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Gravitationally driven exchange flows of viscous fluids with different densities are
analysed theoretically and investigated experimentally within a horizontal channel.
Following initiation from rest when there is a vertical boundary dividing the two
fluids, the denser fluid slumps under the less dense along the underlying boundary,
while the less dense fluid intrudes along the upper boundary. The motion is driven
by the pressure gradients associated with the density differences between the two
fluids, resisted by viscous stresses, and mathematically modelled by a similarity
solution that depends on the ratio of the viscosities of the two fluids. When the
viscosity of the less dense fluid is much smaller than the viscosity of the denser
fluid, the shape of the interface between the fluids varies rapidly close to the upper
boundary and depends weakly on the viscosity ratio within the interior of the flow.
Matched asymptotic expansions are employed in this regime to determine the shape
of the interface and the rates of its propagation along the boundaries. The similarity
solutions are shown to be linearly stable and thus are expected to represent the
intermediate asymptotics of the flow. Experiments confirm the similarity form of
solutions and demonstrate close agreement with the theoretical predictions when the
viscosities of the fluids are comparable, but exhibit some discrepancies when the
viscosities differ more substantially. It is suggested that these discrepancies may be
due to mixing between the fluids close to the boundaries, which is induced by the no-
slip boundary condition. Exchange flows within porous domains are also investigated
to determine the shape of the interface as a function of the ratio of the viscosities
of the two fluids and using asymptotic analysis, this shape is determined when this
ratio is much larger, or smaller, than unity. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3685723]

I. INTRODUCTION

Gravitationally driven exchange flows, in which fluids of differing densities, and possibly
viscosities, counter-flow within a horizontal channel, are found in many industrial and environmental
settings and in this study we focus on viscously dominated motion. Applications include the various
miscible displacement processes that occur in oil wells,1 as well as geological settings, in which
lavas of different consistencies interact.2 The dynamics of viscously controlled exchanges of fluid
are also relevant to flow in engineered devices of small physical size. Although the dynamics of many
microfluidic devices are controlled by surface forces and diffusion processes,3 there are nevertheless
systems designed to analyse microchemical and microbiological substances, in which liquids of
different densities and viscosities encounter one another and their motion is strongly affected by
gravitational and viscous forces.4

Studies of co-flowing fluids that differ in density and viscosity abound. For example, motivated
by the recovery of oil from porous subsurface reservoirs, Saffman and Taylor5 studied the displace-
ment of one fluid by another and established that the interface between the fluids was unstable if
the viscosity of the displacing fluid was less than that of the fluid being displaced. Pumping of
multi-component viscous oils along pipelines has received considerable attention (e.g., Ref. 6) with
particular focus on fully developed flows of two fluids along pipes of circular cross sections (see
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Ng et al.7 and references therein). Studies of steady co-flowing fluids have constructed the laminar
velocity fields using numerical and analytical techniques.7–10 It has been shown that fully developed,
unidirectional, axial co-flows of fluids with different material properties are often unstable6, 11, 12

and recent laboratory experiments have revealed the complex ways in which the instabilities can
develop.13

Steady counter flowing fluids within a channel can also occur, if, for example, the channel
is vertically aligned and the fluids differ in density (see Refs. 14–16). These fluid motions differ
from their co-flowing counterparts because they are not driven by an imposed external pressure
gradient and lead to a steady exchange, but the theoretical form of the interface between them is not
fully determined by the equations governing the conservation of mass and momentum. Interestingly,
Kerswell16 investigated these bidirectional flow fields in a pipe of circular cross section using quasi-
analytical means and identified the shape of interface that maximised rate of exchange of the fluids.
These predictions were borne out by some, but not all, of the experimental observations.14, 16

In this paper we analyse the gravitationally driven, exchange flow within horizontal channels
between fluids of differing viscosities. The density contrast leads to the denser fluid residing as
a connected region adjacent to the basal boundary and slumping unsteadily under the less dense,
which then flows in the opposite direction to conserve mass. Molecular diffusion between the fluids is
assumed to be sufficiently weak so that the interface between them remains sharp – and the calculation
of the unsteady shape of this interface is the aim of the mathematical models of this motion. Aspects
of this motion have been explored recently both experimentally and theoretically.1, 17, 18 Seon et al.17

studied exchange flows in pipes of circular cross section and showed that when the pipe is horizontal
the length of the intruding dense fluid initially grew linearly with the time from release, t, as the
fluid inertia balanced the gravitational forces, before slowing and spreading as t1/2 when the viscous
and gravitational processes processes were dominant. They presented a quasi-analytical similarity
solution for the latter phase of the motion, by employing an approximate solution for the axial
flow of a partially filled pipe. Taghavi et al.1 analysed the motion in a two-dimensional channel
and showed how the ratio of the viscosities of the two fluids affected the evolution of the shape of
the interface between them. Both Seon et al.17 and Taghavi et al.1 also investigated what type of
spreading might occur if the tube were tilted or if an external flow were imposed. Finally, the recent
contribution of Martin et al.18 has examined an exchange flow between fluids of identical viscosity
within a horizontal channel of rectangular cross section. They established theoretical predictions
for the time evolution of the interface between the fluids and confirmed these predictions through
laboratory experimentation. We note that the progressive evolution of a horizontal exchange flow
from a dynamical state in which the fluid inertia balances buoyancy forces to one in which viscous
stresses balance buoyancy forces shares some features with the free-surface spreading of viscous
gravity currents,19, 20 but in the scenario of primary interest here, the motion of both fluids and the
confining upper boundary influence the motion.

This study adds to the recent contributions on unsteady viscous exchange flows in horizontal
channels in three ways. First, we analyse flows within three-dimensional channels and pipes; for
channels of rectangular cross sections, following,18 we demonstrate the effects of lateral side walls
and for pipes of circular cross-section we extend the analysis of Seon et al.17 to employ exact
representations of the flow fields. Importantly, however, our analysis includes the possibility of a
contrast in the viscosity of the two fluids, which was not included by Seon et al.17 or Martin et al.18

Our methodology can be readily applied to channels of any cross section. Second, we construct
similarity solutions for the time dependent shape of the interface and asymptotically investigate the
spreading when the viscosity of the less dense fluid is vanishingly small. This regime establishes the
important analytical connection with the results for slumps of liquid along a horizontal boundary
under an ambient gas, which have been previously modelled on the assumption that the gas is
inviscid.20, 21 The asymptotic analysis admits analytical expressions for the rates of spreading that
may be applied for quite a wide range of ratios of the viscosity between the two fluids. Finally, we
present the results of laboratory experiments that investigate the exchange flow within rectangular
channels when the fluids differ in both density and viscosity.

