
J. Non-Newtonian Fluid Mech. 142 (2007) 79–94

Two-dimensional dam break flows of Herschel–Bulkley fluids:
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Abstract

Dam break flows of viscoplastic fluids are studied theoretically using a Herschel–Bulkley constitutive law and a lubrication model of the motion.
Following initiation these fluids are gravitationally driven out of the lock in which they had resided. Their motion is eventually arrested because
they exhibit a yield stress and they attain a stationary state in which the gravitational forces are in equilibrium with the yield stress. We study the
evolution of these flows from initiation to arrest by integrating the equations of motion numerically. We demonstrate that the final arrested state is
approached asymptotically and find analytically that the perturbations to the final state decay algebraically with time as 1/tn, where n is the power
index of the Herschel–Bulkley model.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In all manner of environmental and industrial processes, the gravitationally driven spreading of a layer of viscoplastic fluid is
an important phenomenon. Examples include the flow of lava down the flank of volcanos [1,2] and the release and sliding of mud
[3–6]. Relatively slow moving slumps of Newtonian, viscous fluids have received extensive study (see, for example, Huppert [7]
and Lister [8]), but often in a geophysical or manufacturing context the rheology is more complicated. Fluids such as lavas, muds,
liquid foods and concrete exhibit complex properties that may include a yield stress and a nonlinear relationship between shear-stress
and strain-rate [9]. Incorporating a yield stress into any model is particularly challenging as a discontinuity is introduced between
flowing and stationary fluid [10].

Dam break flows occur when a volume of fluid is instantaneously released and flows throughout a domain, driven by gravitational
forces. This type of unsteady fluid motion has been widely studied in hydraulic engineering and has wide-ranging application. For
example, many large-scale, hazardous flows in the environment are generated by the rapid mobilisation of a volume of fluid and
considerable insight to their motion can be gained by studying an idealised scenario in which a body of fluid, at rest within a region,
is set into motion by the instantaneous removal of the boundaries that contain it. Dam break flows of this nature have a long history
of published research [11–13]. They may be analysed using shallow layer theory, since the velocity is predominantly horizontal and
the pressure approximately hydrostatic, are readily generated in the laboratory by removing a lock gate and releasing fluid into a
flume and form a simple, yet testing, scenario for numerical simulations to reproduce.

In this paper we analyse dam break flows of fluids that exhibit yield stresses. Thus for flows over horizontal surfaces or down
slopes the motion is eventually arrested because the gravitational forces driving the flow are unable to overcome the fluid’s yield
stress. Hence a deposit is laid down and this behaviour is in contrast with the motion in the absence of a yield stress, for which the
fluid decelerates but is never arrested.
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Fig. 1. Sketch of a yield stress flow showing the plug region.

Although idealised, this type of dam break flow does have some direct applications in chemical engineering and industrial
processing in which the spreading of fluids needs to be precisely controlled in order to achieve the required goal. Invariably the
fluids used are non-Newtonian [14] and the rheology unknown. Examples include concentrated suspensions such as concrete, pastes,
foodstuffs, emulsions, foams and composites [15]. It has been suggested that careful measurements of a spreading fluid and its
deposit in a ‘slump test’ could be used to measure rheological constants of a fluid [3]. Such a test has been used for a long time to
measure the consistency of fresh concrete [16,17]. In such a test, a finite volume of fluid is instantaneously released and the final
deposit used to infer the yield stress of the fluid. This is important because if the suspension is too ‘stiff’ it will not be possible to flow
it into tight locations of mouldings. However, if it is too ‘runny’, the strength when hardened is reduced. In the processing of food
stuffs a device called a ‘Bostwick Consistometer’ is used in which one measure the distance the fluid has slumped in a particular
time interval to infer fluid properties [18,19]. It is important when carrying out all these tests to know when the fluid has ceased
flowing and the goal of this paper is to investigate how the static fluid profile is approached.

In a geophysical context there are many complicating factors to deal with. For example, the thermal structure of lava and the
particulate composition of mud will be important in defining the rheology. We ignore all such complicating factors and discuss the
flow of an isothermal, viscoplastic fluid and we assume that the fluid layer is shallow and slowly moving to allow us to apply a
lubrication style asymptotic reduction of the governing equations. This approach is standard practice when modelling flows of this
type for both Newtonian and non-Newtonian fluids.

The paper is organised as follows. First in Section 2 we formulate the mathematical model that is employed to examine dambreak
flows of viscoplastic fluids and we identify a ‘lubrication’ regime in which the lengthscale of the streamwise motion far exceeds the
depth of the flow. This simplification yields a relatively straightforward description of the motion. Flows of fluids with yield stresses
may be arrested and adopt a static profile and this is investigated in Section 3. In Section 4 we analyse the evolution of the flow
towards the arrested, final state by integrating the governing equations numerically. These computations reveals that the final state
is asymptotically reached and in Section 5 we investigate the approach to the arrested state analytically to explain this observation.
Finally we summarise our findings and draw some brief conclusions in Section 6.

2. Mathematical formulation

We consider the two-dimensional slow flow of a sheet of incompressible, viscoplastic fluid down a plane inclined at an angle θ

to the horizontal, as shown in Fig. 1. We orientate our (x′, z′)-coordinate system such that the x′-axis is aligned down the plane and
the z′-axis is perpendicular to the plane, which is located at z′ = 0. We denote the fluid velocity field by (u′, w′), the depth of the
flowing layer by h′(x′, t′) while the fluid density and the gravitational acceleration are given by ρ and g, respectively.

