterally extensive topography

In this section, we analyse steady flow over a laterally extensive
opographic feature for which 𝑚(𝑥, 𝑦) = 𝑚(𝑥). The steady problem is
ne-dimensional, ℎ = ℎ(𝑥). We neglect any instabilities that could
ause this film to develop undulations in the transverse direction and
ven break up into rivulets as may occur in rimming flow inside
ylinders [42,46]. We use 𝑚(𝑥) = exp(−𝑥2). Although this is a simplified
eometry, it reveals some key features of the flow over topography,
hich are important in their own right, and assists in the analysis of
n isolated mound in Section 4.

The flux in the downslope direction is constant, which yields the
ollowing governing equation for the flow thickness,

1 − 𝐵)2(1 + 𝐵∕2) = 1
2
𝑌 2(3ℎ − 𝑌 )

(

− dℎ
d𝑥

− d𝑇
d𝑥

)

, (11)

where

𝑌 = ℎ − 𝐵
(−ℎ𝑥 − 𝑇𝑥)

, (12)

which is always positive since the flux is a positive constant for 0 ≤
𝐵 < 1. The denominator, −ℎ𝑥 − 𝑇𝑥, is positive for the same reason.
We integrate (11) numerically to obtain ℎ(𝑥). The integration is carried
out in the negative 𝑥 direction from 𝑥 = +∞ (𝑥 = 𝐿 ≫ 1) owing to
a numerical instability that arises when integrating in the positive 𝑥
direction [7].

We first consider flow over mounds for which there are no ‘uphill’
regions and the topography is everywhere downslope, −𝑇𝑥 = 1−𝑚𝑥 >
0 (see Fig. 1(c)). For the Gaussian profile, 𝑚 = exp(−𝑥2), this requires

0 <  < 𝑐 =
√

𝑒∕2 ≈ 1.166 (13)

For larger mounds with an uphill region ( > 𝑐), we anticipate
that qualitatively different behaviour occurs as the relatively shallow
flow ( ≪ 1) must thicken significantly to surmount the mound; this
situation is analysed in Section 3.1.

The flow thickness, calculated numerically, in the case that  = 0.5
and  = 0.1 is shown in Fig. 2(a) for a variety of values of 𝐵. For a
fixed value of 𝐵, there is a larger perturbation to the flow thickness at
smaller values of  (see Fig. 2(b)). Fig. 2(a) illustrates that the flow
thickens upstream of the mound and thins downstream of the mound
prior to returning to its far-field thickness. This effect is magnified with
a greater yield stress (larger 𝐵). It also appears that in the limit as
𝐵 → 1, corresponding to the pseudo-plug occupying almost the entire
thickness of the flow, a limiting free surface, which bounds the free
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urface for 𝐵 < 1 is obtained. We explore these observations through
symptotic analysis.

In the regime  ≪ 1, we seek the following expansion for the flow
hickness,

= ℎ0 + ℎ1 +… (14)

e find that the leading order term, ℎ0(𝑥), satisfies the following cubic
quation

1 − 𝐵)2(1 + 𝐵∕2) = −
(

ℎ0 +
𝐵
𝑇𝑥

)2(

ℎ0 −
𝐵
2𝑇𝑥

)

𝑇𝑥, (15)

and the second term, ℎ1(𝑥), satisfies

3ℎ0ℎ1𝑇𝑥 +

(

ℎ20 −
𝐵ℎ0
2𝑇𝑥

+ 3𝐵2

2𝑇 2
𝑥

)

dℎ0
d𝑥

= 0 (16)

rovided that 𝑇𝑥 < 0 everywhere (‘downhill’ topography). The leading
erm, ℎ0(𝑥), is plotted in Fig. 2(b) for the case  = 0.5 and 𝐵 = 0.5 and
hown to capture accurately the numerical solution obtained for three
alues of  .

To interpret how the behaviour depends on the yield stress, 𝐵, we
xpand the solution to (15) for small 𝐵, which is given by

0 =
(

−𝑇𝑥
)−1∕3 +

𝐵
(

−𝑇𝑥
)−2

2
−

𝐵
(

−𝑇𝑥
)−1∕3

2
+… (17)

For any value of 𝐵, the flow thickness increases when the fluid migrates
onto shallower slopes (smaller 𝑇𝑥). This relationship arises because the
flux increases with greater flow thickness and decreases with shallower
slope. For a constant flux, a shallower slope thus requires a thicker flow.
In the case of a Newtonian fluid, the flux is proportional to the thickness
cubed and so the thickness is [7]

ℎ0 =
(

−𝑇𝑥
)−1∕3, (18)

where −𝑇𝑥 is the inclination. For a Bingham fluid, the dependence
of the flow thickness on the slope gradient is much stronger (note
the second term in Eq. (17) and see Fig. 2(a)). We interpret this by
considering the pressure gradient driving the flow. For thin flows,  ≪
1, the pressure gradient is given by −𝑇𝑥 to leading order. On shallower
slopes, the pressure gradient is reduced and so the pseudo-plug occupies
a greater proportion of the flow, which reduces the flux. Thus, when a
yield-stress fluid migrates onto a shallower slope its thickness increases
more than a Newtonian fluid (to maintain a constant flux). The end-
members of this behaviour are a Newtonian fluid (18) and a Bingham
fluid whose flow is dominated by its large yield stress (𝐵 close to 1).
The flow thickness for the latter is given by (15)

( )−1
4

ℎ0 = −𝑇𝑥 , (19) T
which corresponds to 𝑌 ≈ 0 everywhere. The flow thicknesses for
0 ≤ 𝐵 < 1 in the regime  ≪ 1 are thus enclosed in the envelope
of the solutions for 𝐵 = 0 and 𝐵 → 1 (Fig. 2(a)). The maximum flow
thickness in the regime  ≪ 1 for 0 ≤ 𝐵 < 1 may be obtained from the
𝐵 → 1 solution; it occurs at 𝑥 = −1∕

√

2 and is given by

ℎmax =
(

1 −∕𝑐
)−1. (20)

The increased sensitivity of the steady flow thickness to the slope
gradient at higher yield stresses is a general result that applies to any
topographic profile that does not exhibit locally uphill regions.

The present analysis breaks down when  > 𝑐 , corresponding
to a feature with an ‘uphill’ zone (where 𝑇𝑥 > 0; see Fig. 1(c)). In this
case, the function

𝑇𝑥 = −1 +𝑚𝑥 = −1 − 2𝑥 exp(−𝑥2) (21)

has two zeros and ℎ0(𝑥) becomes singular at these locations (see the red
ashed line in Fig. 3(a)). Hence, different analysis is needed to capture
he flow behaviour near the uphill zone.

