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Abstract Snow avalanches are hazardous. They flow rapidly down mountain
gulleys, destroying homes, built infrastructure and leading to fatalities. One way of
mitigating against the hazards they pose is to build large structures in their flow tracks
to deflect, retard and arrest the motion. This article describes some of the research
that underpins modern guidelines of how to design these structures. It reports mathe-
matical models that capture the transformation in the state of the flowing avalanche as
it interacts with large-scale obstacles and the predictions that can be used to optimise
engineering designs.

Introduction

Snow avalanches are potent hazards. They may flow at speeds in excess of 60ms−1

and transport large volumes of snow downhill, potentially destroying and burying
houses and posing a significant threat to human life. Snow avalanches are typically
released on steep mountain slopes when the snowfall has been heavy and the snow
pack on the ground becomes unstable, possibly due to weak layers, rapid loading,
or perhaps some other external forces such as explosions used to trigger avalanches
or skiers or other travellers in the mountains. They occur widely and owing to the
increasing development of mountaineous regions for settlement and leisure, there is a
pressing need to assess the hazards they pose to lives and livelihoods, and to develop
strategies to mitigate against these hazards. Part of the solution relies on the accurate
assessment of the area inundated by potential avalanches and this ‘hazard’ zoning is
routinely employed to identify the risks. However, there are locations where human
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developments and even settlements are unavoidable in snow avalanche terrain and
here alternative measures must be devised to defend against the potential effects
of the avalanches. This article describes the mathematical modelling that underpins
some of the guidelines of how to design structures to defend against avalanches [1].

Iceland is a country that is particularly susceptible to snow avalanches. High
lying snow on the country’s mountains is frequently mobilised and flows rapidly
down steep mountainous gulleys towards some of the inhabited regions along the
coastline. Historical analysis shows records of snow avalanche damage around the
entire country, but particularly notable avalanches occured at Neskaupstaður in east-
ern Iceland in 1974 and at Súðavík and Flateyri in north-western Iceland in 1995.
They led to fatalities, the destruction of buildings and substantial economic losses.
It was of considerable concern that the some of the damage and fatalities due to the
avalanche at Súðavík and Flateyri were outside of the zone that had been assessed as
hazardous. This prompted the decision to build large engineered structures to defend
against the effects of snow avalanches. However at the time there were only rudimen-
tary guidelines of how to design such protective measures, limited understanding of
the nature of the interaction between avalanches and solid obstacles and virtually no
mathematical models for its prediction. These incidents led to a comprehensive pro-
gramme of research that culminated in new guidelines for the design of avalanche
protection measures in the run-out zone of snow avalanches [1] and some of the
research that underpins these guidelines is reported here [2–4].

There are three types of obstacles that are built in the run-out zones of avalanches
to protect locations farther downhill. These are deflecting dams, which turn the
avalanche away from the protected infrastructure [2], catching dams, designed to
be sufficiently high so that no flow may overtop it [3], and braking mounds, which
retard the oncoming flow and reduce its subsequent runout [4] (see Fig. 1).We present
in detail the mathematical results that enable design guidelines to be drawn up for
deflecting dams.

Fig. 1 Photograph of the
avalanche protection
measures at Seljalandsmúli,
Ísafjörður, north-western
Iceland. The figure shows
two rows of braking mounds,
each mound is of height 7m,
and a 700m long deflecting
dam of height 16m
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Mathematical Models of Snow Avalanches

Snow avalanches comprise particles or clumps of snow surrounded by air. A useful
idealised description is to treat a vertical section through an avalanche as being
composed of three layers [1], although the interfaces between these layers are not
sharp and the flow is inherently fluctuating. At its base the avalanche has a dense core
in which particles directly interact with each other through dissipative collisions and
enduring frictional contacts; air plays a negligible role in its mechanics. Typically
the density of the dense core is 300 kgm−3, while the thickness is 1–3m. Above
the core is the fluidised layer in which particles undergo relatively long durations
between the contacts with each other. This layer is less dense (10–100kgm−3) and
of typical thickness 2–5m. Above the fluidised layer there is sometimes a ‘powder
snow’ cloud. Here the volumetric concentration is low and the particles are supported
by the action of turbulence in the air. Powder snow clouds are highly mobile, since
they experience smaller resistance than the denser layers. Their density is relatively
low (3 kgm−3), but their thickness may be in excess of 100m and so may neverthess
be associated with the movement of substantial masses of snow.

In this article we focus on the interaction of the dense core of the avalanche with
obstacles, because the core is found to exert the highest pressures and cause the
most damage. We treat the flowing snow as a continuum and so do not calculate
the motion of individual particles, but rather deduce the bulk properties, such as
the density, which observations suggest does not vary very much, and the velocity
field. Furthermore, because the dense core is relatively shallow, the velocity is pre-
dominantly parallel with the underlying boundary with only a negligible component
of velocity perpendicular to the boundary. This means that there is force balance
between the bed-normal component of the weight of the snow per unit area plus
inertial forces induced by the curvature of the bed and the corresponding compo-
nents of the internal stresses within the avalanche body. It is then possible to deduce
governing equations that express mass conservation and the balance of momentum
downslope and across the slope; these equations are known as the shallow water
equations, often used for modelling hydraulic flows, but here modified to account
for the resistance due to granular interactions [2].

A key dimensionless parameter in this model is the Froude number, which is given
by

F = |u|√
g cos θh

, (1)

where u denotes the velocity field, h the flow thickness, g gravitational acceleration
and θ the inclination from the horizontal of the slope down which the avalanche
flows. Large avalanches are often associated with relatively high Froude numbers
with typical values in the range F = 5–10 [1].