We note that our analysis may be related directly to gravitationally driven exchange flows in
porous media, bounded above and below by impermeable surfaces. Examples of this problem in-
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clude the displacement and pollution of freshwater bodies by dense saline water22 and the injection
of liquid carbon dioxide into deep aquifers to re-mediate atmospheric emissions of CO2.23, 24 Such
motions have been modelled by Huppert and Woods25 for fluids of equal viscosities and by Hesse
et al.23 when the viscosities differ. Mathematically we may recover the model of flow through porous
media governed by Darcy’s law by examining flows within narrow channels, when the width of its
cross section is much less than their height – and this simplification leads to governing equations
identical to those studied by Hesse et al.23 This regime was considered by Martin et al.18 who
demonstrated that the Brinkman extension to Darcy’s law may be important for the interpretation
of laboratory data in this configuration. Using the methods of this paper we examine the form of
the interface between the fluids in the regime, for which the viscosities are of very different mag-
nitudes and thus deduce asymptotic results that improve upon the empirical relations developed by
Hesse et al.23

The paper is structured as follows. First, we formulate the mathematical model for the unsteady
motion, based on the shallowness of the flowing layer (Sec. II). This approach yields a governing
equation for the shape of the interface between the two fluids, for which similarity solutions may be
constructed for flows in channels of rectangular and circular cross sections (Sec. III). A key parameter
in the determination of these solutions is the ratio of the viscosities of the fluids and the shape of
the interface is calculated numerically for a range of viscosity ratios. This numerical computation
is simplified by interchanging the dependent and independent variables, a transformation that also
permits the asymptotic determination of the shape of the interface when the viscosity of one of the
fluids far exceeds the other. Comparison is made between the theoretical predictions and laboratory
measurements of these flows (Sec. IV). We also include the Appendix in which viscously dominated
exchange flows are analysed when the upper boundary is a free surface. The replacement of a no-slip
condition at this boundary with a condition of vanishing shear stress introduces some changes to the
model, although these flows are amenable to the same type of analysis as in the rest of this paper.

II. FORMULATION

The two fluids reside in an infinitely long, horizontal channel that has rigid, impermeable
boundaries (see Figure 1). We orientate the (x, y, z)-coordinate system such that the x-axis is
horizontal and aligned with the axis of the channel, the y-axis is horizontal and perpendicular to the
axis of the channel, and the z-axis is vertical, with the lowermost point of the boundary at z = 0 and
the uppermost at z = d. The interface between the two fluids is at z = h(x, t). Potentially this interface
could also depend upon the lateral coordinate, y, but when the flow is purely axial and the diffusion
of chemical or other species that causes the density difference, and surface tension are negligible,
there are no possible dynamical balances to such a lateral pressure gradient and so to leading order
the interface is independent of the lateral coordinate.

Initially (t = 0) there is a vertical boundary at x = 0 between the two fluids, with the fluid
of density ρ and viscosity μ1 occupying the region x < 0, and the fluid of density ρ − �ρ (with
�ρ > 0) and viscosity μ2 occupying x > 0. The system then evolves (t > 0) and due to buoyancy
forces associated with their density difference, the denser fluid slumps into the region x > 0 with
velocity u1, displacing the less dense fluid which propagates above the denser fluid into x < 0,

FIG. 1. The configuration of the density-driven exchange flows in (a) channels of rectangular cross section and (b) pipes
with circular cross sections.
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with velocity u2. Throughout this propagation, we assume that the interface between the two fluids
remains sharp, thus requiring that the diffusivity (κ) of chemical species, or other agents causing the
density difference, is negligible. This effect is measured in dimensionless terms by the requirement
for the Peclet number ud/κ � 1, where u is a velocity scale of the ensuing motion.

The model of this gravitationally driven exchange flow is based upon the lubrication approx-
imation, whereby the streamwise lengthscale of the motion far exceeds the vertical and lateral
lengthscales. This assumption implies that the flow is predominantly parallel with the channel axis
and that the pressure, p(x, z, t), adopts a hydrostatic distribution, attaining an as yet undetermined
pressure pt(x, t) on the upper boundary z = d. Demanding the pressure field is continuous across the
interface between the two fluids, because surface tension is assumed negligible, we find that

p(x, z, t) =
{ pt (x, t) + (ρ − �ρ)g(d − h) + ρg(h − z), 0 < z ≤ h(x, t),

pt (x, t) + (ρ − �ρ)g(d − z), h(x, t) < z < d.
(2.1)

The streamwise pressure gradient is balanced by the divergence of viscous stresses; fluid inertia
is assumed to be negligible. This neglect of inertia and assumption of hydrostatic balance may be
invalid during the initial phases of the motion, but we demonstrate below that they are appropriate
assumptions for the long time evolution of the interface. The leading-order terms of the horizontal
components of the momentum equations are given by

μ1∇2
⊥u1 = ∂pt

∂x
+ �ρg

∂h

∂x
, 0 < z < h(x, t), (2.2a)

μ2∇2
⊥u2 = ∂pt

∂x
, h(x, t) < z < d, (2.2b)

where ∇2
⊥ ≡ ∂2/∂y2 + ∂2/∂z2. The equations are integrated subject to the interfacial conditions that

the velocity and shear stress are continuous and to the no-slip condition on the boundaries of the
channel. The volume flux of fluid carried by each layer, qi(x, t), is given by

q1 =
∫

S1

u1 dS and q2 =
∫

S2

u2 dS, (2.3)

where S1 is the cross-sectional area within the channel below the interface (0 < z < h) and S2 is the
cross-sectional area within the channel above the interface (h < z < d). Conservation of fluid mass
within layer then implies that

∂a

∂t
+ ∂q1

∂x
= 0 and

∂(at − a)

∂t
+ ∂q2

∂x
= 0, (2.4)

where a = ∫
S1

dS and at = ∫
S1∪S2

dS. Summing these two evolution equations yields the condition
of vanishing total volume flux in the channel (q1 + q2 = 0).

At this stage it is convenient to introduce dimensionless variables: we use d and μ1/[�ρgd] as
the length and time scale, respectively, and define the dimensionless variables

(X, Y, Z ) = (x/d, y/d, z/d), T = (�ρgd/μ1)t, H = h/d, A = a/d2, At = at/d2,

Qi = (�ρgd4/μ1)−1qi , Pt = (�ρgd)−1 pt , and r = μ2/μ1. (2.5)

The governing equations (2.2a) and (2.2b) are linear and thus the dimensionless volume flux of fluid
in the lower layer, Q1, is linearly proportional to the gradient of the interface,

Q1 = −F(H ; r )
∂ H

∂ X
. (2.6)

The flux function F may also depend upon geometrical parameters that characterise the channel
through which the fluid flows. For example, if the channel is rectangular in cross section then F will
also depend upon the dimensionless width B = b/d. There are symmetries in this flux function given
by

F(1 − H, r ) = 1

r
F

(
H,

1

r

)
, (2.7)
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which can be readily established from the governing equations (2.2). This feature implies that in
the results that follow we need only consider the solution for r ≤ 1. Given Eqs. (2.4) and (2.6), the
dimensionless nonlinear diffusion equation governing the evolution of the interface is

∂ A

∂T
= ∂

∂ X

(
F

∂ H

∂ X

)
, (2.8)

which relates the change in area available for the invading dense fluid to divergence of the flux. The
flux function, F, vanishes when the interface intersects the lower and upper boundaries, which occurs
at X = Xb(T) and X = Xt(T), respectively; both of these positions emerge as part of the solution to
Eq. (2.8). The equation set is closed by relating A to H, which enters through geometric considerations
as indicated below (Sec. III).

It is convenient to re-formulate Eq. (2.8) by writing X ≡ X(A, T), which is possible because the
interface varies monotonically with distance (see Sec. III). Then, defining

�(A, T ) =
∫ A

0
X (A′, T ) dA′, (2.9)

we find that the flow is governed by

∂�

∂T

∂2�

∂ A2
= −F

∂ H

∂ A
= −F̂(A), (2.10)

subject to the boundary conditions �(0, T) = �(At, T) = 0 (the latter expresses global conservation
of volume), together with the initial condition �(H, 0) = 0.

