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Development of supercritical motion and internal jumps within lock-release
radial currents and draining flows
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The unsteady radial flow of a relatively dense fluid released from an axisymmetric lock
is analyzed when it freely drains over an edge and when it generates a gravity current
propagating over a horizontal surface. In both situations when modeled using the shallow
water equations, despite initiation from rest within a lock, the flow thins, accelerates,
and becomes supercritical in a region close to the symmetry axis. For free drainage,
this alters the outflow, while for radial gravity currents, it leads to the formation of an
internal jump connecting rapidly moving fluid to more tranquil flow at the front. Both
scenarios share the same supercritical flow structure, which is related to their initiation
from lock-release conditions and is a function of axisymmetry; the phenomenon is not
found in analogous two-dimensional flows. Through analysis and numerical integration
of the governing equations, the common onset and consequences of supercriticality are
revealed in both flows, as well as, the progression of the fluid motions to self-similar states
that develop at late times.
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I. INTRODUCTION

Axisymmetric gravity currents—the predominantly horizontal, radial flow of relatively dense
fluid through less dense environments—are ubiquitous in natural and industrial applications [1].
Large-scale examples include the dispersion at ground level of dense and potentially hazardous
gases [2–4] and the development of umbrella clouds of volcanic ash in the atmosphere [5–7]. The
instantaneous release of dense fluid and its axisymmetric propagation is therefore an important
canonical problem that has been researched through laboratory experiments, modeling, and numer-
ical simulations (see, for example, [8–10]).

Compositionally driven gravity currents that propagate over underlying horizontal boundaries
at sufficiently high Reynolds numbers that the viscous effects are negligible (at least during the
initial phases) flow as relatively thin layers. Thus the motion is governed by hydrostatic balance to
leading order and the shallow water equations have been shown to represent accurately the ensuing
dynamics, when coupled to a dynamic boundary condition at the moving front that accounts for
nonhydrostatic motion as the less dense environmental fluid is displaced [11]. Within this modeling
framework, radial flows generated by the instantaneous release of fluid from a lock evolve to a
self-similar state [12,13]. There is, however, hitherto unexplained dynamics that arise during the
initial adjustment. For example, [11] demonstrated that the fluid develops a rapidly moving, very
thin layer at the rear of the current, which eventually leads to the formation of an internal jump (or
‘shock’), over which the velocity and height of the flow change discontinuously. This is peculiar
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to axisymmetric releases; there is no shock formation in this way at early times for their two-
dimensional (2D) counterparts [14].

A related flow is the unsteady drainage from a reservoir that occurs when the fluid is allowed
to flow freely over an edge [15,16]. At relatively early times, the dynamics within the draining
reservoir are similar to the development of a radial gravity current released from a lock into an
otherwise quiescent ambient. Thus we anticipate the onset of a thin, rapidly moving layer, which
could potentially lead to supercritical outflow. Once again, this effect is not observed in the 2D
version of this problem (cf. [15]).

In this paper, we analyze the axisymmetric flow of relatively dense fluid released from rest in a
circular cylindrical or annular reservoir by the abrupt removal of the confining lockgate. From these
lock-release conditions, the flow propagates horizontally over a rigid boundary through otherwise
quiescent fluid. We study two flow scenarios: in the first we examine free drainage over an edge
(Sec. III), while in the second we investigate radial gravity currents (Sec. IV). These problems
are linked because the radial geometry influences the development of the flow from the initial
conditions, and our new contributions are to reveal the origins of unexplained features of the motion
and to relate them to this initial evolution. We show that there is commonality between the two
problems: the self-similar supercritical motion found as fluid drains freely over an edge is the
same as the supercritical flow that develops within the lock of an axisymmetric gravity current
and persists for an extended period. For both problems, our analysis reveals that radial spreading
leads to the thinning of the initially quiescent fluid and the development of supercritical conditions
(Sec. III). We reiterate that this is due to the radial geometry; it does not occur for 2D currents.
Importantly our analysis reveals the origin of key features, namely, that radial, free-draining fluid
over an edge develops supercritical flow internally (Sec. III) and that radial gravity currents develop
a supercritical outflow from the reservoir, which leads to the formation of a shock as it connects
with the slower motion close to the front (Sec. IV). Crucially, we use the new insights to explain
the inception and subsequent behavior of the shock and to reveal how it moves within the flowing
current and impacts the approach to the late-time, similarity state for the motion (Sec. IV).

Our methods combine high-resolution numerical simulations of the governing partial differential
equations with analytical insights. We construct the flow solutions at early times using a perturbation
expansion and at late times using similarity solutions, to which we elucidate the progressive flow
adjustment.

The flows analyzed in this paper provide further instances of when radial dynamics differ in
a nontrivial way from their 2D counterparts. Previously reported examples include radial gravity
currents sustained by a constant flux [7], which do not tend to a self-similar state envisaged in
[17]. Instead a more complex flow pattern develops in which there is a steady tail, connected to an
unsteady frontal region, and this flow structure is inconsistent with a ‘global’ self-similar solution.
Indeed for this flow, it leads to a different temporal dependence of the position of the front, which
can nevertheless be deduced asymptotically [7]. The same flow structure is found in sustained radial
currents through stratified environments [7], which led to the development of a new ‘hybrid’ model
that couples the steady dynamics of the tail to an unsteady frontal region [18]; the latter is treated as
spatially uniform and this permits a representation of the unsteady dynamics that is easy to compute.
This hybrid approach was also extended to currents affected by Coriolis forces [19].

