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The slumping and subsequent arrest of initially motionless granular materials from behind a rapidly
removed lockgate in a sloping two-dimensional channel is considered theoretically and
experimentally. The theory is based upon a shallow layer description of the flow and arrest of the
grains in which resistance to the downslope motion is modelled as a Coulomb drag with a constant
coefficient of friction. The flows leave a thin layer of deposited material along the chute and the
depth of the deposit at the rear of the lock is predicted from the theoretical model using asymptotic
techniques. This analysis explains the dependence on the initial aspect ratio of the release that has
been seen in previous numerical and experimental studies of granular slumps over horizontal
surfaces. The theoretical predictions of this depth are also compared with laboratory observations of
the slumping of four dry granular materials. It is shown that there is quantitative agreement between
the experimental measurements and the theoretical predictions, which include no fitting parameters.
The theoretical predictions for the length along the chute that the materials slump, however, are not
in agreement with the theoretical model and potential reasons for this mismatch are discussed.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2762254�

I. INTRODUCTION

Recently there has been considerable scientific interest
in the slumping of granular materials; initially motionless
grains are released by the rapid removal of a barrier, behind
which they were confined, and allowed to flow over a hori-
zontal surface until they are fully arrested, leading to a de-
posit distributed over the underlying surface. The dynamics
of this type of flow has been studied experimentally in an
axisymmetric geometry, in which the grains are initially con-
fined behind a cylindrical container1,2 and in a two-
dimensional channel in which they are initially behind a dam
spanning the width of the channel.3–6 These experimental
studies have employed a variety of essentially noncohesive
materials and have allowed the grains to flow out over
smooth and roughened horizontal surfaces. These studies
share the common feature that the maximum distance trav-
elled by the grains, denoted by x� and termed the runout
distance, and the maximum depth of the deposited grains, h�,
both measured relative to the initial width of the dam �or
radius of the cylinder, for axisymmetric releases� depend
strongly on the initial aspect ratio of the release a�h0 /x0,
where x0 and h0 are the initial width and height of the re-
lease, respectively �see Fig. 1�. Each of the studies suggest
slightly different empirical relationships between h� /x0 and
x� /x0 and a. Furthermore Lube et al.1 found no dependence
of these ratios of length scales on the type of particle,
whereas Balmforth and Kerswell3 and Lajeuness et al.4 indi-
cate that there is a weak dependence—weak, because the
coefficient of friction only varies slightly for each of the
materials used.

Mathematical modelling of these flows has proven to be
a significant challenge. To date two scientific approaches
have been employed: numerical simulations of the collapse
by the use of discrete element models, in which the motion

of and interaction between individual grains is explicitly
calculated;7,8 and the use of continuum models, often simpli-
fied to capture the motion of a shallow layer of grains in
which vertical accelerations are negligible and the pressure is
essentially hydrostatic.9–11

Using the former of these approaches, both Zenit7 and
Staron and Hinch8 study the motion of a polydisperse en-
semble of circular disks, slumping in two dimensions under
gravity. Although these studies are idealized representations
of the true experimental configurations, these simulations of-
fers the particular advantage that the velocities and positions
are precisely known at all times. Staron and Hinch8 show
how initial potential energy is converted into kinetic energy
and then dissipated through particulate interactions. They
were able to reproduce qualitative features observed in the
experiments, to reveal relationships between the length
scales of deposit �x� and h�� and the aspect ratio a that were
consistent with the measurements and they concluded that
the runout distance depended strongly on the dynamics of the
initial vertical motion of the collapse, as well as the basal
friction.

In the latter approach to modelling, Kerswell9 and
Mangeney-Castelnau et al.10 assumed that the main resis-
tance to the flow is due to a Coulomb-type drag force, arising
from the material sliding and rolling across the lower bound-
ary. However the magnitudes of the coefficients of friction
required to achieve quantitative agreement between these
models and the experimental measurements of flow depths
and runout lengths exceed those independently measured for
the materials. These continuum models did reveal numeri-
cally an intriguing scaling relationship between the maxi-
mum depth of the deposit, h� /x0, and the initial aspect ratio
a; this was not of a similarity form and could not be ex-
plained through simple reasoning. In particular, Kerswell9
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showed numerically that h� /x0�a1/3 when a�1 and this is
in accord with some of the experimental observations.3,4