The governing equation admits similarity solutions of the form �(A, T) = T1/2�(A) and thus
X2 ∼ T; we construct the form of the similarity solutions below for channels of rectangular
(Sec. III A) and circular (Sec. III B) cross sections. It is also convenient to introduce the simi-
larity variable η = X/T1/2, noting that ηt = Xt/T1/2 and ηb = Xb/T1/2 represent the positions at which
the interface between the fluids meets the upper and lower boundaries, respectively. In terms of these
dimensionless variables, ηt and ηb depend only on the viscosity ratio, r, and possibly additional
parameters that characterise the geometry of the channel, such as the dimensionless channel width
B. The similarity function, �(A), satisfies

��′′ = −2F̂, subject to �(0) = �(At ) = 0, (2.11)

where a prime now denotes differentiation with respect to A. This boundary value problem may be
readily integrated numerically, noting that some care is required at the boundary points where �

vanishes. We tackle this numerically by setting �(0) = �(At) = δ, where δ is a non-zero, positive
constant and we progressively reduce δ until a converged solution is found, which in this case is
determined by demanding that �′(0) has become independent of δ to within a prescribed tolerance.

Before presenting these similarity solutions, we first assess the dynamical regimes and time
scales over which we anticipate the similarity solution to be an accurate representation of the flow.
Returning to dimensional variables, these flows are driven by the streamwise pressure gradient
associated with the density difference (�ρg∂h/∂x ≈ �ρgd/x), which may be balanced by the
divergence of viscous stresses (μ∂2u/∂z2 ≈ μu/d2) or by the inertia (ρu∂u/∂x ≈ ρu2/x). Balancing
the pressure gradient and the divergence of the viscous stresses yields the scaling relationship that
underlies the similarity solution identified above and is constructed in Sec. III, namely,

x2 ∼ �ρgd3

μ
t. (2.12)

Under this relationship the ratio of the viscous to inertial terms, μt/[ρd2], is much larger than unity
and thus the balance (2.12) is valid provided

t � ti ≡ ρd2

μ
. (2.13)
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The dynamical model is also based upon the assumption that the pressure is hydrostatic to leading
order. This assumption requires that x � d, which is valid when

t � th ≡ μ

�ρgd
. (2.14)

Using typical parameter values of the system that will be explored experimentally (Sec. IV), we have
ρ ≈ 103 kg m−3, �ρ ≈ 10 kg m−3, g ≈ 10 m s−2, μ ≈ 10 Pa s, and d ≈ 10−1 m and thus the inertial
time scale ti = 1 s and the time scale for non-hydrostatic effects, th = 1 s. Thus, we anticipate that on
time scales longer than 1 s, the motion will be governed by a balance between the density-induced
pressure gradient and the divergence of the viscous stresses and will exhibit the similarity solution
derived below.

It is also straightforward to demonstrate the linear stability of the similarity solution.
Following,26, 27 we introduce � = √

T [�(A) + δ̂ψ1(A, T )], where the ordering parameter is
assumed small (δ̂ � 1). Then at O(δ̂), we find

�
∂2ψ1

∂ A2
+

(
ψ1 + 2T

∂ψ1

∂T

)
d2�

dA2
= 0 , (2.15)

with the boundary conditions ψ1(0, T) = ψ1(At, T) = 0. Since Eq. (2.15) is linear we find that
ψ1(A, T ) = T λψ̃1(A) for an as yet undetermined eigenvalue λ and ψ̃1(A) satisfies the ordinary
differential equation

d2ψ̃1

dA2
= − (1 + 2λ)

�

d2�

dA2
ψ̃1 . (2.16)

We demonstrate stability by forming the following integrated form of the equation:

−
∫ At

0

dψ̃∗
1

dA

dψ̃1

dA
dA = 2(1 + 2λ)

∫ At

0

F̂ψ̃∗
1 ψ̃1

�
dA, (2.17)

where * denotes complex conjugation. Since all of the integrands are positive for 0 ≤ A ≤ At,
this implies that 1 + 2λ ≤ 0 and hence the similarity solution is linearly stable. This provides
the theoretical basis for the numerical evidence presented by Hesse et al.,23 which demonstrated
that the similarity solution is attained from initial conditions for exchange flows within porous
domains. For each of the flow configurations analysed below, it is possible to evaluate numerically
the eigenvalues and eigenfunctions. We comment that for each of the cases analysed with r < 1,
we found that | ∂ψ̃1

∂ H (1)| > | ∂ψ̃1

∂ H (0)|. This implies that the perturbation to the position at which the
interface intersects the upper boundary is larger than the perturbation to the position at which the
interface intersects the lower boundary.

III. SIMILARITY SOLUTIONS

A. Channels with rectangular cross sections

In this section we analyse motion in channels of rectangular cross sections of dimensionless
width B. The cross-sectional area A = BH and so with such simple geometry it is convenient to write
� = BT1/2�(H) and treat the similarity solution as a function of the interface height. The similarity
solution, �(H), is determined by the boundary value problem

��′′ = −2F̂, �(0) = �(1) = 0, (3.1)

where here a prime denotes differentiation with respect to H. In this section we first examine the
exchange flows in two important regimes, namely, a wide channel (B � 1) and a narrow channel
(B � 1), before treating channels of arbitrary width (B = O(1)).

1. Wide channels, B � 1

In this regime the flow fields U1 and U2 are only dependent upon the dimensionless vertical
coordinate, Z and so the governing equations may be readily integrated to deduce the form of the
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FIG. 2. (i) The flux per unit width, Fw , as a function of the height of the lower layer and (ii) the height of the interface
between the fluids of differing densities, H(η), as a function of the similarity variable η for wide channels (B � 1). Profiles
are shown for various values of the viscosity ratio: (a) r = 1; (b) r = 10−1; (c) r = 10−2; (d) r = 10−3; (e) r = 10−4;
(f) r = 10−5; and (g) r = 0.

dimensionless pressure gradient

∂ Pt

∂ X
= −∂ H

∂ X

r H 2
(
(1 − H )(3 + H ) + r H 2

)
(1 − H )4 + r (1 − H 4 − (1 − H )4) + r2 H 4

, (3.2)

so that the flux function is given by

F̂ ≡ Fw = H 3(1 − H )3(1 − (1 − r )H )

3((1 − r )(1 − H )4 + r (1 − (1 − r )H 4))
(3.3)

(see Taghavi et al.1 for details of this derivation). We note that in the limit of vanishing viscosity
in the upper layer (r → 0), Fw → H3/3, which recovers the expression used to model single layer,
density-driven gravity currents.20, 21

We plot the results for the shape of interface in terms of the similarity variable for various
values of the viscosity ratio, r, in the range r ≤ 1 (Figure 2). We note that if the fluids have
identical viscosities (r = 1) then the interface is symmetric (H(η) + H(− η) = 1); this result follows
immediately from the symmetries of the problem. The profiles, shown in Figure 2, have the same
generic shape; they are “blunt”-nosed at the upper and lower boundaries and vary smoothly between
these contact points. In the regime r � 1 the solutions for the shape of the interface within the
interior of the flow approach the profile associated with the limiting case of a vanishing viscosity of
the upper fluid (r = 0) and differ only close to the upper boundary. We note that the case r = 0 has
to be computed carefully because �′(1) ≡ ηt → −∞ as r → 0 (cf. Gratton and Minotti21).

