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Abstract. We prove that the complete L-functions of classical holomorphic newforms have
infinitely many simple zeros.

1. Introduction

Let π be a cuspidal automorphic representation of GLn(AQ) with corresponding L-function
Λ(s, π). The Grand Riemann Hypothesis (GRH) and Grand Simplicity Hypothesis (GSH)
predict that the zeros of Λ(s, π) lie on the line <(s) = 1

2
and are simple, apart from at most

one multiple zero if π is associated to a geometric motive (cf. the BSD conjecture). These
conjectures have not yet been shown to hold for a single example, and most partial evidence
in their favor has been for n = 1, i.e. the Dirichlet L-functions. In particular, until recently,
the only cuspidal representation for n > 1 for which Λ(s, π) was known to have infinitely
many simple zeros was the one associated to the Ramanujan ∆ modular form, which is a
theorem of Conrey and Ghosh [4] from 1988.

As Conrey and Ghosh remark in their paper, most of their arguments would apply to any
degree 2 L-function, but they were unable to conclude the proof without assuming a priori
the existence of at least one simple zero (which they verified directly for the L-function
associated to ∆). In this paper, we analyze their method from a structural point of view,
along the lines of [2] and [7], to prove the following:

Theorem 1. Let f ∈ Sk(Γ1(N))new be a normalized Hecke eigenform of arbitrary weight
and level. Then the complete L-function Λf (s) =

∫∞
0
f(iy)ys−1 dy has infinitely many simple

zeros.

As our proof will show, a lack of simple zeros leads to inconsistencies unless the local L-
factor of Λf (s) is a square at every unramified prime (which cannot happen for holomorphic
modular forms). In effect, we establish a connection (albeit a very loose one) between the
zeros of the global L-function and those of its local factor polynomials.

Recently, Cho [3] has generalized [4] to prove that the L-functions of the first few Maass
cusp forms of level 1 have infinitely many simple zeros. Our proof could be modified in
an analogous fashion to extend Theorem 1 to all cuspidal Maass newforms. Moreover,
the assumption that f is a cusp form is also unnecessary, so in fact the method could be
generalized to show that if χ1 and χ2 are primitive Dirichlet characters and t ∈ R then
Λ(s, χ1)Λ(s + it, χ2) has infinitely many simple zeros unless χ1 = χ2 and t = 0. However,
stronger results of this type may be obtained by other methods, e.g. [5].

Note that Conrey and Ghosh’s result for f = ∆ is a bit stronger than the conclusion of
Theorem 1 for that case. Precisely, if N s

f (T ) denotes the number of simple zeros of Λf (s)

with imaginary part in [0, T ], they showed that for every ε > 0, the inequality N s
∆(T ) ≥ T

1
6
−ε

holds for some arbitrarily large values of T . With Theorem 1 in hand, it seems likely that
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their proof of this estimate would generalize at least to all eigenforms of level 1. However,
in this paper we content ourselves with the qualitative statement of Theorem 1.

Finally, we remark that concurrent work of Milinovich and Ng [8] also establishes Theo-
rem 1, assuming GRH. Although their proof is conditional, it yields the much better quan-
titative estimate N s

f (T ) ≥ T (log T )−ε for any fixed ε > 0 and all sufficiently large T .

Acknowledgements. This work was carried out during a year-long stay at the Research
Institute for Mathematical Sciences, Kyoto, Japan. It is a pleasure to thank all of the RIMS
staff, in particular my host, Akio Tamagawa, for their generous hospitality. I would also like
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Notation. Let f be as in the statement of Theorem 1, and let ξ denote its nebentypus
character. Let

Lf (s) =
∞∑
n=1

af (n)n−s =
∏
p

1

1− af (p)p−s + ξ(p)pk−1−2s

be the finite L-function of f , and Λf (s) = (2π)−sΓ(s)Lf (s) the completed version. Then we
have the functional equation

(1) Λf (s) = εN
k
2
−sΛf̄ (k − s),

where f̄ ∈ Sk(Γ0(N), ξ) is the dual of f , and ε ∈ C is the root number. We define

Df (s) = Lf (s)
d2

ds2
logLf (s) =

∞∑
n=1

cf (n)n−s.

Note that Df (s) continues meromorphically to C, with poles precisely at the simple zeros of
Lf (s) (including the trivial zeros s = 0,−1,−2, . . .).

Next, for any α ∈ Q×, we define the additive twists

Lf (s, α) =
∞∑
n=1

af (n)e(αn)n−s and Df (s, α) =
∞∑
n=1

cf (n)e(αn)n−s.