Adopting a shallow layer model may be problematic for
these flows in general, because it is clear that during the
initial phases of the collapse they are far from “shallow,”
especially as the initial aspect ratio becomes large. This has
lead Larrieu et al.11 to propose an amended shallow layer
framework for modelling these flows in which the initial
collapse, when the grains predominantly fall vertically, is
mathematically represented as a spatially distributed source
of mass to the flowing layer. With this model, Larrieu et al.11

were able to reconcile some of the differences between the
theoretical and experimental observations, though to obtain
quantitative agreement required the use of an unrealistically
large coefficient for the basal friction law. Denlinger and
Iverson12 adopted a different strategy for including nonhy-
drostatic effects, formulated for flows over irregular topog-
raphy: essentially vertical accelerations are retained, which
when of significant magnitude lead to the reduction of the
basal normal stress. This approach, coupled to a Coulomb-
type constitutive law, permitted the computation of the flow
over irregular surfaces for which it was cumbersome to form
a curvilinear coordinate in which one of the axes is always
perpendicular to the underlying bed.12 Another assumption
inherent to the use of shallow, single-flowing-layer models is
that all of the grains throughout the layer are in motion and
their velocity is adequately represented by a depth-averaged
value. Lajeunessse et al.4 and Lube et al.13 have shown ex-
perimentally that there is a growing, static, basal layer over
which grains flow and this process may not be well captured
in simple depth-averaged models of the motion.

In this paper we study experimentally and theoretically
two-dimensional granular slumps down slopes. Grains are
released from rest behind a barrier that is rapidly removed,
flow down an inclined plane and are eventually arrested be-
cause the inclination is always less than the angle of friction
between the boundary and the mobile particles. The deposit
formed by these flows is considerably extended relative to
those over horizontal surfaces due to the downslope accel-
eration. The flows themselves are relatively thin: for ex-
ample, after they have arrested a typical ratio of their length
to depth is 100. The proportion of their motion during which
there is significant acceleration perpendicular to the plane is
small. Thus we propose that a shallow-layer model of the
flow is appropriate for a large portion of the motion and we
employ the model formulated by Refs. 9 and 10, noting

that Kerswell9 has presented quasianalytical and numerical
results for dam-break flows down slopes, resisted by a
Coulomb drag. In this contribution, we establish a regime in
which the particles propagate a long distance from their
source and we develop an asymptotic analysis to reveal how
the maximum height of the arrested particles, h�, depends
upon the aspect ratio. We demonstrate that this regime cor-
responds to a scenario in which the inclination of the plane is
relatively close to the angle of friction, or, for flows over a
horizontal plane, when the initial aspect ratio is large. Thus
this analysis will also illuminate the scaling relationship
found numerically by Kerswell9 and experimentally by
Lajeunesse et al.4 and Balmforth and Kerswell.3

This paper is structured as follows: First we formulate
the problem using a shallow layer model and develop the
asymptotic analysis �Sec. II�. We then report our experimen-
tal measurements in Sec. III and compare it to the theoretical
predictions. Finally in Sec. IV, we summarize our findings
and indicate what this study reveals about the modelling of
granular materials. We also note that the scaling analysis that
underlies the asymptotic expansion may be applied to axi-
symmetric flows over horizontal surfaces and we demon-
strate in Sec. II C that this reveals a relationship between
h� /h0 and the initial aspect ratio borne out through numeri-
cal computations and some experimental studies.

II. SHALLOW-LAYER MODELS AND ANALYSIS

A. Formulation

There is a long tradition of using shallow-layer models
to capture the essential physics of hydraulic and other natu-
rally occurring particulate and granular flows �e.g., Ref. 14�.
These models are based upon the flows being predominantly
parallel to the underlying boundary so that accelerations per-
pendicular to the boundary are negligible and the pressure is
essentially hydrostatic. Such descriptions have also been ap-
plied to dam-break flows, where the fluid is instantaneously
set into motion by the removal of a dam and aside from the
very initial phases of the motion that include nonhydrostatic
effects, the shallow-water equations have been shown to rep-
resent the motion accurately �see Hogg and Pritchard,15 and
references therein, for a discussion of these flows�. For
granular flows there have also been several recent studies in
which the flowing grains are modelled as a continuum, using
a shallow-layer description.16–19 These studies have demon-
strated that the flowing granular layer exhibits several phe-
nomena usually associated with the motion of fluids, such as
normal and oblique shocks, and that these can be accurately
predicted by the shallow-layer models.18,19

In this study we employ a shallow layer model for un-
steady granular collapses down inclined planes, essentially
identical to the formulations of Mangeney-Castelnau et al.20

and Kerswell.9 We treat the grains as a flowing continuum
with a constant bulk density, a layer depth h�x , t� and a ve-
locity field u�x ,z , t�, where the x and z coordinate axes are
orientated parallel and perpendicular to the inclined plane.
The depth-averaged expression of conservation of mass per
unit width is then given by