We represent the rheology of the viscoplastic fluid by the Herschel–Bulkley constitutive law [4,9,20] which relates the components
of the stresses, τ′

ij , to the strain rates, γ̇ ′
ij = ∂u′

i/∂x
′
j + ∂u′

j/∂x
′
i through the relations

τ′
ij =

(
Knγ̇ ′n−1 + τ0

γ̇ ′

)
γ̇ ′

ij, for τ′ ≥ τ0, (2.1)

γ̇ ′
ij = 0, for τ′ < τ0. (2.2)
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where Kn is the ‘consistency’, n a power law index that governs the degree of shear thinning or thickening, τ0 the yield stress and
τ′ and γ̇ ′ denote the second invariants of their respective tensors, given by

τ′ =
√

τ′
ijτ

′
ij

2
and γ̇ ′ =

√
γ̇ ′

ijγ̇
′
ij

2
.

We examine motion down the plane in the ‘lubrication regime’, for which the characteristic length scale along the bed, L, is much
greater than the characteristic fluid depth, H. Upon defining the aspect ratio ε = H/L, we introduce the following dimensionless
variables [10]

{x′, z′, h′, t′, u′, w′, p′} =
{

Lx, Hz, Hh,
L

U
t, Uu, εUw, ρgH cos θp

}
,

where U denotes a downslope velocity scale, which is to be identified below, and the unadorned variables are dimensionless.
Under this rescaling, the residual dimensionless parameters are the Reynolds number Re = ρUL/μ, where μ = Kn(U/H)n−1 is the
effective viscosity for a Herschel–Bulkley fluid, the inclination of the plane θ and the Bingham number, B, given by

B = τ0

ερgH cos θ
. (2.3)

This parameter measures the yield stress relative to stresses generated by the weight of the flowing layer. As will be demonstrated
below, its magnitude crucially determines the runout of the dam break flows and the rate at which they approach the arrested state.

We now formulate the equations governing the motion of the flowing layer in the regime of low aspect ratio (ε � 1) with Reynolds
number of order unity at most. Mass conservation for the flowing layer is given by

∂h

∂t
= −∂q

∂x
, (2.4)

where q is the volume flux per unit width carried by the flow. Identifying the distinguished scaling for the downslope velocity as a
balance between the pressure gradient and the divergence of the shear stresses yields U = (ρgH3/μL) cos θ and thus the following
leading order expressions for the momentum within the layer

0 = −∂p

∂x
+ S + ∂τxz

∂z
, (2.5)

0 = −∂p

∂z
− 1, (2.6)

where S = tan θ/ε [5,10].
Eq. (2.6) expresses hydrostatic pressure balance which can simply be integrated with the boundary condition that p = 0 on the

free surface (using atmospheric pressure as the reference pressure) to yield

p(x, z, t) = h − z. (2.7)

Upon integrating (2.5) with the stress-free boundary condition at the surface and substitution for p(x, z, t) from (2.7) we obtain

τxz(x, z) =
(

S − ∂h

∂x

)
(h − z). (2.8)

In order for the fluid to move, the second invariant of the stress tensor must exceed the yield stress. Thus to leading order the
shear stress at the base must exceed the yield stress which in these variables means that τb = τxz(x, 0) > B,

S − ∂h

∂x
>

B

h
. (2.9)

Within a flow the magnitude of the shear stress decreases linearly from τb at the base to zero at the free surface. If the fluid is in
motion, i.e. (2.9) is satisfied, there must be some critical height, h0 < h, at which the stress is equal to the yield stress generating
a yield surface below which there is shearing due to the applied stress. Above this surface there is no deformation to leading order
and so the flow can be considered to be plug flow.1 By using τxz(x, h0) = B we find

h0 = h − B

S − ∂h/∂x
. (2.10)

1 This is not strictly correct as the fluid above the yield surface is not truly rigid so should be considered to be a “pseudo-plug” and the yield surface a “fake” yield
surface [10].
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We may now calculate the velocity profile since in the yielding region (z < h0) τxz = B + (∂u/∂z)n, while in the plug region
(h0 < z < h), ∂u/∂z = 0. Thus integrating (2.5), applying the no-slip boundary condition u(0) = 0 and ensuring that the velocity
and its gradient are continuous gives

u(z) =

⎧⎪⎨
⎪⎩

n
1+n

(
S − ∂h

∂x

)1/n

[h1+1/n
0 − (h0 − z)1+1/n], 0 < z < h0,

n
1+n

(
S − ∂h

∂x

)1/n

h
1+1/n
0 , h0 < z < h.

(2.11)

The volume flux per unit width can be found by integrating the velocity profile over the total fluid depth, from z = 0 to z = h,

q = n

1 + n

(
S − ∂h

∂x

)1/n

h
1+1/n
0

[
h − n

1 + 2n
h0

]
. (2.12)

Combining Eq. (2.12) with (2.4) and eliminating h0 using (2.10) we arrive at a single evolution equation for the fluid depth h(x, t):

∂h

∂t
= − n

1 + 2n

∂

∂x

[(
S − ∂h

∂x

)−2(
h

(
S − ∂h

∂x

)
− B

)1+1/n(
h

(
S − ∂h

∂x

)
+ n

1 + n
B

)]
, (2.13)

under the condition given by (2.9) [5,14].
In what follows, we restrict our analysis to the simpler case of dam break flows over a horizontal surface (S = 0), noting that the

techniques presented below and analogous results may be derived when S > 0. Therefore, for this study, our governing equation is
given by