.1. Mounds with an uphill region ( > 𝑐)

In order for a shallow flow ( ≪ 1) that is driven by gravity to
urmount uphill topography the flow must deepen; there is no inertia
o carry fluid over the hill. We expect that a thick pond of fluid forms
pstream of the uphill region (see Fig. 3). The pond has a horizontal
ree surface to leading order (𝑇 + ℎ = constant) and so we write

= −1ℎ−1 + 𝛾𝑐0 +… , ℎ−1 = −𝑇 (𝑥) + 𝑐−1, (22)

here the magnitude of 𝛾 and the two constants, 𝑐−1 and 𝑐0 are to
e determined via matching to the ℎ ∼ 1 expansion, ℎ0(𝑥), which is
alid away from the pond and given by (15). The solution ℎ = −1ℎ−1
orresponds to vanishing volume flux and the flux from upstream,
1 − 𝐵)2(1 + 𝐵∕2) is balanced by lower order terms.

It is useful to define the key points in the topography. We denote
he turning points of the topography (𝑇𝑥 = 0) by 𝑥0 and 𝑥1 (𝑥0 > 𝑥1)
see Fig. 3(b)). We also define 𝑥2 as the upstream end of the pond and
o it satisfies 𝑇 (𝑥2) = 𝑇 (𝑥0) to leading order. The pond thickness returns
o order unity at 𝑥0 and 𝑥2 beyond which the leading order solution,
0(𝑥) is valid. The full details of the matching at 𝑥 = 𝑥0 of the two
symptotic expansions is given in Appendix A. We find that

−1 = 𝑇 (𝑥0), 𝑐0 = 2.946, 𝛾 = −1∕3[−𝑇𝑥𝑥(𝑥0)]−1∕3𝐵2∕3. (23)

he pond expansion (22) and ℎ ∼ 1 expansion (15) are compared to the
umerical solution in Fig. 3(a) for the case  = 2,  = 0.1 and 𝐵 = 0.5.
he expansion derived here for the pond thickness is valid for any
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Fig. 3. (a)–(c) ‘Uphill’ mound with  = 2 and  = 0.1. (a) Comparison between the numerical and asymptotic flow thickness for 𝐵 = 0.5. (b) Free surface elevation, 𝑇 (𝑥) + ℎ(𝑥)
nd the topographical elevation, 𝑇 (𝑥), (black line). The dots denote the turning points of 𝑇 (𝑥) (𝑥0 and 𝑥1) and the upstream end location of the pond (𝑥2). (c) Steady flow

thicknesses, ℎ(𝑥) (continuous lines) and corresponding yield surfaces, 𝑌 (𝑥) (dashed lines), for a range of values of 𝐵. For 𝐵 = 0, 𝑌 ≡ ℎ. (d) The maximum flow thickness over a
ound. The vertical dashed line represents the critical magnitude,  = 𝑐 above which there is an ‘uphill’ zone.
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alue of 𝐵, which is sufficiently large to contribute to the 𝛾 term. When
≪ 1, however, the second order term in the pond expansion must be

djusted. For 𝐵 = 0, it was shown the second term was proportional
o 𝛾 ∼ −1∕7 [7] rather than −1∕3, which arises due to the yield stress
ffects (23). This difference occurs because for a Newtonian fluid, the
ond is matched to the ℎ ∼ 1 behaviour via considering mass continuity
ut for a yield-stress fluid, the pond is matched by instead requiring
hat the fake yield surface is above the base everywhere (𝑌 > 0).

Fig. 3(c) shows the flow thickness and yield surface, 𝑌 , for flow over
mound with an uphill region ( = 2) for a range of values of 𝐵. The

yield surface is much smaller than the flow thickness, 𝑌 ≪ ℎ, within
the pond and the flow is mostly plugged in this region with yielding
only near the base, 𝑧 = 0. The pond thickness is greater for fluids with
greater yield stress.

3.2. Maximum flow thickness

The maximum flow thickness, calculated numerically, is compared
between the Newtonian and non-Newtonian cases in Fig. 3(d) for two
values of  . For the case of  < 𝑐 in which there are no uphill
egions, the maximum flow thickness, ℎmax, for the Newtonian case
𝐵 = 0) was found to be [7]

max = (1 −∕𝑐 )−1∕3. (24)

hilst for a yield-stress fluid, the maximum flow thickness is given by
max = ℎ0(−1∕

√

2).
For larger mounds,  > 𝑐 , the maximum flow thickness occurs

symptotically at 𝑥 = 𝑥1 and is given by [7] and Appendix A,

max(𝐵 = 0) =−1[𝑇 (𝑥0) − 𝑇 (𝑥1)
]

+ 1.61−1∕7[−𝑇𝑥𝑥(𝑥0)
]−1∕7, (25)

ℎmax(𝐵 > 0) =−1[𝑇 (𝑥0) − 𝑇 (𝑥1)
]

+ 2.95𝐵2∕3−1∕3[−𝑇𝑥𝑥(𝑥0)
]−1∕3, (26)

for the Newtonian and yield-stress cases respectively. The expressions
2∕7
5

suggest that the system is in the Newtonian regime for 𝐵 ≪  ;
a relationship that arises for any topographic feature with an uphill
region.

3.3. Depressions ( < 0)

We briefly discuss the flow behaviour in the case of a laterally-
extensive depression corresponding to  < 0. The flow thickens on
shallower inclines and thins on steeper inclines. The location of the
steeper and shallower inclinations are reversed for a depression from
the case of a mound. The leading order thickness, ℎ0, is simply a
reflection (𝑥 → −𝑥) of the case of  > 0 since 𝑇𝑥(𝑥;) = 𝑇𝑥(−𝑥; −).

For depressions with larger amplitude (|| > 𝑐), a pond forms in
rder for the flow to surmount the uphill portion of the depression. The
olution may be obtained in an identical manner to a mound (for both
he first and second order terms in the pond expansion; (15) and (16)),
oting that the matching location is translated downstream (𝑥0 > 0).
n example with  = 0.1, 𝐵 = 0.5 and  = −2 is shown in Fig. 4.
he pond solution we have obtained applies to any laterally extensive
opography with an uphill region.

. Isolated topography

We analyse the interaction with an isolated topographic feature,
entred at the origin. For ease of exposition, we focus on an axisym-
etric Gaussian mound with elevation given by

= −𝑥 +𝑚(𝑥, 𝑦), 𝑚(𝑥, 𝑦) = exp(−𝑥2 − 𝑦2). (27)

owever, we note that the analysis and results may be applied to a
ide range of isolated topographic features.