The paper is structured as follows. We first present the governing equations and boundary
conditions for the flows and provide brief details of the numerical methods (Sec. II). We then analyze
free draining from a cylindrical or annular reservoir, demonstrating the onset of supercritical flow
and the establishment of a self-similar flow state (Sec. III). Interestingly it is only for cylindrical
reservoirs that a supercritical, self-similar flow state may be established (Sec. III B) and we show that
that it is dependent upon the precise initial conditions (Sec. III D). For annular reservoirs, in contrast,
the late-time drainage always exhibits critical conditions at the outflow for which we derive a new
similarity solution (Sec. III C)—although the transient dynamics are supercritical and the approach
to the self-similar state may be very long-lived (Sec. III B). Radial gravity currents generated from
lock-release conditions exhibit the same development of supercritical flow conditions at an interior
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location, eventually leading to the development of a shock across which the dependent variables
change discontinuously. We compute the motion of the shock and demonstrate how it affects the
approach to the late-time self-similar solution (Sec. IV). Brief conclusions are given in Sec. V. The
paper also includes an Appendix in which we provide some additional details of the new self-similar,
radial draining solution from an annular lock.

II. FORMULATION

We employ polar coordinates, centered on the axis of the confining reservoir, and model the
axisymmetric evolution of the dimensionless height, h(r, t ), and radial velocity, u(r, t ), of the fluid
layer. The reservoir initially confines a volume πV of fluid; it is of dimensional radius, R, and in the
case of an annular release, the dimensional inner radius is at Rri. Horizontal radial lengths are scaled
by R, the depth of the fluid is scaled by H = V/[R2(1 − r2

i )], and times are scaled by R/(g′H )1/2,
in which the reduced gravity is g′ = (ρ1 − ρ2)g/ρ1, where g denotes the gravitational acceleration
and ρ1 and ρ2 denote the densities of the intruding and ambient fluids, respectively (ρ1 > ρ2). The
motion is modeled on the assumption that the flow is shallow ((H/R)2 � 1), predominantly parallel
to the underlying boundary, and so the pressure is hydrostatic to leading order. Furthermore, viscous
effects are assumed negligible ([g′H5]1/2/[Rν] � 1, where ν denotes the kinematic viscosity) and
then the dimensionless nonlinear shallow water equations are given by

∂h

∂t
+ 1

r

∂

∂r
(ruh) = 0, (1)

∂u

∂t
+ u

∂u

∂r
+ ∂h

∂r
= 0, (2)

which represent the conservation of mass and the balance of radial momentum, respectively (see
[9]). These equations are applied within the dimensionless domain ri < r < 1 for free-draining flow
or 0 < r < rN (t ) for gravity current flows, where rN (t ) denotes the position of the front. [For gravity
currents we treat only releases from cylindrical reservoirs (ri = 0).] We enforce vanishing velocity
at the inner boundary u(ri, t ) = 0, noting that if ri = 0, then this condition arises due to the radial
symmetry of the motion. The initial conditions, unless stated otherwise, are those of lock release,
given by u(r, 0) = 0 and h(r, 0) = 1 for ri < r < 1 and vanishing elsewhere. The configuration of
the flows is depicted in Fig. 1.

It is insightful to interpret the motion in terms of the characteristics of the governing equations,
(1) and (2), which are given by

d

dt
(u ± 2h1/2) = ∓uh1/2

r
on

dr

dt
= u ± h1/2. (3)

It is convenient for the discussion that follows to introduce the characteristic functions α = u +
2h1/2 and β = u − 2h1/2.

The free-draining boundary condition demands that the flow is at least critical at the outflow,
which is given by

u � h1/2 at r = 1. (4)

The model equations for free-draining flow over an edge [(1), (2), and (4)] are identical to those
analyzed in [16], except that in [16] criticality was demanded at the outflow (u = h1/2). The
boundary condition used in [16] was inspired by the draining flow in a rectangular reservoir [15],
and in that geometry with the absence of curvature terms, the outflow is critical all the time.
However, when curvature terms are present, a more subtle balance develops, and this effect has
been missed in the previous investigations. In what follows we demonstrate that imposing criticality
on the system is overprescriptive (see Sec. III); formally there is no solution with criticality imposed
and attempts to simulate the system numerically exhibit artifacts, as the interior dynamics are
inconsistent with the boundary condition. Instead in this study, we impose that the flow is at least
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FIG. 1. The configuration of (a) draining flows and (b) gravity currents. Note that the vertical scales are
exaggerated; the flows under consideration are assumed to be shallow.

critical, and as shown below, this apparently small change removes the incompatibility and yields
supercritical dynamics. We also show that this effect is surprisingly nonlocal: the presence of an
inner radius ri > 0 influences significantly the critical/supercritical behavior at r = 1, including in
the self-similar phase; the qualitative effects are shown to be independent of the value of ri.

Alternatively, for gravity current flow, we enforce a dynamic condition at the front [20,21], which
may be written as

drN

dt
= u = Frh1/2 at r = rN (t ), (5)

where the Froude number at the front, Fr, is a function of the ratio of the densities, ρ1/ρ2. For
motion through a relatively deep ambient fluid, it may be shown theoretically that Fr = (2ρ1/ρ2)1/2

[20,21], while for Boussinesq regimes [(ρ1 − ρ2)/ρ1 � 1], it has been established experimentally
that Fr = 1.2 [22]. In the analysis in Sec. IV we impose various values of the frontal Froude number,
Fr � 1, and demonstrate an important difference in the evolution depending on whether Fr is less
than or greater than

√
2. The model for radial gravity currents [(1), (2), and (5)] is identical to what

has been investigated by many previous researchers (see, for example, [17,12,11]) and the novelty
of our contribution lies in the interpretation of the dynamics following initiation, in particular, the
emergence of internal jumps (shocks) and the late-time behavior.