∂h

∂t
= n

1 + 2n

∂

∂x

[(
∂h

∂x

)−2(
−h

∂h

∂x
− B

)1+1/n(
h

∂h

∂x
− n

1 + n
B

)]
, (2.14)

under the condition that the yield stress is exceeded and the fluid flows, which is given by

−h
∂h

∂x
> B. (2.15)

3. Dam break flows on a horizontal plane

We now analyse the motion that arises when fluid is instantaneously released from behind a lockgate and flows over an initially
dry, horizontal bed. An impenetrable back wall of the lock is located at x = 0 and the lockgate is at x = 1. The depth of the fluid
initially within the lock is unity and thus the initial condition for the dam break flow is

h(x) =
{

1, 0 ≤ x ≤ 1,

0, x > 1.
(3.1)

The fluid intrudes forward over the horizontal bed and its front is at position x = xf(t) where h(xf, t) = 0 for all time. The volume
of fluid is conserved throughout the flow and thus∫ xf

0
h dx = 1. (3.2)

Initially the yield criterion (2.15) will be exceeded at the front of the flow causing the fluid to flow, but as time evolves the fluid
will reach a static profile, h∞(x), at which the yield criterion is not exceeded anywhere. If the Bingham number, B, is sufficiently
large, there will exist a point which we term the yield point, xy∞, behind which the fluid does not flow during any of the motion (see
Fig. 2(a)). If however the Bingham number is sufficiently small, then all of the fluid will flow and the yield point will not exist (see
Fig. 2(b)). In the region of fluid flow, motion is arrested when the yield condition, (2.15), becomes an equality and for motion over
a horizontal surface, the profile will be of the form of

h2 − h2
∗ = −2B(x − x∗), (3.3)

where the integration constant is chosen so that h = h∗ at x = x∗.
If we assume that a yield point exists then we must force the profile to have height equal to unity at xy∞. Thus the arrested profile

is given by

h∞(x) =
{

1, 0 ≤ x ≤ xy∞,√
1 + 2B(xy∞ − x), xy∞ < x ≤ xf∞.

(3.4)
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Fig. 2. The initial profile of fluid (dashed line) and two examples of final deposits (solid lines). If B > 1/3 not all of the fluid takes part in the motion and there is a
discontinuity in the gradient of the final height profile as shown in example (a), for which B = 1. However, if B < 1/3 all of the fluid flows and the final profile will
be of the form (b), for which B = 0.1.

Also we have that at the front of the flow the height must vanish yielding a relationship between xf∞ and xy∞,

xf∞ = xy∞ + 1

2B
. (3.5)

The point xy∞, and hence xf∞, can now be found by enforcing conservation of volume,∫ xf∞

0
h∞(x) dx = 1, (3.6)

and we obtain

xy∞ = 1 − 1

3B
and xf∞ = 1 + 1

6B
. (3.7)

The above analysis is only valid if the yield point does not reach the back wall, xy∞ > 0, therefore only if B > 1/3. The intermediate
value, B = 1/3, corresponds to the case for which the yield point is exactly at the origin and for B below this value a different
approach is required. In this latter regime the profile will still be in the form of (3.3) but we must this time force the height at the
front to be zero,

h∞(x) =
√

2B(xf∞ − x). (3.8)

By enforcing volume conservation again we obtain

xf∞ =
(

9

8B

)1/3

. (3.9)

In summary the static profile deposits will be of the form:

B ≥ 1

3
xf∞ = 1 + 1

6B
, xy∞ = 1 − 1

3B
, (3.10)

h∞(x) =
⎧⎨
⎩

1, 0 ≤ x ≤ xy∞,√
1
3 + 2B(1 − x), xy∞ < x ≤ xf∞,

(3.11)
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B <
1

3
xf∞ =

(
9

8B

)1/3

, (3.12)

h∞(x) =
√√√√2B

[(
9

8B

)1/3

− x

]
. (3.13)

As is expected from the nature of the system, xf∞ and h∞(x) vary continuously from one regime to the other. The static profile
for B = 1 is plotted in Fig. 2(a) and for B = 0.1 in Fig. 2(b).

4. Flow evolution

The dam break flow of a fluid without a yield stress (B = 0) has been well studied. For a viscous, Newtonian fluid (n = 1), see
Didden and Maxworthy [21] and Huppert [7] while power-law fluids were studied by Gratton and Minotti [22]. In the absence of a
yield stress (B = 0), the dam break flow cannot be arrested. The governing equation, (2.14), reduces to

∂h

∂t
= n

1 + 2n

∂

∂x

(
h2+1/n

∣∣∣∣∂h∂x
∣∣∣∣
1/n−1

∂h

∂x

)
. (4.1)

For a Newtonian fluid (n = 1) this governing partial differential equation has been extensively researched. Huppert [7] showed that
the long time behaviour is governed by a similarity solution which is the intermediate asymptotic for the solutions from sufficiently
regular initial conditions and that laboratory realisations of the flows rapidly adjust to states that are well represented by this solution.
More recently Gratton and Minotti [22] have derived similarity solutions for more general power-law fluids,

h(x, t) = K(n+1)/(n+2)t−n/(2n+3)
(

2n + 1

2n + 3

)n/(n+2)(
n + 2

n + 1

)1/(n+2) [
1 −

( x

Ktn/(2n+3)

)n+1
]1/(n+2)

, (4.2)

where K satisfies the relation

K2n+3 = (n + 1)n+3

n + 2

(
2n + 3

2n + 1

)n [
β

(
1

n + 1
,
n + 3

n + 2

)]−n−2

, (4.3)

and β(r, s) is a beta-function. Thus, the position of the front is at Ktn/(2n+3).
The added complexity of incorporating a yield stress make this analytical route impossible and so below we detail a numerical

scheme to solve (2.14). However, the existence of the analytical solution above provides us with a useful tool to check the numerical
schemes accuracy in certain circumstances.