FIG. 1. The configuration of the flow. Granular material is released from
rest behind a rapidly removed lock gate, flows down an inclined plane and
arrests to form a deposit. The initial height of material within the lock and
its length are denoted by h0 and x0, respectively, while the thickness of the
deposit at the rear wall of the lock and the runout length are denoted by h�

and x�, respectively.
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�h

�t
+

�

�x��0

h

u dz	 = 0. �2.1�

Since the flow is predominantly parallel to the underlying
boundary, which is inclined at angle � to the horizontal, the
leading order, normal component of the pressure tensor is
given by

pzz = �g cos ��h − z� , �2.2�

where � is the bulk density. The streamwise component, pxx

may be related to pzz by

pxx = Kpzz, �2.3�

where for deformable Coulomb-type materials Savage and
Hutter,16 showed that the constant of proportionality, K, is
related to the internal and basal angles of frictions, while for
more rapidly flowing scenarios Pouliquen and Forterre,17

Gray et al.,18 Hákonardóttir and Hogg,19 and Jop et al.21 have
suggested K=1, corresponding to an isotropic pressure field.
Then the depth-averaged downslope momentum equation
yields

�

�t��0

h

�u dz	 +
�

�x��0

h

�u2 + pxx dz	 = �g sin �h − �b,

�2.4�

where �b is the basal shear stress exerted by the flow. To
close this system of equation we write

�
0

h

u dz = ūh and �
0

h

u2 dz = ū2h , �2.5�

which is equivalent to assuming a plug-like velocity profile.
While we anticipate that there may be shear in the velocity
profile, as has been shown for flows over horizontal
surfaces,4,13 we comment that this modelling assumption is
common even for flows of fluid for which the basal condition
of no-slip introduces significant shear into the velocity pro-
file. �Hogg and Pritchard15 analyze situations in which �2.5�
is relaxed to reflect the presence of velocity shear and dem-
onstrate that the predictions from shallow-layer models may
be strongly affected.� We must also prescribe a model for the
boundary shear stress, �b. Here there have been many pro-
posed formulations, including Coulomb-type models of slid-
ing friction16 and velocity dependent friction angles,21 as
well as other empirical drag-laws that relate the basal resis-
tance to the relative velocity between the flowing layer and
the boundary. In this study we adopt a simple description,
namely, a Coulomb-type drag with a constant angle of fric-
tion between the grains and the boundary that can be experi-
mentally measured �see Sec. III�. We note that this model has
some failings: it cannot predict fully developed flow with
uniform velocities and depths unless the angle of inclination
of the plane exactly matches the angle of friction, but in this
study we are interested in flows that arrest for which we
postulate that a Coulomb-type drag is the dominant force.
Thus we write

�b = �g cos �h tan � sgn�u� , �2.6�

where the coefficient of friction is tan �, � denotes the angle
of basal friction between the grains and the underlying plane
and sgn�u�=u / 
u
. This model is to be applied to flows that
accelerate, flow down the plane, and are eventually arrested.
Hence the frictional drag eventually exceeds that arising
from the downslope component of gravitational acceleration
and from the streamwise gradient of the pressure tensor.

The flows are initiated from dam-break initial condi-
tions,

ū = 0, h = h0 for 0 � x � x0. �2.7�

The abrupt change of height that occurs when the dam is
removed means that accelerations normal to the boundary
are initially unlikely to be small; Lube et al.1 indicate that for
flows over horizontal surfaces approximately half of the du-
ration is spent with significant vertical motion. For granular
slumps down slopes, however, the initial nonhydrostatic pe-
riod is likely to be much less important because the downs-
lope motion is considerably extended and thus most of the
motion occurs as a thin layer flowing over the underlying
boundary. The front of the motion, xf�t�, is given by the first
downstream position at which h�xf , t�=0.

We now introduce dimensionless variables, by scaling
the downslope distance, x and layer height h�x , t� by x0 and
h0, respectively. Downslope velocity is rendered dimension-
less by �Kg cos �h0�1/2 and the time by x0 / �Kg cos �h0�1/2.
Then replacing all variables by their dimensionless counter-
parts and denoting the depth-averaged velocity by u�x , t�, we
obtain the following governing equations �cf. Ref. 9�:

�h

�t
+

�

�x
�uh� = 0, �2.8�

�u

�t
+ u

�u

�x
+

�h

�x
= −

x0

Kh0
�tan � − tan ��sgn�u� . �2.9�

The initial conditions are given by u=0 and h=1 for 0�x
�1. Boundary conditions are that the velocity vanishes at
the back wall �u�0, t�=0� and that the front is advected kine-
matically �dxf /dt=u�xf , t��. The sole dimensionless param-
eter is denoted by