In Figure 3, we plot the variation of the upper and lower points of contact, ηt and ηb, with
the viscosity ratio, r. We note the strong variation of ηt but that ηb is approximately constant. This
variation may be deduced asymptotically. First, we set r = ε � 1 and observe that

Fw(H, ε) = H 3

3

[
1 + ε

(1 − H )3 − 1 + H 4

(1 − H )4
+ O(ε2)

]
. (3.4)

By neglecting terms of order ε and introducing � = �0 + . . . into Eq. (3.1), we obtain the following
differential equation that governs the shape of the interface in the interior of the domain, away from
the boundary at H = 1,

�0
d2�0

dH 2
= −2

3
H 3. (3.5)

However, this approximation becomes invalid when the first two terms of Eq. (3.4) are comparable

(1 − H )4

(1 − H )3 − 1 + H 4
∼ ε , (3.6)
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respectively, as a function of the ratio of the viscosities, r for wide channels (B � 1). The numerical and asymptotic results
are plotted with solid and dashed lines, respectively.

which occurs when 1 − H ∼ ε1/3. This scaling elucidates the extent of the region close to the upper
boundary within which the interface profiles diverge as r varies and demonstrates that away from
this boundary the interface is given by �0 to leading order. This “boundary layer” may be seen in
Figure 2.

We now develop a matched asymptotic expansion to construct the interface profile and to
establish how ηt and ηb depend on r. We match between an “inner” region, close to the upper
boundary and the “outer” region in the bulk of the domain, within which the behaviour is governed
by Eq. (3.5). We examine the behaviour within the “inner” region by writing H = 1 − ε1/3Y and
�(H) = ε1/3φ0(Y) + . . . to find that to leading order

φ0
d2φ0

dY 2
= −2

3

Y 3

Y 3 + 4
. (3.7)

This equation is solved subject to φ0(0) = 0 and is matched to the outer solution as Y → ∞. In terms
of these variables, ηt = −dφ0/dY(0).

The outer solution is governed by Eq. (3.5), which may be integrated numerically subject
to �0(0) = 0. A second boundary conditions emerges from matching to the inner solution; thus
the solution at O(1) satisfies �0(1) = 0, because any other choice would render the matching
impossible. Thence, we find by numerical integration that ηb = 0.2843. We also find that Eq. (3.5)
may be rewritten (

d�0

dH

)2

+ 4

3
log �0 = c − 4

3

∫ 1

H

d log �0

ds
(1 − s3) ds, (3.8)

where c = −3.0249. Substituting H = 1 − ε1/3Y and expanding to O(1), we deduce that

1

ε2/3

(
d�0

dY

)2

+ 4

3
log �0 = c, (3.9)

and this will be employed below as the asymptotic matching condition.
Turning then to the “inner” solution, we first introduce φ0 = |ηt|ϕ and construct the solu-

tion using a regular perturbation series by writing ϕ = ϕ0 + ϕ1/η
2
t + . . ., on the assumption that
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|ηt| � 1. This step yields

ϕ0
d2ϕ0

dY 2
+ 1

η2
t

(
ϕ0

d2ϕ1

dY 2
+ ϕ1

d2ϕ0

dY 2

)
+ . . . = −2

3η2
t

Y 3

Y 3 + 4
, (3.10)

with boundary conditions at Y = 0 given by

ϕ0(0) = 0,
dϕ0

dY
(0) = 1 and ϕ1(0) = 0,

dϕ1

dY
(0) = 0. (3.11)

Equating powers of 1/η2
t it is possible to establish

ϕ0 = Y and ϕ1 = −2

9

∫ Y

0
log

(
1 + s3

4

)
ds. (3.12)

Then, matching to the “outer” solution (3.9), expanded to O(1), gives

lim
Y→∞

(
η2

t

(
dϕ

dY

)2

+ 4 log
(|ηt |ε1/3ϕ

)) = c. (3.13)

Substituting for ϕ, truncated at O(η−2
t ), gives

η2
t + 4

3
log |ηt | = c − 4

9
log(4ε). (3.14)

Finally, we solve this algebraic equation numerically to determine |ηt| as a function of the viscosity
ratio r ≡ ε in the regime r � 1. We note that the asymptotic estimates compare favourably with
numerical data, even at relatively large viscosity ratios (Figure 3).

2. Narrow channels, B � 1

In this regime, the dominant shear in the velocity field occurs across the width of the channel.
Thus, the velocity fields are dependent only on the lateral coordinate Y to leading order and are given
by

U1 = −
(

∂ PT

∂ X
+ ∂ H

∂ X

)
Y (B − Y )

2
and U2 = −∂ PT

∂ X

Y (B − Y )

2
. (3.15)

Equating the volume flux of fluid carried in each layer (Q1 + Q2 = 0) permits the flux to be evaluated
as

Q1 = − B3 H (1 − H )

12(1 − H (1 − r ))

∂ H

∂ X
, (3.16)

and thus F̂ ≡ Fp = B2 H (1 − H )/[12(1 − H (1 − r ))].
We note that the flow in this regime is analogous to a density-driven exchange flow within a

porous layer, bounded by impermeable horizontal surfaces, with dimensionless permeability given
by B2/12. Such flows were analysed by Huppert and Woods25 when the viscosities of the two fluids
were equal (r = 1) and the study was extended by Hesse et al.23 to situations in which the viscosities
differed. Indeed Hesse et al.23 established similarity solutions for the shape of the interface for an
arbitrary ratio of the viscosities and empirically fitted functions to the numerical data to produce
relationships between the points at which the interface meets the upper and lower boundaries, ηt and
ηb, and the viscosity ratio, r = μ2/μ1 in the regime r � 1. Here we derive these relationships as a
result of asymptotic analysis and find results that are broadly consistent with those of Hesse et al.23

within the range over which the curves were fitted, but differ substantially outside of that regime.
The similarity function satisfies

��′′ = − B2 H (1 − H )

6(1 − H (1 − r ))
, subject to �(0) = �(1) = 0. (3.17)

For equal viscosity fluids, � = B H (1 − H )/
√

12. This yields the symmetric linear profile
H = (1 − √

12η/B)/2, as established by Huppert and Woods.25 We plot the form of the simi-
larity solution and the dependence of ηt and ηb in Figures 4 and 5. We note that the profiles approach
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FIG. 4. (i) The flux per unit width, Fp, as a function of the height of the lower layer and (ii) the height of the interface
between the fluids of differing densities, H(η), as a function of the similarity variable η for narrow channels (B � 1). Profiles
are shown for various values of the viscosity ratio: (a) r = 1; (b) r = 10−1; (c) r = 10−2; and (d) r = 0.

the limiting case r = 0 within the interior as the viscosity ratio decreases, but that they differ close
to the upper boundary. As in Sec. III A, we may examine the asymptotic dependence of ηt and ηb

on r in the regime r = ε � 1 by noting that

Fp(H, ε) = B2 H

12

[
1 − ε

H

1 − H

]
+ O(ε2) . (3.18)

We neglect terms of order ε and write � = B�0 + . . . to find that

�0
d2�0

dH 2
= − H

6
. (3.19)

This approximation becomes invalid when 1 − H = O(ε), thus we expect a “boundary layer” of
O(ε), adjacent to the upper boundary. Within this “inner” region we substitute H = 1 − εY and
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FIG. 5. The points at which the interface between the two fluids intersect the upper and lower boundaries, ηt and ηb,
respectively, as a function of the ratio of the viscosities, r for narrow channels (B � 1). The numerical and asymptotic results
are plotted with solid and dashed lines, respectively. Also shown is the empirical fit (dashed line) due to Hesse et al.23
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� = εBφ0 + . . . to obtain