4.1. Numerical scheme

In order to solve (2.14) we integrate it using an explicit finite difference scheme which is second order in both time and space.
Before differencing the equations we make a change of variable,

ξ = x − xy

xf − xy
, (4.4)

where xf(t) and xy(t) are the instantaneous positions of the front of the flow and the yield point, respectively. For x = xf we have
h = 0 so may readily enforce the boundary condition h(ξ = 1, t) = 0 for all t. For 0 ≤ x ≤ xy we have h(x) = 1 and may enforce
the boundary condition h(ξ = 0, t) = 1. If, however, xy = 0 we must apply the no flux condition at the back wall, given by (2.15)
as an equality,

∂

∂ξ
h2
∣∣∣∣
ξ=0

= −2Bxf. (4.5)

The active section of the profile, within which (2.15) is satisfied, thus corresponds to the fixed domain 0 ≤ ξ ≤ 1. To simplify
notation we introduce the active length, xa(t) = xf(t) − xy(t), and thus treating ξ and t as the independent variables, the governing
Eq. (2.14) becomes

∂h

∂t
− 1

xa

(
ξẋa + ẋy

) ∂h

∂ξ
= n

1 + 2n
xa

∂

∂ξ

[(
∂h

∂ξ

)−2(
− h

xa

∂h

∂ξ
− B

)1+1/n(
h

xa

∂h

∂ξ
− n

1 + n
B

)]
, (4.6)

where a dot denotes differentiation with respect to time. This equation is applied only in the region 0 < ξ < 1.
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Fig. 3. Snapshots of the fluid profile, h(x, t) at various times for (a) B = 0.1 and (b) B = 1. The dashed lines show the final profile.

In order to obtain a full solution the points xy and xa must both be tracked. In order to track xy we initially assume xy > 0 and
apply Eq. (4.6) at ξ = 0 using h = 1 and ∂h/∂t = 0 to obtain2

ẋy = − n

1 + 2n
x2

a

(
∂h

∂ξ

∣∣∣∣
ξ=0

)−1
∂

∂ξ

[(
∂h

∂ξ

)−2(
− 1

xa

∂h

∂ξ
− B

)1+1/n( 1

xa

∂h

∂ξ
− n

1 + n
B

)]
ξ=0

. (4.7)

Using (4.7) we can propagate xy back from its initial value close to one. If at any point xy becomes less than zero it means the flow
has reached the back wall and we can hence no longer apply h = 1. In this case we then fix xy = 0 and apply condition (4.5) to find
the gradient of the profile at the back wall. In order to evolve xa, and hence xf, we use mass conservation, (3.2), in the new coordinate
system with the already calculated value of xy,∫ 1

0
h(ξ, t) dξ = 1 − xy

xa
. (4.8)

We use an explicit finite difference scheme to solve the governing equation in the case of a Bingham fluid (n = 1), details of which
are given in Appendix A. The numerical code was validated by comparison with the known similarity solution for a Newtonian
fluid [7] in which the numerical and analytical profiles were indistinguishable. In addition for cases with nonzero B the numerically
computed and predicted end states (see (3.10)–(3.13)) compare favourably. Resolution testing was carried out and it is found that in
order to maintain stability of the profile we required δt ∼ δx2 = x2

aδξ
2. No significant gain was found by increasing the resolution

beyond δξ = 0.01. Using this resolution on an Intel Pentium 4 2.8 GHz with 512 MB RAM the runtime for a typical dimensionless
time unit was 8 s.

4.2. Flow evolution for a Bingham fluid

The numerical method described above was employed to investigate the evolution of dam break flows of viscoplastic fluids with
n = 1. Examples with B = 0.1 and 1 are plotted in Fig. 3. In both cases the asymptotic profile obtained from (3.11) and (3.13) is

2 Expanding h in the regime ξ � 1 reveals a non-trivial fractional power dependance close to the yield point (ξ = 0), h(ξ) = 1 − Bxaξ + χξ(2n+1)/(n+1) + · · ·,
where χ is a constant.
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Fig. 4. The position of the front, xf , as a function of time. The horizontal dashed lines show the expected final values.

also plotted. In Fig. 4 the front position is plotted for various Bingham numbers. It can be seen that for B = 1 the front position
very quickly approaches a limiting value but for lower values of B it continues to increase for longer. Also we see that increasing
the Bingham number causes the fluid to propagate slower as would be expected.

5. Approach to final state

The numerical simulations show that the dam break flows evolve towards the steady-state in which the fluid is arrested and at the
point of yielding. However, the adjustment towards this final state is long and hence it is of considerable interest to elucidate the
approach to the arrested state in the regime t 	 1. Indeed this may have important practical consequences since in an experiment or
rheological test one may wish to assess when the fluid has finally arrested.