�3 =
x0

Kh0
�tan � − tan �� . �2.10�

We note that � depends upon both the difference between the
basal friction angle and the angle of inclination of the slope,
the initial aspect ratio, a�h0 /x0 and the Earth pressure co-
efficient relating pxx to pzz, given by

K = 2 sec2 ��1 − sgn� �u

�x
	�1 −

cos2 �

cos2 �
	1/2	 − 1, �2.11�

where � is the angle of internal friction.16 This coefficient
varies discontinuously with �u /�x, but for the flows under
consideration here it turns out that �u /�x	0 and so the co-
efficient always takes its “active” value.

Kerswell9 adopted an identical system of equations �up
to the choice of dimensional scales� for the unsteady slump-
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ing of granular materials over horizontal and sloping sur-
faces, which he integrated using analytical and numerical
techniques. Further he numerically elucidated the depen-
dence of the maximum height of the deposit upon the initial
aspect ratio in the regime a�1 �equivalently ��1� to show
that h���2. In the current scenario, we note that this regime
���1� is accessible not only by studying flows of large ini-
tial aspect ratio, but also by studying flows on relatively
steep slopes �0
�−��1�. Thus the regime ��1 is rel-
evant for moderate aspect ratio releases on steep slopes and
so the use of a shallow-layer model is more likely to be
appropriate because the flows rapidly become thin during
their motion down the plane and the initial phase, during
which the pressure is different from hydrostatic, is short rela-
tive to the total duration. This is in contrast to flows over
horizontal surfaces ��=0� for which the regime ��1 is
accessible only for large initial aspects ratios when the flows
may be far from “hydrostatic” during much of their motion.

We note immediately that the front of the flow,
xf�t�, may be calculated exactly; treating the equations as
a hyperbolic system, it may be readily shown that d /dt�u
+2h1/2�=−�3 on characteristics given by dx /dt=u+h1/2. The
leading characteristic corresponds to the front �h�xf , t�=0�
and then using the initial conditions, u�xf , t�=2−�3t. Hence
the front position is given by xf�t�=1+2t− 1

2�3t2 and thus the
maximum dimensionless runout length occurs at t=2/�3 and
the runout length is given by x�=1+2/�3 �see Ref. 15�.

B. Asymptotic analysis

We now analyze the governing partial differential equa-
tions �2.8� and �2.9� in the regime ��1 to elucidate how the
final height of the deposit depend upon �.

This dependence is readily seen through the following
scaling analysis: initially the drag force, represented through
the right-hand side of �2.9� is negligible and the granular
material flows away from the dam under a dynamic balance
between the streamwise pressure gradient and its inertia. The
front of the material moves at constant speed, xf � t �see the
classical dam-break solution reported by Whitham14 among
others� and thus to conserve mass h�1/ t. The drag force
becomes non-negligible when the inertia ��u /�t�, the pres-
sure gradient ��h /�x�, and the drag force ��3� become com-
parable. This demands

u

t
�

h

x
� �3. �2.12�

For kinematic consistency u�x / t and thus x��3t2. Further-
more, matching to the drag free solution requires h�1/ t and
thus drag becomes dynamically important and may arrest the
motion when time scales t�1/�2, length scales x�1/�, and
the height of the flow h��2. This scaling is in accord with
the computations of Kerswell9 and the experimental observa-
tions of Lajeunesse et al.4

We now embody this scaling analysis into an asymptotic
analysis of the governing equations, in which we match the
initial drag-free behavior to the drag-affected motion at later
times. The drag-free motion from a lock of finite extent is
implicitly given by

t =
64

�2 − ��3/2�� + 2�3/2F�3

2
,
3

2
;1;

�2 − ���� + 2�
�2 − ���� + 2�� ,

�2.13�

where �=u+2h, �=u−2h and F denotes a hypergeomet-
ric function.22 This expression is valid for t	1 and 0
x

1+2t−3t2/3. Thus to leading order in the regime t�1, we
find that

u =
x

t
+ ¯ and h =

1

t
�4 −

x2

t2 	1/2

+ ¯ . �2.14�

As demonstrated above these expression for h�x , t� and
u�x , t� are no longer accurate representations of the motion
when drag becomes non-negligible on time scales t�1/�2

and length scales x�1/� when the velocity u�� and
h��2. Using this distinguished scaling we introduce new
independent variables T=�2t and X=�x and dependent vari-
ables U�X ,T�=u�x , t� /� and H�X ,T�=h�x , t� /�2 to find that
the governing equations are now given by

�H

�T
+

�

�X
�UH� = 0, �2.15�

�U

�T
+ U

�U

�X
+

�H

�X
= − 1. �2.16�

These equations are subject to the boundary conditions that
U�0,T�=0 and thus from �2.16� �H /�X�0,T�=−1. Also the
matching conditions demand

U →
X

T
and H →

2

T
as T → 0. �2.17�

The motion first arrests at the back wall when �H /�T first
vanishes at X=0. From �2.15�, this is equivalent to finding
when �U /�X=0 at X=0.