We comment that an equivalent framework arises for modeling the propagation of an axisymmet-
ric release of fluid that is less dense than its surroundings, propagating along an upper horizontal
boundary. Continuing to denote the intruding density ρ1 and the deep ambient ρ2 (but now with
ρ1 < ρ2), we define the reduced gravity by g′ = (ρ2 − ρ1)g/ρ1 and derive the dimensionless gov-
erning equations, (1) and (2), for the conservation of mass and momentum. The dynamic boundary
condition boundary, (5), is still given by Fr = (2ρ1/ρ2)1/2 [20], and thus Fr <

√
2 for these buoyant

currents.
The governing equations, (1) and (2), are integrated numerically. This is done by rewriting the

equations in terms of the numerical variable Q = [(rN − ri )rh, (rN − ri)2rũh]T and rescaled spatial
coordinate, r̃ = (r − ri )/(rN − ri), where ũ = u − r̃drN/dt , which is the axisymmetric equivalent
of the transformation of the 2D shallow water equations presented in [23]. The numerical scheme
used is the central upwind scheme presented in [24]. This is a finite-volume scheme which requires
reconstruction in each cell; for this purpose we reconstruct in the variable S = [h, rũh]T , using the
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FIG. 2. (a) Height, h(r, t ), and (b) velocity, u(r, t ), fields as functions of the radial distance from lock-
release initial conditions, with ri = 0 at t = 1, 1.2, 1.4, 1.6, 1.8, and 2 denoted (I)–(VI), respectively (solid
lines). Insets: Plots of (a) t2h(r, t ) and (b) tu(r, t ) as functions of the time at t = 1, 2, 3, 4, and 5, (solid
lines) along with the similarity solutions, (16) (dashed lines). (c) The associated characteristic plane showing α

characteristics (dot-dashed blue lines) and β characteristics (solid red lines). Note that there is a β characteristic
which lies along r = 0.72 for t > 1.4 (thick red line), which implies that critical conditions (u = h1/2) on this
curve prevail, together with supercritical conditions for r > 0.72.

modified minmod limiter and a transformation of the reconstructed gradient in h into one for Q1

[25,26]. The boundary condition, (4), is selected by evaluating the values in the cell adjacent to
the domain end; if it is subcritical, then criticality is imposed, whereas if it is supercritical, then
no algebraic boundary condition is applied. The system of equations for the boundary values is
closed by imposing the characteristic equations for the fields leaving the domain. This approach is
identical to the technique proposed for test problem 6.1 in [23]. The conditions, (5), are implemented
similarly, augmenting the algebraic conditions with the outgoing characteristic equation. For the
boundary conditions, (4) and (5), the flux of Q through the boundaries is computed directly from
the values at the boundaries. The simulations were performed at a resolution of at least 1000 cells.

III. FREE DRAINING OVER AN EDGE

A. Cylindrical reservoir (ri = 0)

We first focus on free draining from a circular reservoir (ri = 0), for which numerically computed
profiles of the height and velocity fields are plotted in Figs. 2(a) and 2(b). We find that the initial
phase of the motion corresponds to a collapse of the fluid layer adjacent to the edge, which
progressively sets more of the fluid in the reservoir into motion. This initial motion corresponds to a
fan of β characteristics centered on r = 1 [Fig. 2(c)]. At very early times, this fan is similar to a dam
break in Cartesian coordinates for which u = u0 ≡ 2(1 + y)/3 and h = h0 ≡ (2 − y)2/9, where
y = (r − 1)/t [27], and thus within it, the β characteristics are initially straight lines emanating
from r = 1. However, the characteristic curves are altered as time evolves, and in particular, the
β characteristics from the origin y = 0 (i.e., the edge of the lock, r = 1) become curved. This
is evident from the plot of α and β families of characteristics [Fig. 2(c)]. Importantly, we note
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that some of the β characteristics become no longer rearward propagating but, instead, propagate
forwards and out of the domain. This change in the direction of β characteristics is straightforward
to justify from the governing equations written in characteristic form, (3): since u and h are
both positive, the rate of change of β on a characteristic is also positive and consequentially the
characteristic velocity (dr/dt = u − √

h) also increases. Furthermore, we may explicitly compute
the form of these characteristics when t � 1 by writing

h = h0(y) + th1(y) + · · · and u = u0(y) + tu1(y) + · · · . (6)

We find h1(y) and u1(y) by substituting into the governing equations, (1) and (2), balancing at O(t ),
and imposing u = 0 and h = 1 on y = −1, which corresponds to the rearmost β characteristic from
the fan propagating into the quiescent reservoir. In this way we find that

h1 = 1
9 (y − 6)(2 − y)2 + 7

√
3

27 (2 − y)5/2 and u1 = 5
√

3
9 (2 − y)3/2 − 1

3 (y − 4)(y − 2). (7)

Then the β characteristics emanating from r = 1 at t = 0 are given by

r = 1 +
(

2 + 3β0

4

)
t + 3

32
(2 − β0)3/2(2 − (2 − β0)1/2)t2 + · · · , (8)

where β0 labels each β characteristic from r = 1 with −2 � β0 � −2/3. Since the quadratic term
in (8) is positive, it is therefore evident that the characteristic velocity is increased and that some β

characteristics from the fan will leave the domain as depicted in Fig. 2(c).
That both α and β families of characteristics propagate out of the domain is crucial. It implies

that the outflow is supercritical u(1, t ) > [h(1, t )]1/2 for at least some initial phase of the motion.
We plot the evolution of the Froude number at the edge, Fo ≡ u(1, t )/[h(1, t )]1/2, as a function of
time [Fig. 3(a); curve (i)] and note that it is supercritical and increases to a maximum value before
becoming constant throughout the motion (Fo = 1.39) for t > 2.5. This means that at long times
there is an interior β characteristic on which u = h1/2 and thus it does not leave the domain. This
‘critical’ β characteristic is plotted in Fig. 2(c) and at long times lies along r = 1/1.39 = 0.72
(see Sec. III C); it corresponds to the β characteristic for which β0 = −1.18.