5.1. Low yield stress: B < 1/3

We first consider cases with B < 1/3 in which the yield point reaches the back wall before the motion arrests. For large time it
is therefore sufficient to assume that xy = 0 and hence xa = xf. By considering the height profile as a function of ξ it can be seen
that h(ξ, t) must always be greater then the asymptotic profile, h∞(ξ), and that the front position, xf(t) must always be less than xf∞.
Thus we define the positive perturbation variables, h̃(ξ, t) and x̃f(t), to these arrested states

h(ξ, t) = h∞(ξ) + h̃(ξ, t), (5.1)

xf(t) = xf∞ − x̃f(t), (5.2)

where we assume that h̃/h∞ � 1 and x̃f/xf∞ � 1 and xf∞ and h∞(ξ) are given by (3.12) and (3.13). On substituting (5.1) and (5.2)
into the governing Eq. (4.6) we can make a series expansion in these perturbation variables. Using our knowledge of the asymptotic
state from setting condition (2.15) to an equality,

− h∞
xf∞

∂h∞
∂ξ

= B, (5.3)

it may be observed that the leading order terms in the perturbation variables on the right-hand side of (4.6) have exponent 1 + 1/n,
whereas those on the left-hand side are of exponent 1. Upon carrying out the expansion and using (5.3) we obtain

∂h̃

∂t
− ξB

h∞
dx̃f

dt
= − n

1 + n

B1/n

xf∞
∂

∂ξ

[
h2

∞

(
h̃

h∞
+ x̃f

xf∞
− h∞

Bxf∞
∂h̃

∂ξ

)1+1/n
]

. (5.4)

The first order expression of mass conservation, (3.2), yields∫ 1

0
h̃ dξ = x̃f

x2
f∞

, (5.5)

and the no flux condition at ξ = 0, (4.5), to first order becomes

∂h̃

∂ξ

∣∣∣∣
ξ=0

− 1

2
h̃(ξ = 0) =

(
B2

3

)1/3

x̃f, (5.6)

having used the profile of the final state from (3.13) which in these variables reduces to h∞(ξ) = (3B)1/3√1 − ξ.
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To solve for the first order perturbations, we construct a solution in separable form, h̃(ξ, t) = A(ξ)G(t) and x̃f(t) = F (t), where
both F, G → 0 as t → ∞. Upon substitution into (5.5) it is found that G(t) is simply a constant multiple of F (t), so it is possible to
absorb this constant into the definition of A(ξ). Upon substitution of the known final profile from (3.12) and (3.13) it is also useful
to write A(ξ) = (B2/3)1/3E(ξ) and thus we seek solutions of the form

h̃(ξ, t) =
(

B2

3

)1/3

E(ξ)F (t), (5.7)

x̃f(t) = F (t). (5.8)

Substitution of these into (5.4) and separation of terms yields

1

F1+1/n

dF

dt
= − 2n

1 + n

(
B2

3

)(2+n)/(3n)
(d/dξ)[(1 − ξ){(1 − ξ)−1/2E + 2 − 2(1 − ξ)1/2(dE/dξ)}1+1/n]

E − ξ(1 − ξ)−1/2 . (5.9)

The left hand side of (5.9) is solely a function of time and the right hand side solely a function of ξ so they must both be equal to a
constant. For notational convenience we chose the constant

k = E − ξ(1 − ξ)−1/2

(d/dξ)[(1 − ξ){(1 − ξ)−1/2E + 2 − 2(1 − ξ)1/2(dE/dξ)}1+1/n]
, (5.10)

and we obtain an ODE for F (t),

1

F1+1/n

dF

dt
= − 2n

1 + n

(
B2

3

)(2+n)/(3n)
1

k
. (5.11)

Integration of this equation leads us to the solution

F (t) =
[

1 + n

2

(
3

B2

)(2+n)/(3n)
k

t

]n

, (5.12)

where the constant of integration has been set to zero. This is appropriate because the constant sets the origin of time, but we are
only interested in large time so we may choose it arbitrarily.

In order to complete the solution we need to solve the spatial ODE given by (5.10) to determine k. We make the following changes
of independent and dependant variables,

τ =
√

1 − ξ, E(ξ) = 1 − P(τ)

τ
− τ, (5.13)

and find that the equation reduces to

P = k

2

d

dτ

[
τ2
(

−1

τ

dP

dτ

)1+1/n
]

. (5.14)

The perturbation must vanish at the front of the flow for all time, therefore we must have E(ξ = 1) = 0 ⇒ P(τ = 0) = 1.
Analysing (5.10) indicates that this is a regular singular point of the equation and therefore by making an expansion close to τ = 0
we can obtain the value of P and its derivative here. Making the substitution P(τ) = 1 + Cτα, where α is a constant to be found,
and taking a dominant term balance for τ � 1 we obtain

P(τ) ∼ 1 − 1 + n

2 + n

(
2

k

)n/(1+n)

τ(2+n)/(1+n) for τ � 1 (5.15)

This provides us with two conditions at τ = 0 but in order to determine k we need one further condition and this is obtained from
mass conservation, (5.5), which upon substitution of the separable solution yields∫ 1

0
E(ξ) dξ = 4

3
⇒

∫ 1

0
P(τ) dτ = 0. (5.16)

Equivalently we could use the condition at the back wall, (5.6), which yields

dE

dξ

∣∣∣∣
ξ=0

− E(ξ = 0)

2
= 1 ⇒ dP

dτ

∣∣∣∣
τ=1

= 0. (5.17)

The system may now be simply integrated numerically by initiating a solution with τ � 1 using (5.15), integrating to τ = 1 and
adjusting k such that the boundary conditions (5.16) and (5.17) are satisfied. Results for various n are displayed in Fig. 5 and the
corresponding values of k in Table 1.
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Fig. 5. The spatial perturbation E(ξ) as a function of the re-scaled distance, ξ, when B < 1/3 for different power law indices, n = 1 (solid line), 1/3 (– –) ,3 (· · ·).