We transform �2.15� and �2.16� by introducing the
new independent variable y=X /T and dependent variables

Ĥ=TH and Q= Ĥ�U−y� to remove the singularity in the
matching condition �2.17�. This gives

�Ĥ

�T
= −

1

T

�Q

�y
, �2.18�

�Q

�T
= −

1

T�Q +
�

�y�Q2

Ĥ
+

Ĥ2

2T	 + TĤ	 , �2.19�

with initial conditions Q�y ,0�=0 and Ĥ�y ,0�=2/ and

boundary conditions Q�0,T�=0 and �Ĥ /�y�0,T�=−T2.
These equations are integrated numerically using a finite dif-
ference scheme and a second-order Lax-Wendroff algorithm.
The integration poses few numerical challenges since within
this asymptotic domain close to the back wall, there is no
need to resolve the motion of the front of the flow. We find
that the flow arrest at the back wall at T�Ts=1.278 and that

Ĥ�0,Ts�=1.476. Thus in terms of the original dimensionless
variables we have calculated

093301-4 Andrew J. Hogg Phys. Fluids 19, 093301 �2007�

Downloaded 14 Sep 2007 to 137.222.80.119. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ts =
1.278

�2 and h� = 1.155�2. �2.20�

We plot in Fig. 2 profiles of Ĥ�y ,T� and V�y ,T��Q / Ĥ
showing how the flow approaches the arrested state close to
the back wall. Note that the stopping condition is given by
the earliest time at which �V /�y=−1 at y=0.

Kerswell9 integrated the governing equations �2.8� and
�2.9� numerically by dividing the domain into Lagrangian
cells that were advected with the local velocity. The front
cell, marking the foremost edge of the flowing material, was
handled differently; its position was determined by the lead
characteristic, which could be analytically calculated as dis-
cussed above. We may employ this Lagrangian numerical
technique to this problem to analyze the form of the solution
when ��1; in this regime, many Lagrangian cells are re-
quired to resolve the motion fully and the run times are slow.
However we find numerical evidence that confirms the
asymptotic calculations developed above. Comparisons be-
tween h� calculated asymptotically and numerically through
this Lagrangian element scheme are shown in Fig. 4 below,
showing reasonable agreement up to ��0.7.

C. Axisymmetric motion over a horizontal plane

A similar scaling analysis may be employed for axisym-
metric flows over a horizontal surface to reveal how the
maximum depth of the deposit depends upon the initial as-
pect ratio. In axisymmetry geometry, the velocity and height
fields are now functions of the radius r and t and in terms of
dimensionless variables, conservation of mass and momen-
tum are given by

�h

�t
+

1

r

�

�r
�ruh� = 0 and

�u

�t
+ u

�u

�r
+

�h

�r
= −

1

A
,

�2.21�

here A=Kh0 / �x0 tan ��.9,10 We examine the dependence of
the maximum height of the deposit, h� upon A when A�1.

Initially the drag-free motion leads to the front moving with
constant speed r� t and so by conservation of mass,
h�1/ t2. Then the time scale on which drag becomes com-
parable to the inertia and pressure gradient is given by de-
manding u / t�h /r�1/A. Kinematic consistency �u�r / t�
and matching to the drag free solution then leads to the time
scales, length scales and depth of the arrested layer scaling as

t � A1/2 r � 1 and h � 1/A . �2.22�

This scaling analysis indicates that h��1/A, which is in
accord with the numerical findings of Kerswell9 and the ex-
perimental observations of Lajeunesse et al.;4 it differs
slightly from the observations of Lube et al.1 who find that
h��A−5/6 in this regime.

III. EXPERIMENTS

A. Method

A variety of dry granular materials were released down a
wooden chute, inclined to the horizontal at an angle between
10°−25°. The chute was of length 3 m and width 30 cm and
the particles were initially in place behind a wooden lockgate
that spanned the width of the chute, was perpendicular to the
base of the chute and at a distance x0 from the back wall.
Granular material was poured into the lock and the top sur-
face was carefully smoothed to give a uniform depth of ma-
terial, h0, throughout. The lockgate was rapidly removed by
hand to initiate the flow down the plane. Once the material
had come to rest the resulting deposit was measured to de-
termine the runout length, x� and the distribution of the de-
posited material in terms of its depth, measured at various
downslope locations by carefully inserting a thin metal ruler
through the grains so that they were minimally disturbed. In
particular the depth at the back of the lock, h�, was mea-
sured. The flow and the deposit exhibited some variation
across the channel width, although they were predominantly
two-dimensional. Measurements of the depths and the runout
length were made at five positions across the chute and were
averaged.