We may extend our series expansion, (6), for the height and velocities to include terms of O(t2),
and in this way, we determine the Froude number at the outflow up to O(t2):

Fo ≡ u(1, t )

[h(1, t )]1/2
= 1 +

(
1

2

√
6 − 1

)
t +

(
161

12
− 71

12

√
6 + 8

3
log

3

2

)
t2 + · · · . (9)

In Fig. 3 we see that this expression accurately captures the initial growth of the Froude number at
the outflow as the flow within the reservoir becomes supercritical. We may also use our expansions
to O(t2) to evaluate the drainage volume flux at the outflow, q = u(1, t )h(1, t ),

q = 8
27

(
1 + (4

√
6 − 10)t + (

387
2 − 490

6

√
6 + 16 log 3

2

)
t2 + · · · ). (10)

This expression for q is plotted along with the numerically computed flux from the integration of the
governing partial differential equation [Fig. 3(b)]. We note that the asymptotic expression, (10), is
accurate for t < 1.5, by which time the volume of fluid remaining within the reservoir has decreased
to 28% of its initial value. The temporal behavior of the flux at later times is accurately predicted by
the similarity solution derived below (Sec. III C).

B. Annular reservoir (ri > 0)

We also analyze the motion when the fluid is released from an annulus (ri > 0). Once again we
plot the Froude number at the edge as a function of the time for various values of ri [Fig. 3(a)]. We
detect somewhat different behavior: from the lock-release initial conditions, the outflow becomes
supercritical and the Froude number at the outflow rises to attain a maximum value. Thereafter,
rather than maintaining a constant value as it does when ri = 0, the Froude number decreases,

063803-6



DEVELOPMENT OF SUPERCRITICAL MOTION AND …

(a)
0 5 10 15 20 25 30

1

1.2

1.4 (i)
(ii)

(iii)

(iv)(v)

(b)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

FIG. 3. (a) Froude number at the outflow, Fo, as a function of the time for (i) ri = 0, (ii) ri = 1
10 , (iii) ri = 1

6 ,
(iv) ri = 1

3 , and (v) ri = 1
2 (solid lines). Also plotted is the asymptotic expression for Fo at early times (dashed

line). (b) Outflow flux, q, as a function of the time (solid black line). Also plotted are the series expansion, (10),
derived when t � 1 (dot-dashed red line) and the similarity solution, (16), when t � 1 (dashed blue line).

eventually reaching a time at which it has become critical, and subsequently the explicit condition
of criticality at the outflow is enforced. We note further that the decay of the Froude number at the
outflow is rather slow when ri � 1. For example, cases (ii) and (iii) in Fig. 3(a), for which ri = 1

10
and 1

6 , respectively, do attain critical conditions at the outflow but at times beyond those plotted.
However, as shown below, the only long-term state for flows with ri > 0 is one with critical outflow
conditions.

Figure 3(a) also reveals that during the initial phase of the motion when the Froude number at
the outflow is rising, all simulations follow the same evolution given by (9). This arises because the
effects of the no-flow condition at r = ri are yet to influence the drainage outflow. For |1 − ri| � 1,
the simulated behavior departs from (9) by the arrival at the outflow of the α characteristic that is
generated at r = ri by the rearmost β characteristic from the initial fan centered at r = 1. However,
for ri � 1 the maximum Froude number at the outflow is attained slightly before this time. In Fig. 4
we plot the numerically computed arrival time at the outflow of the first α characteristic initiated at
the back wall by the arrival of the rearmost β characteristic from the initial fan as a function of the
radius of the back wall, ri. In other words, we integrate

drc

dt
= u(rc, t ) +

√
h(rc, t ) subject to rc(t0) = ri, (11)

where t0 = 1 − ri, and we evaluate ta such that rc(ta) = 1. We have also plotted in Fig. 4 the values
at the selected annular radii plotted in Fig. 3 when the outflow Froude number reaches its maximum
value. We note that there is a very close correspondence between these times. When |1 − ri| � 1,
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FIG. 4. The arrival time at the outflow, ta, of the α characteristic that is launched from the inner wall
by the arrival of the rearmost β characteristic from the rarefaction fan as a function of the inner annular
radius, ri (solid line). Also plotted are points that correspond to the times at which the Froude number at the
outflow is maximized, tm [see Fig. 3(a)], and the asymptotic dependence of ta when 1 − ri � 1 given by (12)
(dashed line).

we may use u0 and h0 to determine that

ta =
(

3

2

)3/2

(1 − ri ) + · · · , (12)

and note that this quite accurately captures the arrival times for ri > 0.3.
For practical purposes, we observe that the volume of fluid remaining in the reservoir monotoni-

cally decreases with time and that by t ≈ 5 it has decreased to less than 3% of its original value for
all cases plotted in Fig. 3(a). Critical conditions at the outflow have only been attained in the case
ri = 0.5 by this time and thus the return to criticality may not be physically important if ri � 1,
with the bulk of the drainage occurring as the transient supercritical flow.