φ0
d2φ0

dY 2
= −1

6

Y

Y + 1
(3.20)

subject to φ0(0) = 0.
First, we integrate Eq. (3.19), subject to the boundary condition �0(0) = 0 with the matching

condition that �0(1) = 0 to find that ηb/B ≡ �′
0(0) = 0.3575 and that

�′2
0 + 1

3
log �0 = c1 − 1

3

∫ 1

H
(1 − s)

d

ds
(log �0) ds, (3.21)

where c1 = −0.7839. Then treating the “inner” region by substituting φ0 = |ηt|ϕ/B and expanding
in powers of B/|ηt|, we find that

ϕ = Y + B2

6η2
t

(Y − (Y + 1) log(Y + 1)) + . . . (3.22)

Finally, matching to the outer solution (3.21), we find that(ηt

B

)2
+ 1

3
log

∣∣∣ηt

B

∣∣∣ = c1 − 1

3
log ε . (3.23)

This algebraic equation may be solved numerically to obtain an estimate for ηt as r tends to zero.
The result is plotted in Figure 5, where we observe that the numerical data is very well represented
by the asymptotic result.

We compare these asymptotic results with the scaling laws fitted by Hesse et al.23 In the regime
r � 1, we have shown that to leading order ηb/B = 0.3575, while Hesse et al.23 propose empirically
that ηb/B = 0.3580. The other contact point, ηt, is given by the solution of Eq. (3.23). In contrast
Hesse et al.23 propose that |ηt |/B = 2.37r−0.08/

√
12 for r < 0.005. While this empirical fit is

reasonably close to the numerical and asymptotic results for the regime in which it was derived
(10−4 < r < 10−2), it diverges as r is further reduced.

3. Arbitrary width channels B = O(1)

When the width of the channel is of order unity, the velocity fields, U1 and U2 now depend
upon both the lateral and vertical coordinates. They may be calculated by a straightforward, though
lengthy, calculation using separable solutions (see, for example, Batchelor28 for the solution for a
single fluid within a channel). Thus we find that

U1 = 1

2

∂(Pt + H )

∂ X
Y (Y − B) +

∞∑
m=0

4B2

(2m + 1)3π3

(
Am sin

(
(2m + 1)πY

B

)
sinh

(
(2m + 1)π Z

B

)

+ ∂(Pt + H )

∂ X
sin

(
(2m + 1)πY

B

)
cosh

(
(2m + 1)π Z

B

))
, (3.24)

U2 = 1

2r

∂ Pt

∂ X
Y (Y − B) +

∞∑
m=0

4B2

(2m + 1)3π3

(
Cm sin

(
(2m + 1)πY

B

)
sinh

(
(2m + 1)π (1 − Z )

B

)

+ 1

r

∂ Pt

∂ X
sin

(
(2m + 1)πY

B

)
cosh

(
(2m + 1)π (1 − Z )

B

) )
, (3.25)

where the constants Am and Cm are determined by imposing the continuity of velocity and shear
stress at the interface between the fluids. This yields

Am = −∂ Pt

∂ X
f (χ, χ∗, r ) − ∂(Pt + H )

∂ X
g(χ, χ∗, r ), (3.26)

Cm = −1

r

∂ Pt

∂ X
g(χ∗, χ, 1/r ) − 1

r

∂(Pt + H )

∂ X
f (χ∗, χ, 1/r ), (3.27)
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with χ = (2m + 1)πH/B, χ* = (2m + 1)π (1 − H)/B and

f = cosh χ∗ − 1

cosh χ sinh χ∗ + r cosh χ∗ sinh χ
and g = sinh χ sinh χ∗ − r cosh χ∗(1 − cosh χ )

cosh χ sinh χ∗ + r cosh χ∗ sinh χ
.

(3.28)

From these expression we may integrate across the channel to find the volume flux of fluid carried
in each layer. Then, from the balance of volume fluxes (Q1 + Q2 = 0), we find that

∂ Pt

∂ X
= − G1

G1 + G2

∂ H

∂ X
, (3.29)

where

G1 = B2 H

12
+

∞∑
m=0

8B3

(2m+1)5π5

(
− sinh χ+(cosh χ−1)g(χ, χ∗, r )+ (cosh χ∗−1)

r
f (χ∗, χ,

1

r
)

)
,

(3.30)

G2 = B2(1 − H )

12r
+

∞∑
m=0

8B3

(2m + 1)5π5

(
− sinh χ∗

r
+ (cosh χ − 1) f (χ, χ∗, r )

+ (cosh χ∗ − 1)

r
g(χ∗, χ,

1

r
)

)
. (3.31)

Finally, we may combine these expressions to find the flux in the lower layer,

Q1 = − B

G1 + G2

∂ H

∂ X

(
B2 H

12
G2 − G2

∞∑
m=0

8B3

(2m + 1)5π5

(
sinh χ − (cosh χ − 1)g(χ, χ∗, r )

)

− G1

∞∑
m=0

8B3

(2m + 1)5π5
(cosh χ − 1) f (χ, χ∗, r )

)
. (3.32)

Denoting Q1 = −F2D B ∂ H
∂ X , we may identify F̂ = F2D , which can be evaluated numerically by

truncating the series expansions at a term to ensure sufficient convergence. (In this study the series
were truncated after 100 terms.) The dependence of F2D on the height of the interface when the
viscosities are equal (r = 1) is plotted in Figure 6 for a range of dimensionless channel widths.
We note that in the regimes of wide (B � 1) and narrow (B � 1) geometries that this expression
reduces to the forms presented in the preceding sections. Furthermore, we note that these profiles
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FIG. 6. (i) The volume flux of fluid carried in the lower layer, F2D as a function of interface height and (ii) The interface
between the two fluids, H(η) as a function of the similarity variable, η, when the viscosities of the two fluids are identical
(r = 1) for dimensionless channel widths: (a) B = 0.1; (b) B = 0.2; (c) B = 0.5; (d) B = 1; (e) B = 10. Also plotted is the
flux and interface for a wide channel (dotted line, B → ∞).
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are symmetric about the midline (H = 1/2), as anticipated. In Figure 7, we plot the flux as a function
of the height of the interface when B = 3 for a range of viscosity ratios. We note that decreasing the
viscosity ratio, r, makes the flux function increasingly asymmetric.

We now use the expression for the flux to compute the similarity solution for the shape of
the interface between the two fluids, by numerically integrating the boundary value problem with
F̂ = F2D . In Figure 6 we plot some profiles when the fluids have equal viscosities (r = 1); these
are symmetric due to the underlying symmetry of the flux function. Also when B > 10, the form of
the interface is quite close to that found for wide channels (B � 1). We plot the front position, ηb

as a function of the channel width in Figure 8. These results illustrate ηb is an increasing function
of the channel width and that in the regimes B � 1 and B � 1, the respective asymptotic results ηb

= 0.0928 and ηb = 0.2887B are attained (these asymptotic estimates concur with those derived by
Refs. 1, 18, and 25). We note that the effects of the channel width remain appreciable for relatively
large B; for instance, the predicted position of the front, ηb, remains 1.3% less than the wide channel
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FIG. 8. The lower contact point, ηb for exchange flows of equal viscosity fluids (r = 1) as a function of dimensionless
channel width, B. Also shown with dotted lines are the results for narrow (B � 1) and wide channels (B � 1). The inset
figure shows the same data over an expanded range.
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flow in a pipe of circular cross section for a range of viscosity ratios: (a) r = 1; (b) r = 2−3; (c) r = 2−6; (d) r = 2−9; and
(e) r = 2−12.

result even when B = 10. The results for B = 3 and a varying viscosity ratio are presented in
Figure 14, since these correspond to the experimental configuration (Sec. IV). The results illustrate
the asymmetrical spreading that occurs when the viscosities are not equal; in particular we observe
that when r � 1, the more viscous fluid spreads more slowly than the less viscous fluid.