Four different materials were used in the experiments
and their properties are given in Table I. The internal angle
of friction, �, was determined by building a symmetric cone
of particles on a horizontal layer of similar particles and
repeatedly measuring the height and diameter of the cone. A
dynamic bed friction angle, �, was determined by pouring a
thin layer of particles down the plane and measuring the
maximum angle of inclination of the plane when the flow
was arrested and motion could not be sustained. Given these
measurements, the active Earth pressure coefficient may be
evaluated from �2.11�; it lies in the range 0.81–0.91 for these
four materials. A static angle of basal friction was also mea-
sured by tilting a plane on which there was a stationary, thin
layer of particle and finding the smallest angle at which flow
was initiated. As expected, the dynamic friction angle was
less than the static friction angle for all the materials. For
some of the experimental runs, the base of the chute was
lined with sandpaper, roughening the slope and increasing
the basal friction.

FIG. 2. The evolution of Ĥ�y ,T� and V�y ,T��Q / Ĥ until
the flow arrests at T�Ts=1.278. The profiles are shown at
T=0,0.2,0.4,0.6,0.8,1.0,1.2, and 1.278. The final profiles are plotted with
a thicker line.
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Experiments were conducted with four granular materi-
als, various inclinations of the chute, a range of volumes of
material �500−3000 cm3� and different initial aspect ratios in
the lock �h0 /x0�. Experiments, repeated from identical initial
conditions, yielded similar results, providing confidence in
the reproducibility of the experimental procedure. A com-
plete description of the experimental method and results is
given by Hákonardóttir.23

B. Results

When the chute inclination was more than a few degrees
less than the basal friction, the granular materials flowed
away from the lock and formed a deposit, the depth of which
decreased monotonically with distance down the slope.
These deposits varied approximately linearly with distance,
but there remained some residual dependence on the initial
aspect ratio, even if the total volume remained the same. This
is illustrated in Fig. 3, where we plot the depth of the deposit
scaled by the maximum depth as a function of the distance
from the back wall of the lock, scaled by the runout distance
for ballotini particles of mean diameter 100 �m on a 10.4°
slope. Thus in accord with the theoretical developments of
Sec. II, we observe that the distribution of the deposit lacks
self-similarity and depends upon the initial aspect ratio of the
release.

We now consider the bulk descriptors of the deposits
formed by these granular slumps, namely, in terms of dimen-
sional variables, the depth at the back wall, h� and the runout
length, x�. In Fig. 4, the dimensionless depth h� /h0 is plotted
as a function of �2 �note that there is good agreement be-
tween the theoretical prediction and the experimental mea-
surements�. This dependence on � is in agreement with the
empirical forms determined for flows over horizontal sur-
faces by Lajeunesse et al.4 and quite close to the forms pro-
posed by Balmforth and Kerswell3 and Lube et al.5 �h� /h0

�a−0.6��1.8�. However, for these flows down slopes, we
have found quantitative agreement between theory and ex-
periments, with no adjustable fitting parameters. We note that
some the data points have relatively large error bars. This
arises because of the uncertainties in measuring the friction
angles; for flows down relatively steep slopes, even small
measurement errors in � and � lead to relatively large errors
in �. We also note that there is no systematic divergence from
the theoretical prediction for each of the granular materials

TABLE I. Material properties of the granular materials.

Material
Mean particle
diameter ��m�

Bulk density
�g cm−3�

Angle of repose
� �°�

Dynamic bed friction
� �°�

Ballotini 100 2.5 25.5±0.5 21±0.5

Ballotini 350 2.5 22.5±0.5 19±0.5

PVC Powder 140 0.57 19.5±0.5 25±0.5

Mustard seeds 1500 1.3 26±1 21±1

FIG. 3. The depth of the deposit scaled by the depth at the back wall, h /h�,
as a function of the downstream distance scaled by the runout length, x /x�.
The data series are for flows of ballotini particles of mean size 100 �m
down a plane inclined at 10.4° to the horizontal. The open symbols and solid
lines correspond to an initial aspect ratio, h0 /x0=0.5 and the closed symbols
and dashed lines to h0 /x0=2.0.