C. Self-similar behavior

Following [16], we seek a self-similar form for the motion when t � 1 and the motion has
become independent of the initial conditions. To this end we look for solutions of the form

u(r, t ) = r

t
V (r) and h(r, t ) = r2

t2

V (r)2

F (r)2
, (13)

where V (r) and F (r) are the similarity functions to be determined. Note that F (r) = u(r, t )/
[h(r, t )]1/2 is the local Froude number. When substituted in (1) and (2), these give two coupled
ODEs,

r
dV

dr
= − (V − 1)(F 2 − 2)

F 2 − 1
, (14)

r
dF

dr
= F (F 2(V + 1) + 2V − 4)

2V (F 2 − 1)
, (15)

which are subject to boundary conditions riV (ri ) = 0 and F (1) � 1.
Substitution of s = log r converts (14) and (15) into an autonomous system and we may plot

trajectories in the (F,V ) plane (Fig. 5). It is notable that the line F = 1 is singular unless V = 1 at
the same value of r, in which case there are just two trajectories that pass through this point.
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FIG. 5. Trajectories in the (F,V ) phase plane, with arrows depicting the direction of evolution with
increasing r. Also plotted are nullclines (dV/dr = 0, dashed green line; dF/dr = 0, dashed red line) and F = 1
(dot-dashed blue line). Recall that V (ri ) = 0 for ri > 0 and hence only the lower left quadrant is relevant for
an annular reservoir.

1. Cylindrical reservoir (ri = 0)

The case ri = 0 is special because the condition riV (ri) = 0 is automatically satisfied and
because there is a family of solutions given by

V (r) = 1 and F (r) = For, (16)

where Fo is constant and Fo � 1. In terms of the original dependent variables, the solution is u = r/t
and h = 1/(F 2

o t2). If Fo = 1, then this similarity solution corresponds to that proposed by [16].
However, we find from our numerical simulations that the outflow remains supercritical with Fo =
1.39 (see Fig. 3) and that this similarity solution is established after a relatively short time following
release [see Figs. 2(c) and 3]. It was observed above that there is a β characteristic on which critical
conditions are attained that remains within the domain. From the similarity solution, it is located at
r = 1/Fo [see Fig. 2(c)].

Similarity solutions of the form of (13) are only defined up to an arbitrary temporal offset; replac-
ing t with t + τ would otherwise leave the solution unchanged. In general there is no ‘rigorous’ way
to determine theoretically the temporal offset that would lead to the similarity solution, (13), most
closely matching the computed numerical solutions. For practical purposes we equate the drainage
flux, q, at t = 2 to the similarity drainage flux including a temporal offset, 1/[F 2

o (2 + τ )3], and find
that τ = −0.218; for t > 2, the subsequent difference between the numerically computed drainage
flux and its similarity form with the temporal offset remains less than 5×10−3 and the relative
difference less than 6×10−2.

2. Annular reservoir (ri > 0)

When ri > 0 the solution is rather different. We cannot construct a similarity solution of the form
of (13) which is supercritical at the front because there are no trajectories in the (F,V ) phase plane
that pass from the inner wall boundary, V (ri) = 0, to a supercritical state. Instead we can only find
similarity solutions that are critical at the draining edge [F (1) = 1] (see Fig. 6).

This therefore rationalizes the behavior reported in Sec. III B. The Froude number at the edge
when ri > 0 initially reaches a supercritical state due to the initial evolution from lock-release
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FIG. 6. Similarity solutions for (a) H (r) = (rV/F )2 and (b) U (r) = rV (r) as functions of the radial
distance for ri = 0.1, 0.3, 0.5, 0.7, and 0.9.

conditions and then decreases to a state of critical outflow. Once attained, the solution further
evolves with critical conditions at the outflow towards the long-time similarity form governed by
(14) and (15) with F (1) = 1. However, importantly, the transition to criticality at the outflow takes a
long time.

Examples of the similarity solution for 0 < ri < 1 are plotted in Fig. 6. They were computed by
integrating (14) and (15) from r = 1 − δ (δ � 1) using

V (1 − δ)

V0
= 1 −

(
δ

2(1 − V0)

3V0

)1/2

+ · · · and F (1 − δ) = 1 −
(

δ
3(1 − V0)

2V0

)1/2

+ · · · , (17)

where δ is picked sufficiently small that the computed solution does not depend upon it. The
integration is halted when V (r) vanishes and by iteratively varying V0 we can find the self-similar
solution for each ri. The dependence of the outflow velocity, V0, upon ri is analyzed in the Appendix,
notably demonstrating that the result for 2D flows is attained when |1 − ri| � 1 (cf. [15]).

D. Effects of the initial conditions on the outflow Froude number

The numerical computations demonstrate that for a cylindrical reservoir (ri = 0) the Froude
number at the outflow, Fo, asymptotes to a constant value at late times and that the outflow is
supercritical. Furthermore, we have shown that flow with any supercritical outflow (with Froude
number Fo > 1) is an admissible self-similar state. In this subsection we demonstrate that this
asymptotic value of Fo is dependent on the initial conditions and is established through the dynamics
that occur at relatively early times. To illustrate this effect, rather than imposing an initially uniform
depth of fluid throughout the reservoir, we choose the initial condition

h(r, 0) = 1 + (hi − 1)
(
1 − 3

2 r
)
, (18)

where 0 � hi � 3 is a constant that parametrizes a family of initial conditions that have the same
total volume of fluid (and hi = 1 corresponds to the initial condition investigated in Sec. III). We
numerically integrate the system of governing equations (1)–(4) subject to (18) and evaluate the
Froude number at the outflow. In Fig. 7 we plot the outflow Froude number as a function of hi at
two relatively late times in the evolution (t = 30 and 50), showing that the flow dynamics evolve
to a state in which the Froude number remains constant in time. However, this asymptotic Froude
number varies quite significantly with hi, and notably there is a local minimum when hi ≈ 2.38.
For this family of initial conditions, (18), the earliest stages of the motion include a rarefaction fan
centered at the outflow (r = 1). The fan connects continuously to the initial evolution in the rest of
the reservoir. We find numerically that when hi ≈ 2.38, the β characteristic from the rearmost edge
of the fan is the slowest to leave the domain; for smaller values of hi, the β characteristic is reflected
from the back of the domain (r = 0), while for larger values, the direction β characteristic turns
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FIG. 7. Froude number at the outflow as a function of hi evaluated at t = 50 (solid line, crosses) and t = 30
(dashed line). Note that these curves are virtually indistinguishable.

around sooner and propagates out of the domain. Naturally our results for the temporal variation
of the outflow Froude number and its asymptotic value are strongly dependent upon the initial
conditions and here we have investigated only a simple class of functions. However, this illustrates
that the asymptotic value of the Froude number depends upon the variation at relatively early times.
Thus the similarity solution to which the system evolves at much later times is rather unlike other
similarity states for gravity currents that become independent of the precise initial conditions.