Table 1
Values of the constants k and λ for different power law indices

n k λ

1/5 0.3758 1.5992
1/3 0.2936 1.4280
1/2 0.2159 1.2724
1 0.08663 1.0000
2 0.01419 0.7693
3 0.002345 0.6669
5 0.00006460 0.5721

See (5.10) and (5.37) for the definitions.

In summary, the perturbation variables decrease as 1/tn for t 	 1,

x̃f (t) =
[

(1 + n)k

2

]n( 3

B2

)(2+n)/3 1

tn
, (5.18)

h̃(ξ, t) =
[

(1 + n)k

2

]n( 3

B2

)(1+n)/3
E(ξ)

tn
. (5.19)

An application of the above theory is to determine how long it takes for the length of a flow to reach a proportion, (1 − δ), of its
final length, xf∞, where we assume δ � 1 to ensure we are within the regime of validity of the above perturbation analysis. At this
time, ts(δ), we have x̃f = δxf∞ which, upon using (5.18), can be solved to find

ts(δ) = (1 + n)k

2

(
2

δ

)1/n 31/3

B(2n+3)/3n
. (5.20)

This prediction could be used in industrial tests in which it is assumed the fluid has arrested its motion. As has been shown,
motion is not arrested in a finite time, but (5.20) provides the time taken for the slump to attain a distance (1 − δ)xf∞.

5.1.1. Bingham fluid (n = 1)
In the special case of a Bingham fluid, in which n = 1, (5.14) reduces to

P = k
dP

dτ

d2P

dτ2 = kP ′2 dP ′

dP
, (5.21)

where P ′ = dP/dτ, and this can be integrated analytically. A first integration and application of the behaviour at τ = 0 from (5.15)
yields

dP

dτ
=
(

3

2k

)1/3

(P2 − 1)1/3. (5.22)

Subsequent integration yields the solution in implicit form,(
3

2k

)1/3

τ =
∫ P

1

dP̂

(P̂2 − 1)1/3
. (5.23)
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Fig. 6. Numerical results for B = 0.1. (a) The scaled front position, x∗
f

, as a function of time; (b) The rescaled spatial perturbation approaching the analytical solution
of E(ξ) (solid line) for dimensionless times t = 500 (– –), 1500 (·–), 5000 (· · ·).

This integral can be written in terms of the hypogeometric function 2F1( 1
3 , 1

2 ; 3
2 ; P2) and P(τ) written implicitly as(

3

2k

)1/3

τ =
[
−P̂2 F1

(
1

3
,

1

2
;

3

2
; P̂2

)]P

1
. (5.24)

Combining (5.22) with the boundary condition at τ = 1 from (5.17) it is possible to deduce that P(τ = 1) = ±1. The initial
spatial perturbation, h̃ must be positive which implies that E(ξ) > 0 for all ξ which in turn implies that the correct sign is negative,
P(τ = 1) = −1. Applying this to (5.23) gives an analytical solution for k in terms of gamma functions,

k = 1

18

( √
π

�(2/3)�(5/6)

)3

= 0.0866257. (5.25)

Using this value for k and plotting (5.24), we find that the solution agrees exactly with that found numerically for n = 1.

5.1.2. Comparison with numerical results
We now compare this asymptotic analysis with the numerical results for the case n = 1. To this end we construct the rescaled

parameters

x̃∗
f (t) = 1

k

B2

3
tx̃f(t), (5.26)

h̃∗(ξ, t) = 1

k

(
B2

3

)2/3

t h̃(ξ, t). (5.27)

where we anticipate that x̃∗
f (t) → 1 and h̃∗(ξ, t) → E(ξ) in the limit t → ∞. Fig. 6 shows x̃∗

f and h̃∗ plotted as a function of time
for B = 0.1. It is readily observed that the numerics do rapidly approach these asymptotic states, confirming our analysis.

5.2. High yield stress: B > 1/3

The case of B ≥ 1/3 is slightly more complicated than that already considered because with the addition of the yield point, xy,
there are three variables approaching their asymptotic value. We notice that xy(t) must always be greater than xy∞ and hence define
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the positive perturbation variables, h̃(ξ, t), x̃f(t) and x̃y(t), to the arrested states

h(ξ, t) = h∞(ξ) + h̃(ξ, t), (5.28)

xf(t) = xf∞ − x̃f(t), (5.29)

xy(t) = xy∞ + x̃y(t), (5.30)

where we assume that h̃/h∞ � 1, x̃f/xf∞ � 1 and x̃y/xy∞ � 1 and xf∞, xy∞ and h∞(ξ) are given by (3.7) and (3.11). On
substituting (5.28)–(5.30) into the governing Eq. (4.6) and using the asymptotic condition from (2.15) as an equality,

− h∞
xf∞ − xy∞

∂h∞
∂ξ

= B, (5.31)

we can make a series expansion in these perturbation variables to yield

∂h̃

∂t
− B

h∞

[
ξ

(
dx̃f

dt
+ dx̃y

dt

)
− dx̃y

dt

]
= − n

1 + n

B1/n

xa∞
∂

∂ξ

[
h2

∞

(
h̃

h∞
+ x̃f + x̃y

xa∞
− h∞

Bxa∞
∂h̃

∂ξ

)1+1/n
]