The steady flow thickness over such a mound, with amplitude  =
.5 and flow parameter  = 0.1, is shown in Fig. 5(a) for 𝐵 = 0 and in
ig. 5(b) for 𝐵 = 0.5 (calculated numerically; details of the method
re given in Appendix B). The ‘fake’ yield surface, 𝑌 (𝑥, 𝑦) is shown
n Fig. 5(c) for 𝐵 = 0.5. We also include the flow thickness in the
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Fig. 4. (a) The flow thickness in the case of a depression with an uphill region ( = −2) with  = 0.1 and 𝐵 = 0.5. The numerical solution is plotted as a continuous line, the
pond as a dotted line and the ℎ ∼ 1 expansion as a dashed line. (b) The elevation of the free-surface (blue line) and the topography (black line).
Fig. 5. Steady flow over an isolated mound with  = 0.5. (a) Flow thickness, ℎ(𝑥, 𝑦), for 𝐵 = 0 and  = 0.1. (b) Flow thickness for 𝐵 = 0.5 and  = 0.1 (same colour scale as (a)).
(c) The plug height, 𝑌 (𝑥, 𝑦) for 𝐵 = 0.5 and  = 0.1. (d) Flow thickness for a relatively thicker flow ( = 2), with 𝐵 = 0.5.
case that  = 2 in Fig. 5(d). When  is not small, the free surface is
approximately parallel to the underlying plane and the flow thickness
adjusts accordingly (i.e. it is thinner over the mound). We focus on the
relatively long and wide mound (or equivalently, relatively thin flow)
regime,  ≪ 1, as in Section 3.

Fig. 5 indicates that generally the flow thickens upstream and to
the sides of the mound and is diminished in the lee of the mound. In
the case that 𝐵 = 0, the flux is proportional to ℎ3, whilst for 𝐵 > 0,
the flux is proportional to 𝑌 2(3ℎ − 𝑌 )∕2. In the regime  ≪ 1, the
flux direction is approximately given by the steepest descent of the
topography (as described below). These two observations imply that
the variation in the yield surface, 𝑌 for 𝐵 = 0.5 is somewhat similar to
the flow thickness in the Newtonian case, 𝐵 = 0 (compare Fig. 5(a) and
Fig. 5(c)).

The maximum flow thickness occurs upstream of the mound when
there is a sufficient yield stress e.g. 𝐵 = 0.5, whereas in the absence
of a yield stress (𝐵 = 0), it occurs cross-stream (see Fig. 5(a) and
6

Fig. 5(b)). In the case of a significant yield stress, there is less diversion
of fluid around the mound, relative to a Newtonian fluid. We explore
these observations through asymptotic analysis below. As with laterally
extensive mounds (Section 3), the case of an isolated mound with
an uphill region is qualitatively different to the present analysis for
 < 𝑐 and is described in Section 5.

4.1. Asymptotic analysis for a mound ( ≪ 1)

For small  and a mound with no uphill region, we seek an ℎ ∼ 1
expansion as before,

ℎ = ℎ0 + ℎ1 +… (28)

To leading order, the ‘fake’ yield surface is at

𝑌 = ℎ0 −
𝐵 . (29)
|∇𝑇 |
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The leading order terms in the governing Eq. (8) are

− 𝜕𝑇
𝜕𝑥

𝜕
𝜕𝑥

− 𝜕𝑇
𝜕𝑦

𝜕
𝜕𝑦

= ∇2𝑇 , (30)

where

 =

[

ℎ0 − 𝐵∕|∇𝑇 |
]2[ℎ0 + 𝐵∕(2|∇𝑇 |)

]

(1 − 𝐵)2(1 + 𝐵∕2)
, (31)

and we have the boundary condition  → 1 in the far-field, as 𝑥2 +
𝑦2 → ∞. Since 𝐵 does not appear in (30) or in the far-field boundary
condition, we conclude that (𝑥, 𝑦) is independent of 𝐵. It provides
a universal profile from which the thicknesses ℎ0 may be obtained
for different 𝐵 via inverting Eq. (31). For  ≪ 1, the flux at any
point relative to the far upstream flux is −∇𝑇 , and (30) is simply

statement that ∇ ⋅ (∇𝑇 ) = 0. Indeed, (𝑥, 𝑦) is proportional to
the magnitude of the flux at (𝑥, 𝑦) relative to the far upstream flux,
(1 − 𝐵)2(1 + 𝐵∕2).

We obtain (𝑥, 𝑦) by applying the method of characteristics,

d𝑥
d𝜏

= − 𝜕𝑇
𝜕𝑥

,
d𝑦
d𝜏

= − 𝜕𝑇
𝜕𝑦

,
d log()

d𝜏
= ∇2𝑇 , (32)

where 𝜏 parameterises the characteristic curves. We note that this
solution method requires 𝜕𝑇 ∕𝜕𝑥 < 0 everywhere (i.e. downhill).1

The characteristic projections in the (𝑥, 𝑦) plane are shown as con-
inuous red lines in Fig. 6(a) for the case  = 0.5. They follow the
teepest descent of the topography and thus represent the flow paths.
he relative flux,  , is also shown in Fig. 6(a) by the colourmap. We
ote that ∇2𝑇 = 4(𝑟2−1)𝑒−𝑟2 , which is positive for 𝑟 > 1 and greatest
t 𝑟 =

√

2. The two circles 𝑟 = 1 and 𝑟 =
√

2 are shown as dashed
lines in Fig. 6(a) demonstrating that the maximum value of  occurs
on characteristics that pass near these circles. Within the unit circle, the
value of  decreases along characteristics, which is associated with the
diversion of flux around the mound; see also equation (32)(c). The flow
thickness decreases when characteristics diverge and increases when
characteristics converge owing to the flux accumulating.

With the solution (𝑥, 𝑦) in hand for a given topography, we may
nvert (31) to obtain a unique solution for ℎ0 for any 𝐵 (shown in

Fig. 6(b)–(g). The predicted flow thickness along the centreline, ℎ0(𝑥, 0)
is plotted in Fig. 7(a). As 𝑥 → ∞, the relative flux, (𝑥, 𝑦) → ∞(𝑦). The
ar downstream thickness, ℎ(𝑥, 𝑦) → ℎ∞(𝑦) as 𝑥 → ∞, is given by the

solution to

∞(𝑦) =

[

ℎ∞(𝑦) − 𝐵
]2[ℎ∞(𝑦) + 𝐵∕2

]

(1 − 𝐵)2(1 + 𝐵∕2)
, (33)

since |∇𝑇 | = 1 far downstream to leading order. Moreover, the mag-
nitude of the downstream flux, scaled by its upstream value, is given
by ∞(𝑦). The predicted downstream flow thickness ℎ∞(𝑦) is plotted in
Fig. 7(b).