B. Pipes of circular cross section

Density-driven exchange flows along pipes with circular cross sections are modelled by as-
suming that the interface between the fluids remains invariant of the horizontal axis perpendicular
to the axis along the pipe, an assumption, which is valid, provided the surface tension remains
negligible. Thus, using the diameter of the pipe as the lengthscale with which to render the variables
and equations dimensionless, the area below the interface is given by A(H) = (cos −1(1 − 2H)
− 2(1 − 2H)H1/2(1 − H)1/2)/4 and thus dA/dH = 2H1/2(1 − H)1/2.

The flow fields are calculated using the methods developed by Kerswell16 and in this way the
flux function, Fc, is determined. The particular problem under consideration here is a specific case of
more general bidirectional steady flows within a pipe of circular cross section treated by Kerswell.16

Here the interface between the fluids is flat, because surface tension is neglected and due to the
orientation of the axis of the tube, the dense fluid always forms a single connected region below
this interface. The volume flux in each layer is calculated following the methods of Kerswell:16 both
regions within the pipe are conformally mapped into half planes and then the velocity field is readily
constructed. The calculation of the flux function, Fc, typically requires the numerical evaluation of
triple integrals. The parameterisation used by Kerswell16 to evaluate the integrals is formally singular
when the interface is flat, but this limit is regular and so may be evaluated without special attention.
We note that the special case of an interface at H = 1/2 can be handled much more simply (see, for
example, Packham and Shail9) and this provides a valuable check on the numerical output from the
more general problem. Also the flux functions, Fc, can be deduced asymptotically in the regimes H
� 1 (Fc = − 32

105 H 7/2 + . . .) and 1 − H � 1 (Fc = − 32
105r (1 − H )7/2 + . . .); these results provide

further checks on the computations.
We plot the dimensionless flux function, Fc, for a range of viscosity ratios in Figure 9, noting

the symmetry about H = 1/2 when r = 1. (For this case of equal viscosities, Seon et al.17 suggest
empirically that Fc ≈ 32

105 (H (1 − H ))7/2, which fits the exact result sufficiently closely that the two
are indistinguishable in Figure 9.) As the viscosity ratio is reduced, these flux functions become
asymmetric about the centre line (H = 1/2) and approach each other provided the interface is not
close to the top of the pipe. Such an asymmetry is reflected in the interface profiles (Figure 9).
Finally, we analyse the variation of the locations at which the interface contacts the uppermost and
lowermost points of the tube boundary, ηt and ηb, respectively, noting that these are only a function
of the ratio of viscosities, r (Figure 10).
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IV. EXPERIMENTS

We investigated density-driven viscous exchange flows experimentally in a closed, perspex
channel of height 4 cm, width 12 cm, and length 100 cm. At the midpoint of the tank, a lock gate
was inserted to separate the two fluids initially. At the far ends of each side on the top surface
are cylindrical openings into the tank, through which fluid was added. These openings permit a
slight excess of fluid to be added in order to fill the void formed when the lock gate is removed.
Considerable care was taken to maintain equal levels on both sides of the tank so as not to cause an
external pressure difference on the system.

The fluid used in all the experiments was golden syrup (Tate & Lyle Ltd), which exhibits an
approximate Newtonian rheology14 and is miscible with water. The water solubility enabled us to
generate fluids of different densities and viscosities. Pure syrup has a viscosity of approximately
60 Pa s at 20 ◦C and density of 1450 kg m−3. Adding a small amount of water to syrup results in a
dramatic reduction in the viscosity. For example, a mixture composed of 95% syrup and 5% water
has a viscosity approximately 11 Pa s and a mixture of 90% syrup and 10% water has viscosity
approximately 3.5 Pa s. The densities of such mixtures, however, change approximately linearly
with water content.

In all experiments two different syrup-water mixtures were made up. The different proportions
of water not only alter the viscosity but also provided a density difference to drive the flows. In some
experiments salt (sodium chloride) was added to the less dense fluid in order to increase its density
and hence reduce the driving force to ensure inertial effects could be neglected after a relatively
short period following initiation. Food dye was then added to one fluid in order that the interface
could easily be viewed. The density of the fluid was determined using a 250 cm3 volumetric (narrow
necked) flask and a balance accurate to 0.001 g. The viscosity was measured using a Haake rotary
viscometer.

The two fluids were added to either side of the lock gate and left to settle for 5 min in order for
any residual motion to dissipate. The lock gate was then rapidly removed and digital photos taken
of the flow at regular intervals to record the interface profile. Several experimental runs were also
recorded using a digital video camera. Each experiment was stopped once the fronts near the ends
of the tank.
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TABLE I. Experimental details.

Fluid 1 Fluid 2
Expt. μ1 (Pa s) ρ1 (kg m−3) μ2 (Pa s) ρ2 (kg m−3) �ρ (kg m−3) r = μ2/μ1

1 55.2 1422.9 9.0 1403.2 19.7 0.16
2 9.4 1406.2 1.8 1385.0 21.2 0.19
3 7.9 1412.8 0.4 1360.4 52.4 0.04
4 5.4 1405.2 5.2 1398.8 6.4 0.96
5 8.1 1411.0 1.9 1395.4 15.6 0.23
6 3.2 1410.2 0.8 1383.4 26.8 0.23
7 48.2 1451.4 0.9 1387.9 63.5 0.02
8 7.0 1415.1 0.8 1388.6 26.5 0.12
9 1.9 1405.2 4.0 1403.0 3.2 2.07
10 9.8 1420.8 0.7 1375.3 45.5 0.07
11 13.0 1418.5 1.4 1389.4 29.1 0.11
12 10.4 1418.6 1.2 1375.8 42.8 0.11

It was difficult to eliminate all the bubbles from the fluids. Bubbles were both entrained during the
filling process and formed where air pockets became trapped at the upper boundary. No method could
be identified to prevent completely the entrainment of bubbles but the filling method was modified
to minimise the trapped air bubbles. The apparatus was inclined at an angle of approximately 5◦

during filling, which forced the air pocket to be trapped at the lock gate in the lower fluid and in the
top corner of the upper fluid. The lock gate was not completely air tight and additionally a small
tube was inserted into the upper pocket to allow this air to escape.

All the results were measured from the digital still images and in general it was possible to
measure lengths with an accuracy of ±0.25 mm. It is estimated that densities are measured with
an accuracy of ±0.5 kg m−3, yielding an error in the relative density difference, �ρ/ρ of between
1%–10%. The viscosities estimated from the viscometer measurements exhibited weak dependence
on the applied strain rates. The mean viscosity was used in calculations and the standard deviation
of the measurements, used as an estimate of the error, is typically between 5%–10% of the mean.

A. Results

The conditions for each of the experimental runs are listed in Table I, while typical images are
given in Figure 11. Using the similarity scaling, η = X/

√
T , and reinserting dimensions yields an

equation governing the rate of spreading,

x = η(H, r )

√
�ρgd3

μ1

√
t . (4.1)

For each experiment we scale profiles into similarity form at each time to compare with the predicted
profiles of Sec. III (see, for example, Figures 12 and 13). We estimate that the error in the deter-
mination of η lies in the range 3%–10% of the measured value. To examine Eq. (4.1), we plot the
positions of the interface at the upper and lower boundaries, xt(t) and xb(t), respectively, as functions
of time (see, for example, Figures 12 and 13).