, (5.32)

where xa∞ = xf∞ − xy∞ = 1/(2B). The first order expression of conservation of mass, (3.2), yields∫ 1

0
h̃ dξ = 1 − xy∞

x2
a∞

(
x̃f − x̃y

)− x̃y

xa∞
. (5.33)

and the no flux condition at ξ = 0, (4.5), to first order becomes

∂h̃

∂ξ

∣∣∣∣
ξ=0

− 1

2
h̃(ξ = 0) = B(x̃f + x̃y), (5.34)

having used the asymptotic profile state from (3.11) which in these variables reduces to h∞(ξ) = √
1 − ξ. One further condition is

required to fix x̃y and this is given by the knowledge that h(0, t) = 1 for all time.
To solve this first order problem we construct a solution in separable form, h̃(ξ, t) = A(ξ)G(t), x̃f(t) = F (t) and x̃y(t) = H(t),

where F, G, H → 0 as t → ∞. Upon substitution into (5.33) and (5.34) it is found that F (t) and H(t) must differ only by a
multiplicative constant and G(t) is simply a constant multiple of some addition of F (t) and H(t). Upon substitution of the known
final profile it is found that it is useful to write A(ξ) = BE(ξ) and thus

h̃(ξ, t) = BE(ξ)F (t), (5.35)

x̃f(t) = F (t), (5.36)

x̃y(t) = λF (t), (5.37)

where λ is a constant to be found. Substitution of this into (5.30) and separation of terms yields

1

F1+1/n

dF

dt
= − 2n

1 + n
B(2+n)/n (d/dξ)[(1 − ξ){(1 − ξ)−1/2E + 2(1 + λ) − 2(1 − ξ)1/2(dE/dξ)}1+1/n]

E − (ξ − λ(1 − ξ))(1 − ξ)−1/2 . (5.38)

The left hand side of (5.38) is solely a function of time and the right hand side solely a function of ξ so they must both be equal to a
constant. For notational convenience we chose the constant

k = E − (ξ − λ(1 − ξ)) (1 − ξ)−1/2

(d/dξ)[(1 − ξ){(1 − ξ)−1/2E + 2(1 + λ) − 2(1 − ξ)1/2(dE/dξ)}1+1/n]
, (5.39)

and we obtain an ODE for F (t),

1

F1+1/n

dF

dt
= − 2n

1 + n
B(2+n)/n 1

k
. (5.40)

Integration of this equation leads us to the solution

F (t) =
[

1 + n

2

(
1

B

)(2+n)/n
k

t

]n

, (5.41)

where the constant of integration has been set to zero as before. If we take the limiting case, B = 1/3, it is seen that this solution
agrees with (5.12) as expected.
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Fig. 7. The spatial perturbation E(ξ), as a function of rescaled distance, ξ, when B > 1/3 for different power law indices, n = 1 (solid line), 1/3 (– –), 3 (· · ·).

In order to complete the solution we need to solve the spatial ODE given by (5.39) to determine k. We make a similar change of
independent and dependent variables as before,

τ =
√

1 − ξ, E(ξ) = 1 − P(τ)

τ
− (1 + λ)τ, (5.42)

and the equation reduces identically to (5.14) with the same boundary conditions, (5.15)–(5.17). The one extra boundary condition
given by the vanishing height at ξ = 0 implies that the perturbation to the height must also vanish and hence E(ξ = 0) = 0 which
reduces to

P(τ = 1) = −λ. (5.43)

The solution for P(τ) is identical to that in Section 5.1 and the value of k the same as before written alongside λ in Table 1.
However the conversion back to E(ξ) yields different results due to the dependance on λ and this is plotted in Fig. 7.

In summary, the perturbation variables decrease as 1/tn for t 	 1,

x̃f(t) =
[

(1 + n)k

2

]n( 1

B

)2+n 1

tn
, (5.44)

x̃y(t) = λ

[
(1 + n)k

2

]n( 1

B

)2+n 1

tn
, (5.45)

h̃(ξ, t) =
[

(1 + n)k

2

]n( 1

B

)1+n
E(ξ)

tn
. (5.46)

As before we can proceed to find a time, ts(δ) at which the flow has reached a proportion (1 − δ) of its asymptotic value. Applying
x̃f = δxf∞ and using (5.44), we find

ts(δ) = (1 + n)k

2

(
6

δB1+n(1 + 6B)

)1/n

. (5.47)

5.2.1. Bingham fluid (n = 1), comparison with numerical results
In the special case of a Bingham fluid (n = 1) the equations can be solved analytically as demonstrated in Section 5.1.1 and k

found to be given by (5.25) and λ = 1. In order to compare the asymptotic analysis with the numerical results we construct the
rescaled parameters

x̃∗
f (t) = B3

k
tx̃f(t), (5.48)

x̃∗
y(t) = B3

k
tx̃y(t), (5.49)

h̃∗(ξ, t) = B2

k
th̃(ξ, t) . (5.50)

where we anticipate x̃∗
f (t), x̃∗

y(t) → 1 and h̃∗(ξ, t) → E(ξ) in the limit t → ∞. Fig. 8 show x̃∗
f , x̃∗

y and h̃∗ plotted as a function of
time for B = 1. It is readily observed that the numerics do rapidly approach this asymptotic value confirming our analysis.
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Fig. 8. Numerical results for B = 1. (a) The scaled front, x∗
f

, (solid line) and yield, x∗
y , (dashed line) positions. (b) The rescaled spatial perturbation approaching the

analytical solution of E(ξ) (solid line) for dimensionless times t = 5 (– –), 15 (·–), 50 (· · ·).