Figs. 6 and 7, demonstrate that there is a rich dependence of the
flow structure on the yield stress in this asymptotic regime. First, it
can be observed that the increase in flow thickness just upstream of
the mound is stronger for larger values of 𝐵 (see Fig. 6(b)–(g)). This
behaviour was also shown for a laterally extensive mound (Section 3)
and is associated with the greater response of a yield-stress fluid to
a change in slope. However, unlike a laterally extensive mound, the
isolated mound also diverts the flow cross-stream. For a Newtonian
fluid, this leads to the maximum flow thickness occurring cross-stream
and downstream of the isolated mound (Fig. 6). Figs. 6 and 7 illustrate
that for increasing values of 𝐵, the downstream flow thickness ℎ∞(𝑦)
s flattened. In particular, for 𝐵 close to 1, ℎ∞(𝑦) = 1 + (1 − 𝐵) (from

1 The behaviour for an isolated depression (with no uphill regions; −𝑐 <
< 0) may simply be obtained by reflecting the behaviour for a mound

 > 0), as in the case of a laterally-extensive feature. This is because the
symptotic description for ℎ0 is invariant under the transformation  → −
nd 𝑥 → −𝑥.
7

l

(33)). This behaviour may be rationalised as follows. We recall that
the relative flux,  is independent of 𝐵. The different behaviours arise
because for increasing values of 𝐵, the absolute flux, (1 − 𝐵)2(1 + 𝐵∕2)
is smaller and so less fluid is actually diverted, leading to a reduced
perturbation to the flow thickness far downstream. In summary, a yield
stress leads to the surprising outcome of an increased thickness pertur-
bation upstream of the mound but a decreased thickness perturbation
cross-stream and downstream.

We next analyse the controls on the location of the maximum
flow thickness. First, for a Newtonian fluid (𝐵 = 0), we note that
 = ℎ30 and the maximum value of ℎ0 occurs at the same place
as for  , which is far downstream (𝑥 → ∞) and cross stream (c.f.
Fig. 5(a) and Fig. 6(a)). This result follows from the leading order
expansion for the flow thickness (28), which becomes non-asymptotic
far downstream where weak cross-stream gradients become no longer
negligible. These effects modify the fluid thicknesses somewhat: see, for
example, the small discrepancy between the predicted and simulated
maximum thickness when 𝐵 ≪ 1 for  = 0.03 (Fig. 8(a)). We reinstate
this cross-stream diffusion in Section 4.3 with the consequence that the
maximum thickness is found at some finite distance downstream of the
topography and at some lateral offset from the 𝑦 = 0 symmetry axis
(see Fig. 5(a)).

We also note that the point (𝑥, 𝑦) = (−1, 0) is a saddle point of
(𝑥, 𝑦) for any  ∈ (0,𝑐 ) and hence it is also a saddle point of
ℎ0 for a Newtonian fluid (𝐵 = 0). This may be observed from (32):
d log()∕d𝑦 = 2𝑦 at 𝑥 = −1, so log() ∼ 𝑦2+ const near 𝑦 = 0. Although
(𝑥, 𝑦) = (−1, 0) is a saddle point of (𝑥, 𝑦), it may not be a saddle point
of ℎ0 for 𝐵 > 0. At the extremum, (−1, 0) we use (31) to write

3ℎ0

(

ℎ0 −
𝐵

|∇𝑇 |

)

𝜕2ℎ0
𝜕𝑦2

= (1 − 𝐵)2(1 + 𝐵∕2) 𝜕
2
𝜕𝑦2

− 3𝐵
2

𝑇𝑥𝑇𝑥𝑦𝑦 + 𝑇 2
𝑦𝑦

𝑇 2
𝑥

(

ℎ20 −
𝐵2

𝑇 2
𝑥

)

. (34)

Hence for larger values of the yield stress, the second term on the
right-hand side dominates the first and 𝜕2ℎ0∕𝜕𝑦2 changes sign so that
(𝑥, 𝑦) = (−1, 0) becomes a local maximum. For sufficiently large 𝐵, the
thickness at (−1, 0) is also the global maximum. There is a qualitative
change in the behaviour of the maximum flow thickness at a critical
value, 𝐵 = 𝐵𝑐 . This is demonstrated in Fig. 8(a), where the upstream
maximum is plotted as a dashed line, the downstream maximum as
a dotted line and the global maximum as a continuous line. For 𝐵 <
𝐵𝑐 , the maximum occurs cross-stream and downstream of the mound;
it also decreases in magnitude with 𝐵. However, for 𝐵 > 𝐵𝑐 , the
maximum occurs directly upstream of the mound and its magnitude is
an increasing function of 𝐵. The critical value at which the maximum
changes location, 𝐵 = 𝐵𝑐 () is shown as a function of  in Fig. 8(b).

4.2. Large yield stresses (|1 − 𝐵| ≪ 1)

The effect of a yield stress on the flow can be further interpreted
by analysing the limiting regime of a very large yield stress (𝐵 close to
1). For a laterally extensive mound (Section 3), this regime provided
an end-member of the behaviour for 0 < 𝐵 < 1. For an isolated mound,
with  ≪ 1 and 𝐵 ≈ 1, the fake yield surface is at 𝑌 = 0 to leading
order, which furnishes the leading order expression

ℎ0 =
1

|∇𝑇 |
(35)

nd this satisfies the boundary condition that ℎ0 returns to 1 far away
rom the mound. Eq. (35) may also be obtained by taking the limit
→ 1 in the expression for  (31). This solution provides an envelope

f the flow thickness for 0 ≤ 𝐵 < 1 (an upper bound on the upstream
erturbation and a lower bound on the downstream perturbation; see
he dashed lines in Fig. 7). The flow thickness according to (35)
orresponds to zero diversion of flux around the mound providing the

imiting case of the discussion above. Indeed, along the centreline, the
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Fig. 6. (a) Colourmap of the relative flux, (𝑥, 𝑦) for  = 0.5 and the characteristic projections (continuous lines). The dashed lines denote the circles 𝑟 = 1 and 𝑟 =
√

2. (b–g)
Corresponding colourmaps of the flow thickness, ℎ0 for various values of 𝐵.
Fig. 7. Flow thickness predicted by the characteristic solution, ℎ0, (see Eq. (32)) for the case  = 0.5. (a) Along the centreline, 𝑦 = 0. (b) Cross-section far downstream, 𝑥 → ∞.
flow thickness is identical to the case of a laterally extensive mound
and they have the same maximum flow thickness, (1 −∕𝑐 )−1 (see
Section 3). The flow thickness given by (35) arises from maintaining the
fake yield surface at exactly 𝑧 = 0 rather than explicitly enforcing mass
continuity. This analysis breaks down for uphill mounds ( > 𝑐).