By Deligne’s bound |af (p)| ≤ 2p
k−1
2 , we see that each of these is holomorphic for <(s) > k+1

2
.

Moreover, it follows from [1, Prop. 3.1] that Lf (s, α) continues to an entire function. One
could similarly prove that Df (s, α) has meromorphic continuation to C for every α, but it
turns out to be enough for our purposes to consider α = 1/q, where q is a prime number
not dividing N . In this case, we have the following expansion of the exponential function in
terms of Dirichlet characters:

e

(
n

q

)
= 1− q

q − 1
χ0(n) +

1

q − 1

∑
χ (mod q)
χ 6=χ0

τ(χ)χ(n),

where χ0 (mod q) is the trivial character, the sum ranges over all non-trivial χ (mod q), and
τ(χ) denotes the Gauss sum of χ. Multiplying both sides by cf (n)n−s and summing over n,
we thus see that

Df

(
s,

1

q

)
= Df (s)−

q

q − 1
Df (s, χ0) +

1

q − 1

∑
χ (mod q)
χ 6=χ0

τ(χ)Df (s, χ),
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where, for each χ, Df (s, χ) denotes the multiplicative twist

Df (s, χ) =
∞∑
n=1

cf (n)χ(n)n−s.

By the known non-vanishing results for automorphic L-functions [6], all poles ofDf (s)/Γ(s)
and Df (s, χ)/Γ(s) for χ 6= χ0 are confined to the critical strip

{
s ∈ C : <(s) ∈

(
k−1

2
, k+1

2

)}
.

On the other hand, from the formula

∞∑
n=1

af (n)χ0(n)n−s = (1− af (q)q−s + ξ(q)qk−1−2s)Lf (s),

it follows that Df (s, χ0) has a pole at every simple zero of the local Euler factor polynomial
1−af (q)q−s+ξ(q)qk−1−2s, except possibly at s = 0 when k = 1. By Deligne, the zeros of this
polynomial occur on the line <(s) = k−1

2
, and they are simple if and only if the polynomial

is not a square. By the above, we see that Df (s, 1/q) inherits these poles when they occur.

2. Proof of Theorem 1

The main tool used in the proof is the following proposition, whose proof we defer until
the final section.

Proposition 2. Suppose that Λf (s) has at most finitely many simple zeros. Then, for any
α ∈ Q× and M ∈ Z≥0,

(2)

Df (s, α)− ε(i sgn(α))k(Nα2)s−
k
2

M−1∑
m=0

m!

(
iNα

2π

)m(
s+m− 1

m

)(
s+m− k

m

)
·Df̄

(
s+m,− 1

Nα

)
continues to a holomorphic function for <(s) > k+1

2
−M .

From now on we will assume that Λf (s) has at most finitely many simple zeros and attempt
to reach a contradiction. To that end, let M be a positive integer and q a prime not dividing
N . By Dirichlet’s theorem, there are distinct primes q1, . . . , qM ∈ q + NZ, and it follows
that Df̄ (s,−qj/N) = Df̄ (s,−q/N) for every j. Thus, applying Prop. 2 with α = 1/qj, we
obtain that
(3)(

N

q2
j

) k
2
−s

Df

(
s,

1

qj

)
− εik

M−1∑
m=0

m!

(
iN

2πqj

)m(
s+m− 1

m

)(
s+m− k

m

)
Df̄

(
s+m,− q

N

)
is holomorphic for <(s) > k+1

2
−M .

Next let m0 ∈ Z with 0 ≤ m0 < M . By the Vandermonde determinant, there are numbers
c1, . . . , cM ∈ Q such that

M∑
j=1

cjq
−m
j =

{
1 if m = m0,

0 if m 6= m0

for every m ∈ Z ∩ [0,M).
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Multiplying (3) by −cj, summing over j and replacing s by s−m0, we find that

εikm0!