6. Summary and discussion

In this article we have developed a ‘lubrication’ style model for the dam break of a viscoplastic fluid that flows solely under the force
of gravity, modelling the rheology using a Herschel–Bulkley constitutive relation. The important dimensionless parameter in such
systems is the Bingham number, B, which is the ratio of yield stress relative to the stresses generated by the weight of the flowing layer.
In such motion there exists a profile in which the gravitational forces are balanced exactly by the yield stress of the fluid and under the
assumption of negligible inertia, Re ≈ O(1), any initial condition will approach this arrested state. We have demonstrated that such an
arrested state is not reached in finite time but is in fact approached asymptotically as 1/tn, where n is the power law index of the fluid.

We have investigated both numerically and analytically the two fundamentally different cases of B < 1/3 and B ≥ 1/3 and found
good agreement between the perturbation theory and numerical results. It has been possible to find how the front position, yield point
(for B ≥ 1/3) and height profile approach the arrested state and the dependance of this approach on the Bingham number, B, and
power law index, n. Additionally, for the special case of a Bingham fluid (n = 1), we have been able to elucidate the perturbations
to the final state analytically.

It is interesting to contrast this situation with that of Poiseuille or Couette flow of a yield stress fluid. In both these cases, when the
driving pressure gradient or boundary velocity is reduced to zero the fluid arrests in finite time [23–25]. The reason for the different
behaviour is that for our case of gravity driven flow, the force driving the motion never vanishes, but asymptotically approaches zero.

Our study has many applications both in industry and geophysics. For example measuring the consistency of common industrial
slurries (such as concrete) and food purees [19]. There are many areas that warrant further study. For instance how is the asymptotic
approach changed when the angle of inclination of the plane is nonzero? How do the effects of inertia modify the motion? Furthermore
it would be interesting to conduct experimental investigations of the flows and their approach to the arrested state. Some observations
have been made to suggest that such flows stop abruptly and do not asymptotically approach an arrested state [26]. This could be
the hallmark of behaviour not captured by the Herschel–Bulkley constitutive relation and further investigation would be useful.
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Appendix A. Finite difference scheme

The flow occurs within the domain 0 ≤ ξ ≤ 1 and we divide this range up into a grid of n equally spaced points with spacing δξ.
We discretize the spatial derivatives using a second order, centred difference scheme,

∂h(ξ, t)

∂ξ
= h(ξ + δξ, t) − h(ξ − δξ, t)

2δξ
+ O(δξ2),

∂2h(ξ, t)

∂ξ2 = h(ξ + δξ, t) − 2h(ξ, t) + h(ξ − δξ, t)

δξ2 + O(δξ2).

To make the time derivative second order in δt we use a half step scheme. The governing equation, (4.6), can be simply written as

∂h(ξ, t)

∂t
= F [h(ξ, t)], (A.1)

where F [h(ξ, t)] is a functional that is equal to the right hand side of (4.6). The time stepping scheme can now be written as a two
step process involving first, a half step, followed by the full step using one sided time derivatives.

h(ξ, t + δt/2) = h(ξ, t) + δt

2
F [h(ξ, t)] + O(δt), (A.2)

h(ξ, t + δt) = h(ξ, t) + δtF [h(ξ, t + δt/2)] + O(δt2). (A.3)

Using this scheme an iteration is made across all the interior points, 0 < ξ < 1. We fix the height at the front by insisting it must
vanish. If xy > 0 we simply fix the height at ξ = 0 to be unity. If however xy = 0 the height at the back is no longer unity and must
be fixed using (4.5),

h(0, t) =
√

h(δξ, t)2 + 2Bxfδξ + O(δξ2). (A.4)

In order to track xy we must apply (4.7) to obtain ẋy. The point ξ = 0 is a discontinuity in the height profile and hence we use one
sided derivatives here with our knowledge that h(0, t) = 1,

∂h(0, t)

∂ξ
= 4h(δξ, t) − h(2δξ, t) − 3

2δξ
+ O(δξ2),

∂2h(0, t)

∂ξ2 = h(2δξ, t) − 2h(δξ, t) + 1

δξ2 + O(δξ2).

With the knowledge of ẋy we can apply a first order time derivative to calculate the new yield position,

xy(t + δt) = xy(t) + ẋyδt + O(δt). (A.5)

When the yield point reaches the back wall we force xy = 0 and ẋy = 0 for all subsequent time steps.
The profile must also satisfy conservation of volume and this is implemented using (4.8) to find xa(t + δt) and hence by using

the previous value it is possible to find ẋa using a first order backwards derivative,

ẋa = xa(t + δt) − xa(t)

δt
+ O(δt). (A.6)

The asymptotic flow profile has a singularity at the front caused by the gradient becoming infinite. This will cause problems with
estimating the gradient at the nose so we make the change of variable ĥ(ξ, t) = h(ξ, t)2. In these coordinates the asymptotic behaviour
of the nose is no longer singular but behaves linearly as ξ → 1. The integral of the profile is obtained by using the Trapezium Rule
in the new variables (ĥ and ξ). The changes of variable to h → ĥ and x → ξ are simply used as convenient tools, all of the results
will be given in terms of the original variables h and x.
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