When 𝐵 is close to 1, the flow thickness can be calculated for any
value of  by using Charpit’s method to solve the equation 𝑌 = 0 [35].
Details are given in C. The method is shown to accurately capture the
flow thickness for the case  = 1 and  = 0.3 in Fig. 9. The solution
to 𝑌 = 0 neglects the cross-stream diffusive slumping, even for  > 0.
8

For larger mounds (and thinner flows), the flow is more significantly
diverted by the mound, which means that diffusive slumping plays a
key role downstream and hence Charpit’s method becomes invalid; for
details, see Appendix C.

4.3. Downstream behaviour

The downstream behaviour of ℎ0(𝑥, 𝑦) predicted by the character-
istic solution does not converge to ℎ = 1 as 𝑥 → ∞ (Fig. 7(b)). The
cross-slope slumping terms, 𝜕ℎ∕𝜕𝑦 must be reintroduced downstream
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Fig. 9. Flow thickness along the centreline (𝑦 = 0) for  = 1,  = 0.3 and four values
f 𝐵. The red dashed line is the prediction from Charpit’s method Appendix C.

o capture the redistribution of the flux that was diverted by the mound
o that ℎ → 1 far downstream. To analyse this behaviour in the regime
 ≪ 1, far downstream of the mound (𝑥 ≫ 1), we write

�̃� = 𝑥. (36)

Then
√

(1 − ℎ𝑥 −𝑚𝑥)2 + (ℎ𝑦 +𝑚𝑦)2 = 1 +⋯ (37)

and hence 𝑌 = ℎ − 𝐵 to leading order. In the present analysis, valid
when there are no uphill regions so that the flux is positive everywhere,
we have ℎ > 𝐵. The approximate governing equation becomes

𝜕
𝜕�̃�

[

𝑌 2(𝑌 + 3𝐵∕2)
]

= 𝜕
𝜕𝑦

[

𝑌 2(𝑌 + 3𝐵∕2) 𝜕𝑌
𝜕𝑦

]

. (38)

We integrate Eq. (38) numerically with the initial condition, 𝑌 (�̃� =
, 𝑦) = ℎ∞(𝑦) − 𝐵, given by the far-downstream behaviour of the
haracteristic solution (see Fig. 7(b)). The numerical integration is
arried out by discretising the right-hand side using central differences
nd stepping forward in �̃� using the fourth-order Runge–Kutta method.
e recover the thickness via ℎ = 𝑌 +𝐵. The prediction for ℎ is compared
ith the numerical result along the centreline in Fig. 10.

. Isolated topography with an uphill region (|| > 𝒄)

It has previously been shown that in the regime of shallow Newto-
ian flow ( ≪ 1, 𝐵 = 0) past an isolated mound with an uphill region
 > 𝑐), there is a dry zone in which there is no fluid [7]. The char-
cteristic projections (32) which were deployed in the previous section
o determine the flow thickness for smaller mounds, do not cover the
ntire plane for  > 𝑐 and the flow thickness prediction becomes
ingular near the edge of the region invaded by the characteristics
9

wing to the uphill zone where 𝑇𝑥 > 0. A different approach is needed
or these larger mounds. Fig. 11 shows the flow thickness, calculated
umerically, in the case that there is an uphill region ( = 2) for

a Newtonian fluid (panel a) and a yield-stress fluid with 𝐵 = 0.5
(panel b). Fig. 11(c) shows the height of the ‘fake’ yield surface, 𝑌 (𝑥, 𝑦)
corresponding to Fig. 11(b); the characteristic projections from (32)
are also included in 𝑦 ≤ 0. There are numerous interesting features
emonstrated in these panels, which we describe in this section.

Some features are reminiscent of the flow over a mound with
o uphill region. For example, the variation of the thickness of the
ewtonian fluid (Fig. 11(a)) displays some similarities with the yield

urface of the Bingham fluid with 𝐵 = 0.5 (Fig. 11(c)). Secondly, the
aximum flow thickness occurs along the centreline for the yield-stress

luid whilst for the Newtonian fluid the maximum is cross-slope and
urther downstream.

The uphill region introduces a major new feature: a dry zone in
hich there is no fluid. The characteristic projections (Eq. (32)) map
ut the shape of the upstream edge of the dry zone, which is identical
or Newtonian and yield-stress fluids. This suggests that the Newtonian
nalysis for the behaviour just upstream of the dry zone may be adapted
o the case of a yield-stress fluid (see Section 5.1). On the other hand,
he downstream shape of the dry zone is different for the Newtonian
nd yield-stress fluids and there can be different steady solutions for
he same parameter values (Fig. 11(b) and Fig. 11(d); for the latter, we
ave wetted the region downstream in 𝑟 > 2). This situation is analysed
n Section 5.2.

.1. Upstream edge of the dry zone

Along the centreline, the topography is uphill in 𝑥1 < 𝑥 < 𝑥0 (see
ig. 3). The flow does not surmount the uphill topography. Instead it
ntrudes slightly beyond (𝑥, 𝑦) = (𝑥1, 0), where |𝑇𝑥| vanishes. Near this
oint the flow thickness and its 𝑥 gradients become large and we write

= 𝑥1 + 1∕3𝜂, ℎ = −1∕3𝐻. (39)

oting that variations of ℎ in the 𝑦 direction are negligible, we obtain
he following second order ordinary differential equation for the flow
hickness along the centreline [7],

d
d𝜂

(

𝑄d𝐻
d𝜂

)

+ 𝑐0𝜂
d𝑄
d𝜂

+ 𝑐1𝑄 = 0, (40)

here

=

(

𝐻 − 𝐵
)2(

𝐻 + 𝐵
)

(41)

|d𝐻∕d𝜂 + 𝑐0𝜂| 2|d𝐻∕d𝜂 + 𝑐0𝜂|
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Fig. 10. Flow thickness along the centreline for 𝐵 = 0.5. The numerical result (for  = 0.1) is compared to the characteristic (‘upstream’) asymptotic solution and the ‘downstream’
prediction of Eq. (38).
Fig. 11. Flow thicknesses for  = 2 and  = 0.1. A dry zone, incorporating the peak of the mound, forms. (a) Flow thickness in the Newtonian case (𝐵 = 0). (b) Flow thickness
for 𝐵 = 0.5. (c) The plug height, 𝑌 corresponding to (b). The characteristic projections from (32) are shown in 𝑦 < 0. (d) An alternate steady state for the flow thickness in (b).
and