FIG. 4. The depth of the deposit at the back of the lock relative to the initial
depth, h� /h0, as a function of �2. The data includes experiments with par-
ticles of ballotini �100 �m and 350 �m�, PVC powder and mustard seeds.
The solid line �—–� is the asymptotic relationship h� /h0=1.155�2 �2.20� and
the dashed line �- - -� arises from the numerical integration of the full
governing equations.

093301-6 Andrew J. Hogg Phys. Fluids 19, 093301 �2007�

Downloaded 14 Sep 2007 to 137.222.80.119. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



and for each of the initial aspect ratios; rather, the depen-
dence upon the initial and material properties is appropriate
encompassed within the single parameter �.

Turning then to the runout length we find a difference
between the theoretical prediction and the measurements.
From dam-break initial conditions, the model with Coulomb
drag predicts that the runout length x��3 /x0=2+�3. However
we find empirically that x��3 /x0��. This is in accord with
the experimental investigations of Lajeunesse et al.4 and
Lube et al.5 in the regime ��1, while slightly different from
Balmforth and Kerswell,3 who suggested x��3 /x0��0.3.
Moreover this correlation conserves mass in a “bulk” sense,
because h�l��h0x0; but the runout is smaller than predicted
by the simple Coulomb theory.

There are a number of possible explanations for this dif-
ference: one possibility is that the motion is far from “hydro-
static” and there are significant vertical accelerations, espe-
cially on initiation. This led Larrieu et al.11 to propose a
revised representation of the initial stages of the flow. In
these downslopes slumps, the runout is considerably ex-
tended relative to those over horizontal surfaces and so the
initial collapse occurs over a relatively short period of the
flow and the majority of the motion occurs as a thin layer.
Another possibility is that the velocity field is far from plug-
like and so the depth-integrated closure �2.5� is inappropri-
ate. Some investigations have included “shape factors” to
account for shear in the velocity profile and these can
strongly affect the calculate motion close to the front of dam-
break flow.15 Alternatively the basal resistance may be inap-
propriately represented by a Coulomb drag, with a constant
angle of basal friction; certainly the flows are relatively fast
and thin at the front and possibly the angle of friction should
depend upon the local velocity and height, as suggested by

Jop et al.21 Additionally the physical processes that dominate
the arresting phase of this motion may not be represented in
the mathematical model. Based on experimental observations
of slumps over horizontal surfaces, Mangeney-Castelnau
et al.10 suggest that the arrest should be treated as a vertically
propagating front between mobile and static material and this
has been explored experimentally by Lajeunesse et al.4 and
Lube et al.,13 who measured the growth of the underlying
basal layer. We comment that processes such as this are not
represented in the current shallow layer model. We have
added a trend line to Fig. 5, which was computed by assum-
ing that the thickness of the deposit varied linearly with dis-
tance and thus x� /x0=2/ �1.155�2�. We note that this esti-
mate, derived using mass conservation, is consistent with the
experimental data.

Finally we report that when the chute inclination be-
comes close to the basal angle of friction a rather different
deposit is formed; in some cases it no longer varies mono-
tonically with distance and exhibits an interior maximum
�see Fig. 6�. This effect could be associated with the experi-
mental method and nonsystematic variations in the removal
of the lockgate. However, a transient profile of this morphol-
ogy was noted in numerical simulations of Staron and
Hinch,8 who viewed the interior maximum as a “wave” car-
rying mass flux away from the collapse, but they did not find
any final states of this nature. An additional curiosity oc-
curred with the slumps of ballotini grains of mean diameter
350 �m, where the material flowed out to a certain distance
and then the deposit “refailed” and a wave-like structure
propagated down the slope, reworking the deposit and sig-
nificantly extending the flow. We postulate that this phenom-
enon is due to localized slipping, generating a disturbance
that propagated through the previously stationary grains. We
note that in terms of the theoretical description developed in
Sec. II, “wave-like” motion is supported by the hyperbolic
governing equations and could be readily generated by a
localized disturbance. We speculate that the origin of this

FIG. 5. The scaled runout length, x��3 /x0, as a function of �. The data
include experiments with particles of ballotini �100 �m and 350 �m�, PVC
powder and mustard seeds. The solid line �—–� is an estimate for x� derived
by assuming the depth of the deposit varies linearly with downstream
distance.