(
iN

2π

)m0
(
s− 1

m0

)(
s− k
m0

)
Df̄

(
s,− q

N

)
−

M∑
j=1

cj

(
N

q2
j

) k
2

+m0−s

Df

(
s−m0,

1

qj

)
is holomorphic for <(s) > m0 + k+1

2
−M . This establishes the meromorphic continuation

of Df̄ (s,−q/N) to that region. Moreover, since Df (s, 1/qj) is holomorphic on {s ∈ C :

<(s) < k−1
2
} \ Z for each j, we see that Df̄ (s,−q/N) is holomorphic on {s ∈ C : <(s) ∈

(m0 + k+1
2
−M,m0 + k−1

2
)}\Z. Thus, choosing m0 = 2 and M arbitrarily large, we find that

Df̄ (s,−q/N) has meromorphic continuation to C, with poles possible only at integer points.
Hence, applying Prop. 2 again with α = 1/q and M = 2, we learn that Df (s, 1/q)

can only have poles at integer points. However, we have already seen that Df (s, 1/q) has
a pole at every simple zero (except possibly s = 0) of the local Euler factor polynomial
1− af (q)q−s + ξ(q)qk−1−2s. This polynomial, in turn, has infinitely many simple zeros along

the line <(s) = k−1
2

if and only if |af (q)| < 2q
k−1
2 . By the Rankin–Selberg method, the

average value of |af (q)|2/qk−1 is 1, so such primes q exist in abundance. This concludes the
proof of Theorem 1.

3. Proof of Proposition 2

Let ∆f (s) = (2π)−sΓ(s)Df (s). Taking the logarithm of (1) and differentiating twice, we
find

ψ′(s) +
d2

ds2
logLf (s) = ψ′(k − s) +

d2

ds2
logLf̄ (k − s),

where ψ(s) = Γ′

Γ
(s) is the digamma function. Thus, it follows that

(4) ∆f (s) + Λf (s)(ψ
′(s)− ψ′(k − s)) = εN

k
2
−s∆f̄ (k − s).

Next, since Λf (s) has at most finitely many simple zeros, there is a rectangle C contained
within the critical strip {s ∈ C : <(s) ∈ (k−1

2
, k+1

2
)} which encloses all simple zeros. For

z ∈ H = {z ∈ C : =(z) > 0}, we define

F (z) =
∞∑
n=1

cf (n)e(nz), F (z) =
∞∑
n=1

cf̄ (n)e(nz),

A(z) =
1

2πi

∫
<(s)=k− 1

2

(
ψ′(s) + ψ′(s+ 1− k)

)
Λf (s)(−iz)−s ds,

and

B(z) =
1

2πi

∫
C

∆f (s)(−iz)−s ds+
1

2πi

∫
<(s)=k− 1

2

π2

sin2(πs)
Λf (s)(−iz)−s ds.

Here C is given counter-clockwise orientation, and (−iz)−s is defined as e−s log(−iz) using the
principal branch of the logarithm.

These functions are related as follows:

Lemma 3. We have

(5) F (z) + A(z) = ε(−i
√
Nz)−kF

(
− 1

Nz

)
+B(z)

for all z ∈ H.
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Proof. By Mellin inversion, we have

F (z) =
1

2πi

∫
<(s)= k

2
+1

∆f (s)(−iz)−s ds

and

ε(−i
√
Nz)−kF

(
− 1

Nz

)
=
εNk/2

2πi

∫
<(s)= k

2
+1

∆f̄ (s)(−iNz)s−k ds.

Since Λf (s) has at most finitely many simple zeros, there is a δ > 0 such that ∆f̄ (s) is

holomorphic for <(s) > k+1
2
− δ. Moreover, it follows from the Phragmén–Lindelöf convexity

principle that for any fixed z, ∆f̄ (s)(−iNz)s−k decays rapidly as |=(s)| → ∞ in any fixed

vertical strip. Hence, we may shift the contour of the last line to <(s) = k+1−δ
2

and apply
(4) to obtain
(6)
εNk/2

2πi

∫
<(s)= k+1−δ

2

∆f̄ (s)(−iNz)s−k ds =
εNk/2

2πi

∫
<(s)= k−1+δ

2

∆f̄ (k − s)(−iNz)−s ds

=
1

2πi

∫
<(s)= k−1+δ

2

∆f (s)(−iz)−s ds+
1

2πi

∫
<(s)= k−1+δ

2

Λf (s)[ψ
′(s)− ψ′(k − s)](−iz)−s ds.

Note that

1

2πi

∫
<(s)= k

2
+1

∆f (s)(−iz)−s ds− 1

2πi

∫
<(s)= k−1+δ

2

∆f (s)(−iz)−s ds =
1

2πi

∫
C

∆f (s)(−iz)−s ds,

which is the first term of B(z). Next, since ψ′(s)−ψ′(k−s) is holomorphic for <(s) ∈ (0, k),
we may shift the contour of the last integral in (6) to <(s) = k − 1

2
. Using the reflection

formula ψ′(1− s) + ψ′(s) = π2/ sin2(πs), we have

ψ′(s)− ψ′(k − s) = ψ′(s) + ψ′(s+ 1− k)− π2

sin2(πs)
.