𝑐0 = 𝑚𝑥𝑥(𝑥1, 0), 𝑐1 = (∇2 𝑚)(𝑥1, 0). (42)

The first and third terms in Eq. (40) are associated with hydrostatic
pressure gradients arising from variations in the flow thickness and the
topography, respectively. The topography is locally horizontal at 𝑥 = 𝑥1
(i.e. 𝜂 = 0) and the middle term in (40) incorporates gravity acting
tangential to the topography. Hence this term changes sign at 𝜂 = 0
owing to the change in slope from downhill in 𝜂 < 0 to uphill in 𝜂 > 0.
The behaviour near the contact point (𝐻 ≪ 1) is given by setting 𝑄 = 0
leading to

𝐻 ≈
√

2𝐵(𝜂0 − 𝜂)1∕2, (43)

where 𝜂 = 𝜂0 is the contact point, which is determined as part of
the solution. The far-upstream behaviour is given by matching to the
characteristic solution for which ℎ ∼ 𝐵∕|𝑇𝑥| near the uphill region and
so

𝐻 ∼ 𝐵∕𝑐 |𝜂| as 𝜂 → −∞. (44)
10

0

We numerically shoot in (40) from 𝜂 = 𝜂0 and match with the far-field
behaviour to obtain 𝜂0 = 0.42. The solution to (40) is shown to capture
well the full numerical result along the centreline for  = 0.1, 𝐵 = 0.5,
 = 2 in Fig. 12.

We comment that this analysis breaks down for small 𝐵 in which
case different scalings for the flow thickness are needed at 𝑥 = 𝑥1 [7].
For such Newtonian flow, the limiting behaviour of the characteristic
solution, ℎ0, near the uphill zone is given by mass continuity and
depends upon an anomalous exponent of  [7]. In contrast, with a
yield-stress fluid, the condition that the yield surface is just above 𝑧 = 0
gives more singular behaviour near the uphill zone and leads to the
scaling ℎ ∼ −1∕3. This difference between Newtonian and yield-stress
fluids is another manifestation of what was found in Section 3 when
matching to the pond solution for a laterally extensive mound.

5.2. Downstream behaviour

As in the case of shallower topography, the flow is diverted cross-
stream by the mound. Further downstream, the flux is redistributed
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Fig. 12. Flow thickness along the centreline for three values of  with 𝐵 = 0.5,  = 2 in rescaled coordinates. The asymptotic prediction is given by the solution to (40) with
0 = 0.42.
Fig. 13. Cross-sections of the fake yield surface, 𝑌 , at 𝑥 = 1 (black line) and 𝑥 = 10 and 20 (solid coloured lines) for  = 2 and  = 0.1. The dashed red lines show the predictions
rom the asymptotic method of Section 5.2.
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y the cross-stream diffusive fluxes so that the free surface returns to
ts steady constant thickness, ℎ = 1. We would like to replicate the
ownstream analysis of Section 4.3 for the case of an uphill mound
ut this presents two difficulties. First, for  > 𝑐 , the method of
haracteristics does not furnish a sensible downstream solution to use
s the initial condition for ℎ; it has a singularity. Second, the previous
ownstream analysis required that ℎ > 𝐵 but there are dry zones (ℎ = 0)
ownstream of larger mounds. To overcome the first issue, we use a
ross-section of the numerical solution at 𝑥 = 1 as the initial condition.
or the second issue, we solve Eq. (38) for the yield surface 𝑌 as before
ut note that where 𝑌 = 0, we cannot use the relationship ℎ = 𝑌 + 𝐵
ecause the material is entirely unyielded and hence the thickness may
e less than 𝐵. By solving for 𝑌 rather than ℎ, we postpone the analysis

for 0 < ℎ < 𝐵. The cross-section of 𝑌 at 𝑥 = 1 for  = 2 and
 = 0.1 is shown as a black line in Fig. 13 and this provides the
initial condition for Eq. (38). Cross-sections of the numerical solution
further downstream (continuous coloured lines) compare favourably
to integrations of (38) (red dashed lines). We can reconstruct the free
surface where 𝑌 > 0 from ℎ = 𝑌 + 𝐵 > 𝐵.

The flow thickness where 𝑌 = 0 can be non-unique (see for example
Fig. 11(b) and Fig. 11(d)). Far downstream, |ℎ𝑥| ≪ |ℎ𝑦| and |𝑚| ≪ 1 so
that the flow thickness satisfies

ℎ = 𝐵
√

1 + (ℎ𝑦)2
. (45)

ne possible solution is ℎ = 𝐵 in all of the region where 𝑌 = 0 beyond
ome downstream edge of the mound at say 𝑟 ≈ 2, where there is
n adjustment between ℎ = 𝐵 and ℎ = 0 (e.g. Fig. 11(d)). Another
ossible solution is that there is a small fully unyielded zone at the
dge, 𝑦 = ±�̄�(𝑥), of the yielded flow with free-surface shape

= ±�̄�(𝑥) ∓ 
√

𝐵2 − ℎ2, (46)
11

e

nd beyond this zone the flow thickness vanishes in the interior, −�̄� +
𝐵 < 𝑦 < �̄� − 𝐵 (e.g. Fig. 11(b)). Intermediate solutions with 0 <
ℎ < 𝐵 within the interior and an adjustment at the edge of the yielding
region are also valid. We require additional data to select one of these
behaviours.

The zone that is dry or plugged (𝑌 = 0) is never invaded by fluid
from the line source and so any fully unyielded fluid that was there
initially remains there indefinitely. This gives rise to a non-uniqueness
when solving for the steady state. We choose the steady state associated
with topography that was completely dry prior to the initiation of the
line source. There is a fully unyielded region only at the edge of the
yielded flow and ℎ = 0 beyond this (see Fig. 11(b)) [31]. Details of the
adaptations required to the numerical method to obtain this solution
are given in Appendix B. However, an example of the non-uniqueness
that would arise is that the late-time steady state (in the 𝑌 = 0 region)
following an increase in the line source flux from say 𝑄∕2 to 𝑄 is
ifferent to the steady state following a decrease in the flux from 2𝑄
o 𝑄. Our results also demonstrate that pre-cursor films, which are
ometimes used in transient computations of free-surface viscoplastic
lows, may hide dry zones even if the source of the film is subsequently
emoved because the unyielded material remains covering the zone that
ay have been dry. This phenomenon does not arise for a Newtonian

luid because pre-existing fluid slowly flows away.