IV. LOCK-RELEASE GRAVITY CURRENTS

We now analyze the development of a gravity current, initiated from lock-release conditions to
flow radially, modeled using the shallow water equations, (1) and (2). The motion is subject to the
dynamic condition at its moving front, (5), and we analyze the development of the flow for various
values of the imposed, constant Froude number at the front, Fr.

At very early times following initiation and before the motion is affected by the radial geometry
and its finite extent, the flow corresponds to a simple-wave centered on r = 1, ahead of which
the depth and velocity are constant [9,14]. Writing y = (r − 1)/t as in Sec. III and the dependent
variables as h = h0(y) + th1(y) + · · · and u = u0(y) + tu1(y) + · · · , the leading-order solution is
given by

h0 =

⎧⎪⎨
⎪⎩

1, y < −1,
1
9 (2 − y)2, −1 < y < yc0,

1
9 (2 − yc0)2, yc0 < y < yN0,

and u0 =

⎧⎪⎨
⎪⎩

0, y < −1,
2
3 (1 + y), −1 < y < yc0,

2
3 (1 + yc0), yc0 < y < yN0,

(19)

where yc0 = 2(Fr − 1)/(Fr + 2) and yN0 = 2Fr/(Fr + 2). This leading-order solution includes a
fan of β characteristics that are straight lines, emanating from r = 1, ahead of which there is a
region in which h and u are constants. On the lead β characteristic, the invariant takes the value β =
βc0 = 2(Fr − 2)/(2 + Fr). Including the O(t ) perturbations to these fields leads to the turnaround
of initially rearward-propagating β characteristics as the fluid in the lock becomes supercritical. The
perturbation is given by (7) and the lead characteristic by (8) with β0 = βc0. This may be matched
to a perturbation within the ‘constant’ region at the front of the flow, in which the dependent fields
are linear functions of y, and to the perturbed front position, which is decelerated. The upshot is
that the fan region generated by the release develops supercritical flow, whereas the front is retarded
somewhat by radial spreading. Although at early times the fields remain continuous, eventually it
is no longer possible to continuously match the supercritical fluid from the lock release to the less
rapidly moving fluid at the front and a shock forms (see Figs. 8 and 9 for Fr = √

2 and Fig. 10 for
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FIG. 8. (a) Height and (b) velocity fields as functions of the radial distance at t = 2, 3, 4, 5, 6, 8, 10, 12,
14, and 16 for Fr = √

2. Inset: The similarity solution, (16), with Fo = 1.39 (dashed lines) is also included.

Fr = 2). This shock is entirely associated with the onset of supercriticality within the lock due to the
radial geometry; it does not occur for 2D releases (see [14]). Although the shock formation has been
reported before in numerical simulations of the shallow water equations (see, for example, [9,12]), it
has not previously been explained in terms of the onset of supercriticality due to lock-release initial
conditions.

Once the shock is formed it propagates forwards initially, while the fluid behind it evolves to
the self-similar state reported above in the study of free drainage [given by (16) with Fo = 1.39],
as shown in Figs. 8 and 10. Downstream of the shock, the fields are strongly affected by the front
condition, here expressed through the magnitude of the Froude number at the front, Fr, and as shown
below, we find a difference in the behavior depending on whether Fr �

√
2 or Fr >

√
2.

A. Gravity currents with Fr �
√

2

When Fr �
√

2, the depth of fluid upstream of the internal shock eventually becomes so thin
relative to the downstream depth that the shock reverses its direction of motion and heads towards
the origin. There are instances in which the fluid velocity just downstream of the shock is directed
inwards rather than outwards. As it approaches the origin, the shock is amplified due to radial
convergence. The shock is then reflected from the origin and propagates forwards, moving faster
than the local fluid velocity, and reaches the front, before again being reflected towards the origin.
This pattern of shock reflections superimposed upon a bulk flow is similar to the reflections
of continuous waves in 2D gravity currents [14] and draining flows from partially breached
reservoirs [28].

100 101 102 103 104 105 106
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FIG. 9. (a) The position of the front of the current, rN (t ), and the trajectory of shock, rs(t ), as functions of
the time for Fr = 1 (dashed red lines), Fr = 21/4 (solid black lines), and Fr = 21/2 (dot-dashed blue lines). (b)
The positions of the outward (dashed red lines)- and inward (dot-dashed blue line)-propagating shocks and the
characteristic curves from the similarity solution, (20) as functions of T (solid black line).
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FIG. 10. (a) Rescaled height, t2h(r, t ), and (b) rescaled velocity, tu(r, t ), fields as functions of the radial
distance at t = 2, 3, 4, 5, 6, 8, 10, 12, 14, and 16 for Fr = 2 (solid lines). Also plotted is the supercritical
similarity solution, (16), with Fo = 1.39 (dashed line). (c) Position of the front, rN (t ) (solid lines), and the
shock, rs(t ) (dashed lines), for Fr = 23/4 (blue) and Fr = 2 (red). The asymptotic state, r = rb, is also plotted
(dotted black line).