This yields A(z) and the remaining term of B(z). �

Now, the main idea of the proof of Prop. 2 is to compute (2π)s/Γ(s) times the Mellin
transform of both sides of (5) along the line <(z) = α ∈ Q×. For F (z), we have

(7)

(2π)s

Γ(s)

∫ ∞
0

F (α + iy)ys
dy

y
=

(2π)s

Γ(s)

∫ ∞
0

∞∑
n=1

cf (n)e(αn)e−2πnyys
dy

y

=
∞∑
n=1

cf (n)e(αn)n−s = Df (s, α).

Lemma 4. For any α ∈ Q×,

(2π)s

Γ(s)

∫ ∞
0

A(α + iy)ys
dy

y

continues to an entire function of s.
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Proof. Set Φ(s) = ψ′(s) +ψ′(s+ 1−k). From the identity ψ′(s) =
∫∞

1
log x
x−1

x−s dx, we get the

integral representation Φ(s) =
∫∞

1
φ(x)x−s dx for <(s) > k − 1, where φ(x) = (xk−1+1) log x

x−1
.

Hence

Φ(s)Γ(s) =

∫ ∞
1

φ(x)

∫ ∞
0

e−y(y/x)s
dy

y
dx =

∫ ∞
1

φ(x)

∫ ∞
0

e−xyys
dy

y
dx

=

∫ ∞
0

∫ ∞
1

φ(x)e−xy dx ys
dy

y
.

Therefore, by Mellin inversion,

A(z) =
1

2πi

∫
<(s)=k+1

Φ(s)Γ(s)
∞∑
n=1

af (n)(−2πinz)−s ds =
∞∑
n=1

af (n)

∫ ∞
1

φ(x)e(nxz) dx.

Specializing to z = α + iy, we get

A(α + iy) =
∞∑
n=1

af (n)

∫ ∞
1

φ(x)e(αnx)e−2πnxy dx,

so that ∫ ∞
0

A(α + iy)ys
dy

y
=
∞∑
n=1

af (n)

∫ ∞
1

φ(x)e(αnx)

∫ ∞
0

e−2πnxyys
dy

y
dx

=
∞∑
n=1

af (n)(2πn)−sΓ(s)

∫ ∞
1

φ(x)e(αnx)x−s dx.

For j = 0, 1, 2, . . ., define functions φj = φj(x, s) recursively by

φ0 = φ, φj+1 = x
∂φj
∂x
− (s+ j)φj.

Then, by integration by parts,∫ ∞
1

φj(x, s)e(αnx)x−s−j dx = −e(αn)φj(1, s)

2πiαn
− 1

2πiαn

∫ ∞
1

φj+1(x, s)e(αnx)x−s−j−1 dx.

Applying this iteratively m times, we find∫ ∞
1

φ(x)e(αnx)x−s dx = e(αn)
m−1∑
j=0

φj(1, s)

(−2πiαn)j+1

+ (−2πiαn)−m
∫ ∞

1

φm(x, s)e(αnx)x−s−m dx.

Substituting this back into the above, we have

(2π)s

Γ(s)

∫ ∞
0

A(α + iy)ys
dy

y
=

m−1∑
j=0

φj(1, s)

(−2πiα)j+1
Lf (s+ j + 1, α)

+ (−2πiα)−m
∞∑
n=1

af (n)

ns+m

∫ ∞
1

φm(x, s)e(αnx)x−s−m dx.

6



Each of the terms in the sum over j continues to an entire function of s. On the other hand,
it is straightforward to prove that φm(x, s) �m (1 + |s|)mxk−1. Thus, the final sum over n
is holomorphic for <(s) > k −m. Taking m arbitrarily large establishes the lemma. �

Lemma 5. Let α ∈ Q× and z = α + iy for some y ∈
(
0, |α|

4

]
. Then

(8)

ε(−i
√
Nz)−kF

(
− 1

Nz

)
= Oα,M(yM−b

k+3
2
c) + εN−

k
2

M−1∑
m=0

(−iα)−m−k

2πi

∫
<(s)= k

2
+1

(
s+m− k

m

)(
Nα2

2π

)s+m
· Γ(s+m)Df̄

(
s+m,− 1

Nα

)
y−s ds

for every M ∈ Z≥0.