During propagation, the front was quasi two-dimensional with the only deviation occurring at
the side walls due to no-slip there (Figure 11). These boundary layers were typically about 1 cm
in extent and hence more than 80% of the flow occurred outside of them. Striations parallel to the
direction of flow are observed and interpreted as gravitationally driven descent of relatively dense,
un-dyed fluid through the less dense intruding fluid.29 As illustrated by photographs of the interface
(Figure 11), the effect of the no-slip boundary condition is to have relatively dense fluid override
less dense fluid at the lower boundary and vice versa at the upper boundary. The over(under)-ridden
fluid is gravitational unstable and ascends (descends) through the intruding flow. It is noteworthy
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FIG. 11. (a) Photograph of the interface between the fluids (experiment 4), viewed from above the tank and looking down
onto the flow. This image was taken 2400 s after release, by which stage the front had moved 12.2 cm from the lock gate.
(b,c) Images of experiment 11 after (b) 60 s and (c) 300 s.
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FIG. 12. Results for experiment 4 with viscosity ratio r = 0.96. (a) The height of the interface, H(η), as a function of the
similarity variable η at t = 1800 s (− × −); t = 3600 s (− + −); t = 5400 s (− ◦ −); and t = 7200 s (− • −). The
theoretical curve is also plotted (—). (b) The position of the interface at the upper and lower boundaries, |xt| (×) and xb

(+), respectively, as a function of time. Also plotted are the theoretical predictions, |xt| (- -) and xb (—) although the two
curves are indistinguishable in this plot.
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FIG. 13. Results for experiment 11 with viscosity ratio r = 0.11. (a) The height of the interface, H(η), as a function of the
similarity variable η at t = 300 s (− × −); t = 600 s (− + −); t = 900 s (− ◦ −); t = 1200 s (− • −); t = 1500 s (− � −);
and t = 1800 s (− � −). The theoretical curve is also plotted (—). (b) The position of the interface at the upper and lower
boundaries, |xt| (×) and xb (+), respectively, as a function of time. Also plotted are the theoretical predictions |xt| (- - -) and
xb (—).
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FIG. 14. The experimentally measured positions of the fronts of the interface in terms of the similarity variable, ηb (+) and
ηt (×), as functions of viscosity ratio, r. Also plotted are the theoretical predictions for ηb (—) and ηt (- -).

that all images of the motion feature a relatively sharp interface between the fluids, which illustrates
that diffusion is negligible on the time scales of these motions.

The results of experiment 4 are plotted in Figure 12. In this case the profiles agree extremely
well with the theoretical profile. The data from the front show that initially the interface does not
spread proportionally to t1/2 as would be predicted by Eq. (4.1). This difference occurs because
during the first stages of the motion the pressure is not hydrostatic and inertia is not negligible and
hence insufficient time has passed for the flow to enter the regime modelled in Sec. III. However,
after approximately 10 min the agreement with Eq. (4.1) becomes very good.

We next consider the results for experiment 11 in which r = 0.11. Snapshots of the profile are
given in Figure 11 and measurements of the shape of the interface and the front position are reported
in Figure 13. The agreement with theory is not as good as before although the profiles appear to be self
similar. The bottom of the flow has propagated marginally further than the theoretical predictions,
although they are sufficiently close that much of the difference could be accounted by experimental
error. However, the top has not propagated as far as anticipated. In fact, it is shorter than the bottom
whereas theory predicts the converse. This feature was present in some of the experimental runs and
some possible reasons for this are discussed below. Once again we see that in the early stages of the
motion the front of the flow does not spread as t1/2 but appears to follow the similarity scaling in
later stages as expected.

We collect all of the experimental data together and plot the change in the contact points at the
bottom, ηb, and top, ηt, as we alter the viscosity ratio, r (Figure 14). Near r = 1 the agreement with
theory is excellent but as r is reduced the scatter of data points increases. In five of the experiments
the top did not propagate as far as the bottom, contrary to what is predicted by the theory.

B. Discussion of results

A feature of some of the experimental results when compared to theoretical predictions is that
the bottom contact point agrees well with the theoretical prediction but the upper contact point does
not propagate as far as expected. In many cases it actually did not move as far as the contact point
at the base. There are many possible factors that could account for this difference and we discuss
some of them below.
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FIG. 15. The integrated similarity variable, �(H ) = ∫ H
0 η(H ′)dH ′, determined for experiment 11 at t = 300 s (− × −); t

= 600 s (− + −); t = 900 s (− ◦ −); t = 1200 s (− • −); t = 1500 s (− � −); and t = 1800 s (− � −). Also plotted is the
theoretical prediction (—).

A first possibility is that the flows have not yet entered the similarity regime. We showed above
(Sec. II) that on physical and mathematical grounds we expect the motion to approach a state in
which there is a balance between viscous and gravitational forces, but that this transition decays
algebraically in time. In fact, we further observed that when r < 1 the perturbation at the upper
boundary is larger than that at the lower boundary and so we expect to have to wait longer to have
good agreement with theory for the upper contact point. Careful examination of Figure 13(b) reveals
that while the contact point at the base (xb) starts spreading like t1/2 after approximately 5 min,
however, the point at the upper boundary (xt) is still spreading at a slightly greater exponent of time
even at the end of the experiment (30 min). Hence, similarity balance may not be fully attained – but
this does not fully explain the observations because we see little evidence of a progressive approach
to the similarity solution.

Another potential problem was the presence of bubbles, entrained as the fluids were added
to the tank. Due to the high viscosity of the fluids used (the least viscous fluid was 400 times
more viscous than water) the bubbles rose very slowly and it was impractical to wait for them
to be expelled. A typical duration of an experiment was between 30 to 120 min and during this
time entrained bubbles became concentrated towards the upper boundary and thus their accumula-
tion will tend to enhance the viscosity of the upper fluid.28 This process will effectively increase
the viscosity ratio, r, but appears not to account fully for the differences between theory and
observations.

A prominent feature of Figure 13(a) is that it seems from the one-dimensional profile that
mass is not conserved within the flow. This system is investigated by reverting to the variable
�(H ) = ∫ H

0 η(H ′)dH ′, for which mass conservation requires that �(1) = 0. The similarity solution
in this variable and instantaneous fluid profiles integrated across the depth are plotted in Figure 15
for experiment 11. We observe that �(1) > 0 and hence apparently mass is not conserved within
the flows and also that �(1) increases with increasing time. The consequence of �(1) being positive
is that more mass has travelled in the positive x direction, the direction the denser fluid moves.
This effect may be caused by an imbalance of the levels of fluid in the cylindrical opening used
to fill the void when the lock gate is removed. In all experimental runs great care was taken to
ensure the levels were similar but because the densities of the fluids differ even with identical
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heights a small pressure difference will be imposed. With time this pressure difference could
shift the effective spatial origin, possibly explaining the discrepancies observed. This observation
may explain why the error is larger in experiment 11 than in experiment 4 because the density
difference in experiment 11 is approximately five times larger than in experiment 4 (for which
�(1) ≈ 0.005). We attempted to rectify this defect by empirically forcing mass to be conserved by
adjusting the location of the spatial origin such that �(1) = 0, which produced a small improvement
in the agreement between experiment and theory, but was insufficient to account fully for the
differences.