The shallow water equations are unable to represent flows in which the depth
and velocities of the flowing layer vary over relatively short distances, because
the governing equations are based upon the neglect of appreciable bed-normal
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accelerations. Instead abrupt transitions are captured as ‘jumps’ in the flow variables.
These discontinuities are termed ‘shocks’ and across a stationary shock we enforce
the following conditions that encompass mass and momentum conservation [2]

[h(u. n)]+− = 0 and
[
hu(u. n) + 1

2g cos θh2n
]+
− = 0, (2)

where n is a unit normal vector perpendicular to the discontinuity and the square
brackets, [. . .]+−, denote the difference between the variables either side of the shock.

Deflecting Dams

Armed with the shock conditions (2), we may now calculate the interaction between
an oncoming avalanche and a deflecting dam. In particular, we calculate the flow
depth adjacent to the dam because this determines how high the barrier must be
built. Additionally, we evaluate the magnitude of the pressure within the flow and
the effects that the angle the barrier makes to the avalanche flow direction has upon
the deflection, since these could both influence the design.

In the analysis that follows, the avalanche flows downslope with depth h1 and
velocity u1 = U1x̂, where x̂ is a unit vector along the x-axis orientated downslope
(Fig. 2), so that the oncoming Froude number F = U1/(g cos θh1)

1/2. The avalanche
encounters a rigid, stationary obstacle orientated at an angle γ to the x-axis and forms
a steady shock, downslope of which the depth of the flow is h2 and the velocity field
is u = U2(cos γ x̂ + sin γ ŷ). The shock is assumed to be attached to the apex of
the deflector and orientated at an angle β to the x-axis (such that β > γ ); a unit
normal vector to the shock is given by n = (sin β,− cosβ). It is then possible to
simultaneously solve (2) to determine the relative flow depth H = h2/h1, the relative
speed, V = U2/U1 and the shock angle β in terms of the upslope conditions and the
deflector angle, γ .

We find the following implicit expression for the deflection angle, β, as a function
of the deflector angle, γ and Froude number, F , given by

tan γ = 4 sin β cosβ(F2 sin2 β − 1)

3 + 4 cos2 β(F2 sin2 β − 1) +
√
1 + 8F2 sin2 β

. (3)

Fig. 2 Plan view of the flow
configuration for a deflection
dam. The oncoming motion
with velocity U1 is deflected
to flow parallel with the dam
at velocity U2, via a shock
attached to the apex of the
dam
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Fig. 3 The deflection angle, β, and the depth of the flow downslope of the shock relative to the
upslope depth, H , as functions of the deflector angle for F = 1.1, 2, 5, 10, 20& 50 (curves (i)–(vi)).
Weak shock solutions are plotted in a solid line; strong shocks with a dashed line. The locus of the
maximum deflector angle for which an attached steady shock exists is plotted with a dotted line

This relationship is plotted in Fig. 3 for a range of values of the upstream Froude
number. We note several feature of these results. For a given Froude number greater
than unity, there is amaximumdeflector angle, γm , forwhich solutions exist; the locus
of maximum deflector angles, γm , is also plotted in Fig. 3. Furthermore, we note that
when there are solutions (γ < γm), then there are two solutions for the deflection
angle β. We term these the ‘weak’ and ‘strong’ shock solutions, corresponding to
the smaller and larger values of β, respectively. When the upstream Froude is less
than unity F < 1, or when the deflector angle is greater than γm , there are no steady
solutionswith a shock attached to the apex of the dam.We also plot the relative height
as function of the deflector angle in Fig. 3 for a range of Froude numbers.We observe
the general trends that the relative depth of the flow for the weak shock solutions
increases with increasing Froude number and with increasing deflector angle. When
the Froude number of the oncoming avalanche is large (F � 1), we find

β = γ + 1√
2 F cos γ

+ · · · and H = √
2F sin γ + · · · , (4)

for the weak shock and these two asymptotic results are useful in the physical regime
of interest.

Since the mechanics of granular materials are incompletely represented by all
current mathematical models due to the different ways in which the grains may
interact and due to their highly dissipative nature, it is vital to test predictions against
results from experiments. Laboratory-scale experiments demonstrated that in the
steady state, the predictions of the flow depth and deflector angles are in very good
accord with this simple theory and that the flow adjusted to the weak shock solution
[2]. The experiments also revealed additional features thatmay be useful in the design
of avalanche defence dams, such as the height of the initial splash of the grains on
impact with the dam before a steady state is fully established.
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Application

The research reported in this article has underpinned and is embodied in modern
guidelines for the design of avalanche defence barriers [1, 5]. These reference books
and practical guides are used extensively by specialists across Europe who design
deflecting and catching dams and have played a crucial part in securing very sig-
nificant investment in infrastructure through large-scale civil engineering projects
aimed at reducing the risk of avalanche damage to settlements.

For example, in Iceland since 2008, over e54M has been spent on large-scale
installations, which were constructed on the basis of these new guidelines. There
are a further projects in planning and design stages with the expected infrastructure
investment running at over e5–10M per year until at least 2020. These current
schemes and the further planned developments reduce the risk of avalanche damage
to many endangered settlements. However, the use of the guidelines extends to many
other countries. Norwegian, Swiss and Austrian engineers have designed several
projects to defend lives and livelihoods partly based on the new guidelines, while
notably the guidelines are also underpinning the design and current construction
of the mounds, deflectors and catching dams at the base of the Taconnaz glacier,
Chamonix, France, an investment in infrastructure of approximately e10M.

The modern guidelines and the research also form the basis of highly regarded
training courses for avalanche professionals. Delivered by expert practitioners, there
have been a series of courses for avalanche engineers from the public and private
sectors in France, Italy and Spain, under the framework of the European Summer
School on Avalanches.
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