. Discussion and conclusion

In this paper we have analysed the interaction of a steady free-
urface yield stress flow with a topographical feature and compared
he results to the case of a viscous Newtonian flow. The flow thickens
n shallower slopes and thins on steeper slopes, which is associated
ith the maintenance of a streamwise volume flux. This response is

nhanced at higher yield stresses. For an isolated mound, the flow is
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also diverted cross-stream. For the same flow thickness, less fluid is di-
verted at higher yield stresses because the steady flux is smaller. Hence
the thickening of the flow cross-stream is reduced with increasing yield
stress. The thickening of the flow upstream is also increased with yield
stress owing to the response to a shallower slope. The culmination of
these two effects is that the maximum thickness occurs cross-stream
and downstream of the mound at low yield stresses but upstream of
the mound at higher yield stresses.

In the case that the mound has an uphill region, the flow either
develops a thick ponded region to surmount the topography or the flow
is entirely diverted around the mound and a dry zone forms. Which
of the regimes occurs will depend on the cross-slope dimension of the
mound. For a yield-stress fluid, the shape of the dry zone is not unique
for a given steady flow; it also depends on the transient evolution as
the dry zone may have been previously covered by a slump of plugged
fluid that remains stationary.

In many applications, the free surface of the fluid is known but the
underlying topography or the rheology is unknown (e.g. glaciers and
lava flows) [47]. [48] showed that the method of characteristics can
be used to reconstruct the topography required to produce a particular
free-surface profile for a thin Newtonian. In the case of lava flows,
the topography is typically known prior to the emplacement but the
rheology is highly uncertain. Our results provide a first step towards
developing an inverse method for constraining rheology from the to-
pography and the free surface. We have shown that lavas with higher
yield stresses are likely have their maximum thicknesses upstream
of obstructions whilst the maximum thickness arises from diversion
cross-stream for those with lower yield stresses.

Another important avenue of further research is to analyse carefully
the transient evolution to the steady flow. There has been some success
in accurately predicting the paths of lava flows but estimating the
temporal evolution and inundation timing have been very challeng-
ing [21,49]. In the problem considered in this paper, the characteristics
that described flow around an isolated mound may be extended to
incorporate a time derivative. The downstream re-joining of the flow
owing to cross-stream diffusive fluxes is a very slow process owing
to the relatively small thickness of the current and consequently, the
convergence to the steady upstream maximum thickness is much faster
than the evolution to the final dry zone shape.

Finally, it would be interesting to incorporate inertia into the prob-
lem and analyse how this affects the surmounting of uphill mounds
as has been studied for Newtonian flows [50]. Such investigation may
also assist in developing models for granular flows around topography;
for example the case of a laterally extensive mound is sensitive to any
stationary deposited material prior to initiation of the current [51].
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Appendix A. Matching to the pond

We match the pond solution (22), valid in 𝑥2 < 𝑥 < 𝑥0, to ℎ0(𝑥) at
= 𝑥0. Near, but just downstream of 𝑥0, we have |𝑇𝑥| ≪ 1 and the

ehaviour of ℎ0 and ℎ1 here is given by (Eqs. (15) and (16)),

0 ∼
𝐵 +

(

2(1 − 𝐵)2(1 + 𝐵∕2)
)1∕2

, ℎ1 ∼
𝐵2𝑚′′(𝑥)

4
. (A.1)
12

|𝑇𝑥| 3𝐵
|𝑇𝑥| T
This behaviour differs from the Newtonian case (𝐵 = 0) for which
0 ∼ |𝑇𝑥|

−1∕3 and ℎ1 ∼ |𝑇𝑥|
−8∕3 near 𝑥0. The scalings for the Newtonian

ase arise from imposing that the flux is constant as 𝑥0 is approached
rom downstream. However, for 𝐵 > 0, we require that the fluid does
ot fully plug over its thickness (𝑌 > 0) as 𝑥0 is approached, which
equires more extreme behaviour than the flux condition and imposes
0 ∼ |𝑇𝑥|

−1. These two different limiting behaviours near the uphill
egion for the Newtonian and yield-stress fluids will lead to different
agnitudes for 𝛾, which determines the scale of the perturbation to

he horizontal static layer within the pond region (see (22)).
To match the pond and order unity expansions for a yield-stress

luid, we introduce an intermediate region and write

= 𝑥0 + 1∕3𝐵1∕3𝜒−2∕3𝜂, ℎ = −1∕3𝐵2∕3𝜒−1∕3𝐻, (A.2)

where the scalings are chosen for a balance in the first two terms of the
outer ℎ ∼ 1 expansion (A.1) and we have introduced

𝜒 = −𝑚′′(𝑥0). (A.3)

The leading order equation (from (11)) in the intermediate region is
d𝐻
d𝜂

+ 1
𝐻

= 𝜂, (A.4)

which is equivalent to requiring that the flow is fully plugged, 𝑌 = 0, at
leading order. This equation has the following exact implicit solution

𝜂 = −22∕3
𝐴𝑖′

[

(𝜂2∕2 −𝐻)∕21∕3
]

𝐴𝑖
[

(𝜂2∕2 −𝐻)∕21∕3
] (A.5)

here 𝐴𝑖 is the Airy function. The behaviour up and downstream is
iven by matching to the respective expansions;

∼ 𝜂2∕2 + 𝑐0 𝜂 → −∞, (A.6)

∼ 𝜂−1 − 𝜂−4 𝜂 → +∞. (A.7)

e also obtain

−1 = −𝑥0 +𝑚(𝑥0), 𝛾 = −1∕3𝜒−1∕3𝐵2∕3, (A.8)

rom matching with the pond. As 𝜂 → −∞, the right-hand side of (A.5)
ecomes singular, in order to satisfy (A.6). This corresponds to the first
ero of the Airy function from which we obtain,

0 = 2.946 to 3 decimal places. (A.9)

his fully determines the first two terms in the pond expansion. There
s also a relatively unimportant matching region at 𝑥 = 𝑥2; for details
f an analogous procedure for a Newtonian fluid, see [7].

ppendix B. Numerical integration for an isolated feature

We first describe the numerical approach in the case that there is
o dry zone ( < 𝑐 , Section 4), which follows the approach of [52].
o solve the steady problem, ∇ ⋅ 𝒒 = 0, we recast it in weak form
y multiplying by a test function 𝑣 and integrating by parts over the
omain, 𝛺 to obtain