Finally, we note that another process that could account for the difference between the theory
and experiments is mixing between the fluids that are over- and under-ridden at the lower and
upper boundaries, respectively. As shown in Figure 11, the requirement of no-slip at the boundaries
leads to the foremost parts of the flow being displaced away from the boundaries. Such an effect
is not accounted for at all in the model where it is assumed that the interface varies monotonically
with distance from the boundary. Fluid that is over-ridden at the lower boundary will nevertheless
ascend through the domain driven by gravity while the under-ridden fluid at the upper boundary will
descend. Then mixing between the fluids will alter their composition and potentially affect the rates
of propagation in these exchange flows.

V. CONCLUSION

We have studied theoretically and experimentally density-driven exchange flows between fluids
of differing viscosities in a two-dimensional channel. After a sufficient time following initiation,
these flows become relatively long and narrow so that they adopt a hydrostatic pressure distribution
and are governed by a balance between this pressure gradient and the divergence of the viscous
stresses. In this regime the interface between the two fluids is governed by a similarity solution in
which the intrusion rates along the upper and lower boundaries are proportional to (�ρgd3t/μ1)1/2,
where the constants of proportionality depend only on the viscosity ratio, r = μ2/μ1, and potentially
on the geometrical characteristics of the channel, such as its aspect ratio. This time dependence is
robustly observed in the experiments.

The similarity solutions are constructed by interchanging the dependent and independent vari-
ables. This technique simplifies the solution of the governing equations and enables the boundary
conditions to be enforced readily. Such a change of variable is possible because the interface height
varies monotonically in x. We suggest that this variable transformation may be usefully employed
in other circumstances as well.30 The shape of the interface varies systematically with the viscosity
ratio, attaining a limiting form in the regime r � 1, where variation with r is only found close
to the upper boundary. Solutions in this regime may be constructed using matched asymptotic ex-
pansions between the interior region and the region close to the upper boundary. The experiments
show that when the viscosities of the two fluids are approximately equal, then the interface is ac-
curately predicted by the theory. However, when the viscosities differ by an order of magnitude,
although of apparently self-similar form, there are some differences between the predictions and
measurements.

The similarity solutions, shown to be linearly stable, are expected to be approached from
arbitrary initial conditions. These exchange flows are not driven by an imposed pressure gradient;
rather they develop their own pressure distribution as the fluid intrudes. Furthermore, they are
viscously dominated. Thus, many of the instabilities found in other scenarios do not arise.6, 11, 12

Also an equivalent of Saffman-Taylor fingering5 does not occur because although less viscous fluid
is displacing more viscous, the pressure gradient changes sign across the interface and so the growth
of disturbances is not favourable. The no-slip condition does, however, lead to the over-ride of the
less dense fluid by the denser fluid at the lower boundary (and conversely at the upper boundary). This
overridden fluid is gravitationally unstable and rises, leading to the striations seen the experiments.
Although these appear not to affect the exponent of time in the spreading (the fronts along the
upper and lower boundaries still vary as t1/2), mixing may alter the density and viscosity differences
between the fluids and potentially could account for some of the mismatch between the experimental
measurements and the theoretical predictions.
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APPENDIX: FREE-SURFACE FLOW – WIDE CHANNELS (B � 1)

We examine the density-driven exchange flow when the upper boundary is a free-surface, rather
than an impermeable rigid boundary. This implies that the flow depth is potentially now variable (in
dimensional form, z = d(x, t)), that there is vanishing shear stress at the free surface (∂u2/∂z = 0)
and that the pressure is atmospheric at this surface. Initially, the flows are of depth d0 and this is the
lengthscale that is used to render the equations dimensionless according to the definitions given in
Eq. (2.5), with the addition of D = d(x, t)/d0. While the flow fields could be readily calculated for
any channel widths, in this subsection we derive the results only in the regime B � 1.

The dimensionless flow fields are given by

U1 = 1

2

(
ρ − �ρ

ρ

∂ D

∂ X
+ ∂ H

∂ X

)
Z2 −

(
ρ − �ρ

ρ
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∂ X
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Z , (A1)

U2 = 1

r

ρ − �ρ

ρ

∂ D

∂ X

(
Z2
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H 2
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− H D

))
− H 2

2
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∂ X
. (A2)

These are integrated to yield the volume fluxes per unit width carried in each layer and then by
balancing the fluxes, we deduce

ρ − �ρ

ρ

∂ D

∂ X
= −∂ H

∂ X

r H 2(3D − H )

2(r D3 + (1 − r )(D − H )3)
, (A3)

Q1 ≡ −Fs
∂ H

∂ X
= − H 3(D − H )3(4(D − H ) + 3r H )

12((1 − r )(D − H )4 + r D3(D − H ))

∂ H

∂ X
. (A4)

Finally, we assume that the density difference between the fluids is small relative to the density of
the fluids (�ρ/ρ � 1) and thus the free-surface undergoes only small deviations from its initial state.
Thus, writing D = 1 + O(�ρ/ρ), we find that

Fs = H 3(1 − H )3(4(1 − H ) + 3r H )

12((1 − r )(1 − H )4 + r (1 − H ))
. (A5)

Free-surface flows in this configuration do not exhibit the same symmetries as those in confined
channels and thus to investigate the full range of interface shapes, we must consider all values of the
viscosity ratio, r.

We construct the similarity solutions for the shape of the interface between the two fluids and
the profiles are plotted in Figures 16. As r → 0, we note that the interface approaches that found
for r = 0 in the interior but differs close to the upper boundary. This behaviour is reminiscent of
the confined channel flow (see Sec. III A 1). As r → ∞, the interface progressively approaches
the limiting case throughout the entire domain. In Figure 17, we plot the variation of ηt and ηb as
functions of r.

The behaviour in the regime r � 1 is captured asymptotically using a very similar approach
to that derived in Sec. III. It is based upon Fs = H3/3 + O(ε) when r = ε � 1, an expansion that
becomes invalid when 1 − H = O(ε1/3). The scaling determines the extent of the boundary layer at
the free-surface. Furthermore

Fs(1 − ε1/3Y ) = Y 3

3(Y 3 + 1)
+ . . . . (A6)
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Then following the method of Sec. III, we deduce that ηb = 0.2843 and

η2
t + 4

3
log |ηt | = c − 4

9
log ε, (A7)

where c = −3.0249.
In the regimes r � 1 and H � 1/r, we may establish that

Fs = H 3(1 − H )2

4(H 2 + 3(1 − H ))
+ . . . (A8)

and thus we may integrate �′′
0�0 = −2Fs to determine the profile away from the lower boundary.

However, formally we may not impose the boundary condition, �0(0) = 0 without considering the
form of Fs in the regime 1/r � H and asymptotically matching between the solutions close to the
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FIG. 17. The upper and lower contacts points of the interface with the underlying boundary, ηb and the free surface, ηt,
as a function of the viscosity ratio between the fluids, r, for a wide channel (solid line). Also plotted are the asymptotic
expressions for these positions in the regimes r � 1 and r � 1 (dotted lines).
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boundary and within the interior. It turns out that the contribution from the region close to the lower
boundary is asymptotically smaller and thus by imposing �0(0) = 0, we find that ηt = −0.1312 and
ηb = 0.0785. The asymptotic forms in the regimes r � 1 and r � 1 are plotted in Figure 17 and
shown to agree closely the exact numerical results.
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