FIG. 6. The depth of the deposit scaled by the depth at the back wall, h /h�,
as a function of the downstream distance scaled by the runout length, x /x�.
The data series are for flows of ballotini particles of mean size 350 �m
down a plane inclined at 18° to the horizontal. The open symbols and solid
lines correspond to an initial aspect ratio, h0 /x0=2 and the open symbols
and dashed lines to h0 /x0=0.5. Those data series marked with a �W� exhib-
ited a wave-like disturbance that significantly extended the flow.
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slippage is that the bed friction is not adequately represented
by a constant value for these granular media, which have
some polydispersity and exhibit variations in shape. These
lead to minor variations in the magnitude of the bed friction,
which could generate localized flows when the inclination of
the plane is relatively steep. For slumps that exhibit a non-
monotonic profile and for those affected by a wave-like dis-
turbance, however, we note that the measured values of the
depth of the deposit at the back wall are included in Fig. 4
and are broadly in line with the theoretical predictions. This
suggests that even though complex flow patterns may occur
in the interior of these slumps, the slow motion at the rear of
the flow is resisted by a Coulomb-type drag.

IV. CONCLUSION

Slumps of granular materials down slopes provide an
interesting and challenging setting in which to study flow
and arrest of particulate systems. Downslope acceleration
significantly extends these motions relative to their counter-
parts over horizontal surfaces and so much the flow occurs as
a thin layer, which means that mathematical models based on
this shallowness are more likely to represent the dynamics
accurately. In this paper we have employed a simple dynami-
cal model by assuming the basal drag may be represented
through a constant friction coefficient. From dam-break ini-
tial conditions, this implies that the motion is characterized
by a single dimensionless parameter �, defined by �2.10�, and
that � is much smaller than unity not only when the aspect
ratio of the initial release is large, but also when the inclina-
tion of the plane is close to the angle of basal friction. Thus
in contrast to studies of flow over horizontal surfaces, we
may readily access the regime ��1 without resorting to
flows of large aspect ratio for which the “nonshallow” initial
collapse appears to influence the motion very strongly.

The regime ��1 also corresponds to a weak resistive
force, and this forms the basis for an asymptotic analysis of
the governing equations that reveals the dependence of the
final height of the deposit, h� upon �. Essentially at early
times the flows slump, driven by the pressure gradient, and
drag is negligible, while at later times drag becomes dynami-
cally important and eventually arrests the flow. These pro-
cesses may be embodied in a matched asymptotic expansion
that reveals clearly the correlation between h� and �, previ-
ously known only from numerical experimentation. How-
ever, this analysis also yields an analytical estimate for the
maximum depth of deposit that was tested by experimenta-
tion. Our experimental results using four different granular
materials agree quantitatively with the analysis. There are no
fitting parameters; everything is measured independently and
this is the first time slumping experiments have been mod-
elled accurately.

Our experimental measurements for runout length, how-
ever, are not in accord with this Coulomb model. Instead
they exhibit a dependence that can be rationalized using
simple principles of mass conservation. These measurements
share this feature with the studies of slumps over horizontal
surfaces.3–5

This study reveals a number of features of the granular

slumping problem that has been the focus for so much activ-
ity during recent years. First, because the flows down the
slope are extended and thin, shallow layer models are more
applicable for this scenario than for flows over horizontal
surfaces and capture accurately many aspects of the unsteady
motion. Indeed some of the complex flow patterns and re-
gimes of mobile and static grains identified by the study of
flows over horizontal surfaces do not carry over to these
flows down slopes, where aside from the instances close to
initiation, the granular material is mobilized throughout the
entire flow depth. We have also demonstrated that a Cou-
lomb drag law provides an accurate quantitative estimate of
the depth of the deposit at the back wall of the lock when the
flow is arrested. This analysis would not be changed signifi-
cantly using the flow rule proposed by Jop et al.,21 for which
in the context of shallow flows, the coefficient of friction
depends upon I=ud / �gh3�1/2, where d is the diameter of the
particle. We anticipate that it should still be possible to match
the initial drag-free asymptotic regime to one in which the
flow is arrested. It is intriguing that this study and the previ-
ous ones over horizontal surfaces have found that the runout
length is not well predicted by a Coulomb resistive force.
This implies that the process of the arrest of material that
was flowing rapidly is not appropriately modelled. Indeed it
suggests that attention should be applied to the transition
from the mobile to the arrested state. It is intriguing never-
theless that the measurements of runout from all of the two-
dimensional slumping experiments show approximately the
same dependence on �.

Finally, we have found some curious profiles in the de-
posit where the depth varied nonmonotonically with dis-
tance. A possible interpretation is that the flow arrested be-
fore the material from the lock could be fully advected from
the lock. Also we found that the arrested deposit was prone
to localized slippage when the slope was relatively steep.
This is perhaps a timely reminder that usually granular ma-
terials are not uniform and have a range of shapes, sizes and
material properties.
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