∫𝛺
𝒒 ⋅ ∇𝑣 d𝑥d𝑦 = 0, (B.1)

here 𝛺 = [−𝑎, 𝑏] × [−𝑐, 𝑐] is a rectangle and we have applied the
oundary condition ℎ = 1 on its boundaries, which corresponds to
= 0. This variational problem is solved in FEniCS via a finite-element
ethod [53]. The steady solution is found by initially guessing that
= 1 everywhere and iterating until a converged solution that accounts

or the topography is obtained. The domain size is chosen so that
ncreases to its size lead to negligible changes in the solution. For

< 𝑐 , the flow thickness, ℎ, and fake yield surface, 𝑌 are positive
verywhere and the method obtains a converged solution (e.g. Fig. 5).

o verify the numerical results, the maximum thickness obtained for
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a

Fig. B.14. Relative error for the FEniCS numerical prediction for the maximum flow thickness for a laterally extensive mound with 𝐵 = 0.4 and  = 0.5 as compared to the
one-dimensional integration. The number of elements per unit square is shown.
Fig. C.15. (a, b) Flow thickness for 𝐵 = 1 with ℎ → 1 as 𝑟 → ∞. (c, d) Corresponding characteristic projections. The red lines show the characteristics that meet the seam and the
dotted blue line represents the limiting characteristic emanating from 𝑦 = 0 upstream.
m
c

a laterally extensive mound from FEniCS was compared to the one-
dimensional integration in Section 3. The relative error for 100, 200
and 400 elements per unit square is shown in Fig. B.14 in the case that
𝐵 = 0.4 and  = 0.5. For the figures in this paper, we typically used
000 elements per unit square.

In the case that there is a dry region (Section 5), an adjusted
pproach is needed owing to the degeneracy as ℎ → 0. First, we

obtain a prediction for the shape of the dry region from the method
of characteristics (32); the region not accessed by the characteristics is
an outer bound on the dry region. For a Newtonian fluid (𝐵 = 0), we
ensure that ℎ > 0 by adding a small flux over the dry region and the
governing equation becomes ∇ ⋅ 𝒒 = 𝜖(𝑥, 𝑦) [7]. We set 𝜖 = 𝜖0 in the
region bounded by the limiting characteristics and the line 𝑥 = 10 (see
Fig. 11(c)) and 𝜖 = 0 elsewhere. We use 𝜖0 = 10−5. The solution can
then be obtained as before and the dry zone is covered by a very thin
film of fluid.

In the case that yield stresses are important (𝐵 > 0), this method
needs further adaptation because the introduction of a small additional
flux over the dry zone will lead to 𝑌 ≪ 1, rather than ℎ ≪ 1, and
thus ℎ may be of order 𝐵 in the supposedly dry zone (see Section 5.2).
13

To overcome this difficulty, we regularise the stress–strain relationship
following the appendix of [9] so that ℎ is small when the flux is small.
In the flux 𝒒, we replace 𝑌 with

1
2

[

𝑌 +

√

𝑌 2 + 𝜈ℎ3∕2

𝐵[(1 − ℎ𝑥 −𝑚𝑥)2 + (ℎ𝑦 +𝑚𝑦)2 + 𝜈2]

]

, (B.2)

where 𝜈 is a regularisation parameter, which we typically take to be
𝜈 = 10−4. The system can then be solved in FEniCS noting that the
steady solution obtained corresponds to the scenario in which the dry
zone was never invaded by fluid. If the dry region was invaded by the
fluid prior to the initiation of the upstream line source, then a different
steady late-time solution is required as discussed in Section 5. This
non-uniqueness does not occur for a Newtonian fluid.

Appendix C. Charpit’s method for the flow thickness (𝑩 ≈ 𝟏)

In the limiting regime of a very high yield stress, the governing
equation may be approximated by 𝑌 = 0 with boundary condition
ℎ → 1 in the far field. For any  > 0, the equation 𝑌 = 0 (Eq. (6))

ay be solved by applying Charpit’s method, which yields the following
haracteristic equations [see chapter 8 of 54]

�̇� = 2 (1 − 𝑝 −𝑚 ) (C.1)
𝑥
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�̇� = −2 (𝑞 +𝑚𝑦) (C.2)

�̇� = −2𝑚𝑥𝑥(1 − 𝑝 −𝑚𝑥) − 2𝑚𝑥𝑦(𝑞 +𝑚𝑦) + 2𝑝𝐵2∕ℎ3 (C.3)

�̇� = −2𝑚𝑥𝑦(1 − 𝑝 −𝑚𝑥) − 2𝑚𝑦𝑦(𝑞 +𝑚𝑦) + 2𝑞𝐵2∕ℎ3 (C.4)

ℎ̇ = 2𝑝(1 − 𝑝 −𝑚𝑥) − 2𝑞(𝑞 +𝑚𝑦) (C.5)

where 𝑝 = 𝜕ℎ∕𝜕𝑥 and 𝑞 = 𝜕ℎ∕𝜕𝑦 and the dot denotes the derivative
in the direction of the characteristics. These equations are integrated
in the negative 𝑥 direction from 𝑥 = +∞ with boundary condition
ℎ = 1 since a numerical instability arises when integrating in the
positive 𝑥 direction. The solution and characteristic projections in the
(𝑥, 𝑦)-plane are shown in Fig. C.15 for  = 0.1. Fig. C.15 shows
that the characteristics may cross (red lines), even for mounds with
no uphill region ( < 𝑐). To avoid intersecting characteristics,
we introduce a seam by terminating the characteristics at 𝑦 = 0 to
maintain a continuous single-valued free surface [35]. We note that
as a consequence 𝜕ℎ∕𝜕𝑦 is not necessarily zero along the centreline.
Charpit’s method may be applied to obtain profiles that satisfy 𝑌 = 0
and ℎ → 1 in the far-field even for  > 𝑐 by introducing a seam.

In the case that the characteristics do not cross, Charpit’s method
provides the limiting thickness for steady flow over a mound at very
high yield stresses (since 𝑌 → 0 as 𝐵 → 1). However, in the case that the
characteristics cross, the mathematical solution to the problem 𝑌 = 0,
ℎ → 1 in the far-field may not be the correct solution for the steady flow
thickness. The mathematical solution corresponds to a plugged lump of
fluid that is stationary everywhere. The entropy condition is violated
because data is required to leave the seam and travel downstream
(red lines in Fig. C.15(d)), which is unphysical if the fluid is flowing
slowly downslope. There is a limiting characteristic which bounds the
area that is physically accessed by the characteristics emanating from
upslope (blue dashed line in Fig. C.15(d)). To mathematically capture
the fluid that flows from upstream into the zone bounded by the blue
dashed line requires the reintroduction of non-negligible flux. Indeed,
the solution to 𝑌 = 0 cannot capture the restriction that thin flows
cannot surmount uphill topography unless they deepen.
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