Our computations were able to track this motion over several reflected cycles, during which the
amplitude of the shock, here measured by the relative increase in depth, became smaller and its
speed of propagation slower. We plot in Fig. 9 the position of the shock, rs(t ), for three values of
Fr �

√
2. In each case, we observe the same pattern of successive reflections between the origin

and the front, though the speed of the shock is strongly dependent on Fr.
After very long times following release the overall motion approaches the similarity solution

[12,17] for which η = r/(Kt1/2) and

u = K

2t1/2
η and h = K2

8t

(
η2 + 2

Fr2 − 1

)
, (20)

where K4 = 16Fr2/(4 − Fr2) provided Fr �
√

2. The position of the front, rN (t ), corresponds to
η = 1 and our numerical simulations show convergence to this state (Fig. 9). We emphasize that
the similarity solution, (20), is concerned with the propagating gravity current, while the similarity
solution constructed in Sec. III C is concerned with the domain of the lock. As shown in Fig. 8,
both solutions can coexist in certain circumstances. At later times, the motion of the shock is
‘superimposed’ upon the self-similar solution for gravity currents, (20). As the amplitude of the
shock diminishes, its velocity approaches the characteristic velocity u + h1/2 when it is propagating
forwards and u − h1/2 when it is propagating rearwards. Using the similarity solution, (20), we may
calculate the trajectory of α characteristics propagating from the rear to the front of the current and
β characteristics propagating from the front to the rear. These trajectories, determined by integrating
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drc/dt = u ± h1/2, are given by

rc = Kt1/2

(
2

Fr2 − 1

)1/2

sinh

(±1√
8

log

(
t

t0

))
, (21)

where rc(t0) = 0. We compare this result for both inward- and outward-propagating shocks with
the numerically computed trajectories [Fig. 9(b)]. In this figure we plot the scaled radial shock
position, rc/(Kt1/2), as a function of T = (t/t0)±1 with Fr = 1, which features the largest number of
reflections in our simulated cases. We note that the evolution approaches this limiting case of moving
at the characteristic velocity but that the shock is still somewhat faster moving when propagating
forwards. This arises because the amplitude of the shock is very considerably amplified local to the
origin due to radial convergence, and this leads to more rapid movement of the shock away from
the origin. Reflections from the front that subsequently propagate inwards are not amplified in the
same way.

B. Gravity currents with Fr >
√

2

When the current is significantly denser than the surroundings (i.e., it is non-Boussinesq),
Fr >

√
2 and the evolution of the interior shock is somewhat different, as is the similarity solution

to which the dynamics tend at long times after release. For these values of Fr, we note from (20)
that h = 0 at η = ηb = (Fr2 − 2)1/2/Fr and the similarity solution enforces the absence of fluid in
a region around the origin (0 < r < rb(t ) ≡ Kηbt1/2); thus K = 21/2Fr [29]. The shock that forms
at relatively early times as a consequence of the generation of supercritical flow does not reflect
between the origin and the front of the fluid. Instead it tends to rb(t ) (Fig. 10). Upstream of the shock
the fluid remains in the self-similar, supercritical flow state determined by (16) with Fo = 1.39, as
shown in Fig. 10. Downstream of the shock it evolves progressively towards the similarity solution
given, (20), and the mismatch between these solutions is confined to a narrow region adjacent to
the shock.

At late times (t � 1), the depth of the fluid layer downstream of the shock far exceeds the depth
upstream, which has thinned rapidly and transitioned to the supercritical self-similar state, (16). In
this regime, the leading-order balance of the momentum flux across the shock requires that

(
u(r−

s , t ) − drs

dt

)2

h(r−
s , t ) = h(r+

s , t )2

2
, (22)

where the − and + superscripts denote evaluation of the functions upstream and downstream of
the shock, respectively. Using (16) and (20) to determine the leading-order expressions for the
dependent variables upstream and downstream of the shock, respectively, we therefore deduce that

rs(t ) = rb(t ) + 1

23/2Fo
+ · · · . (23)

Thus the relative amplitude of the perturbation to the similarity solution, (20), decays as O(t−1/2)
when t � 1, which differs from the linearized perturbations found for gravity currents with
1 � Fr �

√
2 that extend back to the origin. Furthermore, it may not be accounted for by the

inclusion of a temporal offset in the similarity solution either upstream, (16), or downstream, (20),
of the shock, which would lead to corrections of O(t−1). We also deduce from (16) and (20) that the
velocity drops across the shock by a factor of 2, from rs/t to rs/(2t ).

V. CONCLUSIONS

In this study we have demonstrated the surprising result that from lock-release initial conditions,
radial flows become supercritical in a region close to the symmetry axis. This transition occurs
for both Boussinesq and non-Boussinesq releases and is solely due to the radial geometry; it
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does not occur for two-dimensional flows. The development of supercritical motion has important
consequences.

First, for free draining over an edge, the outflow is not under critical conditions and the problem
is overspecified by imposing that the edge Froude number, Fo, is unity as the boundary condition.
Instead, the Froude number at the outflow increases from a unit value during an initial period and,
for releases from a cylindrical reservoir, attains a constant value that persists through the rest of
the motion. The flow also evolves to a self-similar state with a supercritical outflow. For an annular
reservoir, the dynamics are more complicated. The Froude number, Fo, still initially increases, but
then over a potentially long period, dependent on the inner radius of the annulus, it decays and
eventually the outflow becomes critically controlled. The numerical implementation of the drainage
boundary condition therefore requires care to avoid overspecification and to maintain the appropriate
form consistent with the interior dynamics.

The second consequence is for radial gravity currents. In this scenario the onset of supercriticality
in the region close to the symmetry axis eventually leads to the development of an internal jump
to connect the rapid upstream motion to the more tranquil state at the front. The shock emerges at
relatively early dimensionless times (e.g., for Fr = √

2 we first detect it numerically at t ≈ 1.9).
Upstream of the shock, the flow becomes identical to the similarity solution for unsteady radial
drainage—namely, u = r/t and h = 1/(F 2

o t2)—whereas downstream it evolves to match the frontal
boundary condition, progressively evolving to the self-similar state for radial gravity currents,
(20). Interestingly, the velocity decreases across the shock from one state of linear variation with
radial distance (u = r/t ) to another [u = r/(2t )]. The presence of the shock affects the progres-
sive evolution of the gravity current towards the self-similar state. If Fr <

√
2, then the initially

forward-propagating shock is reversed and successively reflects between the origin and the front
of the flow. Its amplitude weakens and asymptotically it moves at the speed of the forward- and
rearward-moving characteristics. Conversely, if Fr >

√
2, then the direction of movement of the

shock does not reverse, and it forms the connection between the thin layer of fluid upstream and the
bulk of the fluid moving outwards in an annulus. The shock amplitude also decreases, but at a rate
that is not captured by current linear stability analyses of the long term similarity solutions.

This study has demonstrated that the radial geometry influences the dynamics of density-driven
flows, generating effects that steer the long-term development of the motion. We anticipate similar
effects in related model systems, such as the intrusion of a volume of fluid through a stratified
ambient [30–32]. We advocate the use of numerical methods that are designed to impose (and not
overspecify) the boundary conditions. Finally, we comment that it would be invaluable to test these
theoretical predictions against laboratory experiments; we cannot do so currently due to the lack of
data. There are experimental challenges in conducting laboratory-scale investigations in which the
fluid motion remains inviscid over relatively long radial length scales, although this is the natural
regime for many field-scale releases [2,3,5,6]. Furthermore there are challenges in measuring the
velocity and density fields (e.g., [31]). The verification of critical flow behavior and of the evolution
of internal jumps requires high-resolution data guided by a precise theory. We hope that the present
investigation will motivate such an experimental program.
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APPENDIX: SIMILARITY SOLUTION FOR FREE DRAINING FROM AN ANNULAR LOCK

This Appendix analyzes the similarity solution for free draining from an annular lock, for which
it was demonstrated that the motion becomes critical at the outflow at long times after release
(Sec. III C). The governing equations for this new class of similarity solutions are given by (14)
and (15), subject to criticality at the outflow, F (1) = 1, and no flow at the back wall, V (ri) = 0.
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FIG. 11. Velocity of the similarity solution at the outflow, V0, as a function of the inner annular radius, ri,
showing numerical computations (solid black line) and asymptotic solutions for ri � 1 (dot-dashed red line)
and 1 − ri � 1 (dashed blue line).

Here we analyze the relationship between the velocity at the outflow, V (1) = V0, and the inner
radius, ri.

Numerically integrating the governing equations using the shooting technique described in
Sec. III C yields the results plotted in Fig. 11. We now examine this relation using asymptotic
analysis in the regimes of a small (ri � 1) or large (|1 − ri| � 1) inner radius.

First, it is convenient to write

dV

dF
= − 2V (V − 1)(F 2 − 2)

F (F 2(V + 1) + 2V − 4)
. (A1)

When |1 − ri| � 1, because V (ri) = 0, we anticipate that V0 � 1. Thus we can linearize (A1) and
apply the boundary conditions at r = 1 to find that

V

V0
= F

(
4 − F 2

3

)1/2

. (A2)

Then substituting for V (r) in (15) and integrating, we find that

∫ 1

0

F 2 − 1

(4 − F 2)1/2
dF = −31/2

2V0
log(ri ). (A3)

Since V0 � 1, this requires that |1 − ri| � 1 and so we determine that

V0 = 3
√

3

3
√

3 − π
(1 − ri ) + · · · . (A4)

This result, (A4), is identical to that derived by [15] for 2D free drainage, as it must be, because the
effects of polar geometry are negligible when |1 − ri| � 1.

Conversely, we analyze the case when ri � 1, for which we write V0 = 1 − ε (0 < ε � 1). By
substituting V = 1 − εU and F = 1 − G into (A1) we find that, to leading order,

dU

dG
= 2U (−1 − 2G + G2)

(1 − G)(−4G + 2G2 − εU (3 − 2G + G2))
. (A5)
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When G = O(1) we may further linearize the denominator and integrate to find that

U = B
(G(2 − G))1/2

(1 − G)2
, (A6)

where B is constant. When G = O(ε), we substitute G = εĝ into (A5), integrate, and apply the
boundary condition that U = 1 at ĝ = 0 to deduce that

U = 1

2

(
1 +

(
1 + 8ĝ

3

)1/2)
. (A7)

Matching (A6) and (A7) determines B = (3ε)−1/2. We may also determine the dependence on r:
substituting into (14), integrating, and matching, we deduce that G = 1 − r and thus

V = 1 −
(

ε

3

)1/2 (1 − r2)1/2

r2
. (A8)

This expression becomes nonasymptotic when r = O(ε1/4) and F = O(ε1/4), while V = O(1).
Writing ξ = r/ε1/4 and substituting into (14), we find that, to leading order,

V = 1 − ξ 2
i

ξ 2
, (A9)

where ξi = ri/ε
1/4. Matching (A9) and (A8) then determines that ε = 3r4

i , and consequently,

V0 = 1 − 3r4
i when ri � 1. (A10)

We superimpose both of these asymptotic expressions, (A10) and (A4), on the plotted, numer-
ically computed result and find that they accurately predict the results in their relevant regimes
(see Fig. 11).
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