Proof. This was essentially done in [1, §2]; we reproduce the argument here for the sake of
completeness. Let z = α + iy, β = −1/Nα and u = y/α. Then

− 1

Nz
= β + i|βu| − βu2

1 + iu
,

so that

ε(−i
√
Nz)−kF

(
− 1

Nz

)
= ε(−i

√
Nα)−k

∞∑
n=1

cf̄ (n)e(βn)e−2πn|βu|(1 + iu)−ke

(
− nβu2

1 + iu

)
.

Next,

(1 + iu)−ke

(
− nβu2

1 + iu

)
=
∞∑
j=0

(−iu)j(1 + iu)−j−k
(−2πn|βu|)j

j!

=
∞∑
j=0

∞∑
`=0

(
j + k + `− 1

`

)
(−iu)j+`

(−2πn|βu|)j

j!

=
∞∑
m=0

(−iu)m
m∑
j=0

(
m+ k − 1

m− j

)
(−2πn|βu|)j

j!
.

Note further that for any M,K ∈ Z≥0 we have∣∣∣∣∣
∞∑

m=M

(−iu)m
m∑
j=0

(
m+ k − 1

m− j

)
(−2πn|βu|)j

j!

∣∣∣∣∣
≤ (2πn|βu|)−KK!

∞∑
m=M

|u|m
m∑
j=0

(
m+ k − 1

m− j

)(
j +K

j

)
(2πn|βu|)j+K

(j +K)!

≤ (πn|βu|)−KK!(3/2)k−1

∞∑
m=M

(3|u|)me2πn|βu|

�α,M,K |u|M−Kn−Ke2πn|βu|,
7



since |u| ≤ 1/4. Hence, substituting the definition of u, we have

ε(−i
√
Nz)−kF

(
− 1

Nz

)
= Oα,M,K

(
yM−K

∞∑
n=1

|cf̄ (n)|n−K
)

+ ε(−i
√
Nα)−k

M−1∑
m=0

(
−iy
α

)m m∑
j=0

(
m+ k − 1

m− j

) ∞∑
n=1

cf̄ (n)e(βn)
1

j!

(
−2πny

Nα2

)j
e−

2πny

Nα2 .

Choosing K = bk−1
2
c+ 2, the error term converges and gives the estimate Oα,M(yM−K).

As for the other terms, we have

ym
∞∑
n=1

cf̄ (n)e(βn)
1

j!

(
−2πny

Nα2

)j
e−

2πny

Nα2 =
yj+m

j!

dj

dyj

∞∑
n=1

cf̄ (n)e(βn)e−
2πny

Nα2

=
yj+m

j!

dj

dyj
1

2πi

∫
<(s)=m+ k

2
+1

(
Nα2

2π

)s
Γ(s)Df̄ (s, β)y−s ds

=
1

2πi

∫
<(s)= k

2
+1

(
−s−m

j

)(
Nα2

2π

)s+m
Γ(s+m)Df̄ (s+m,β)y−s ds.

Moreover, by the Chu–Vandermonde identity we have
m∑
j=0

(
m+ k − 1

m− j

)(
−s−m

j

)
=

(
−s+ k − 1

m

)
= (−1)m

(
s+m− k

m

)
.

Collecting these strands together, we arrive at (8). �

Lemma 6. For any α ∈ Q× there are numbers Pj(α), j = 0, 1, 2, . . ., such that

B(α + iy) =
M−1∑
j=0

Pj(α)yj +Oα,M(yM)

for all M ∈ Z≥0 and y ∈
(
0, |α|

4

]
.

Proof. For z = α + iy, we have

(9) (−iz)−s = ei
π
2

sgn(α)s|α|−s
(

1 +
iy

α

)−s
= ei

π
2

sgn(α)s|α|−s
∞∑
j=0

(
−s
j

)(
iy

α

)j
.

Since y ≤ |α|
4

, the crude bound∣∣∣∣(−sj
)∣∣∣∣ =

∣∣∣∣(s+ j − 1

j

)∣∣∣∣ ≤ 2|s|+j

yields
∞∑
j=M

(
−s
j

)(
iy

α

)j
�α,M 2|s|yM .

Hence, if we truncate the sum in (9) at M and substitute it for (−iz)−s in the definition of
B(z), then since the contour C is compact, the first integral of the error term converges to
give an Oα,M(yM) error overall. Similarly, by standard estimates, along the line <(s) = k− 1

2
8



the function ei
π
2

sgn(α)s|α|−sΛf (s) has at most polynomial growth, and π2

sin2(πs)
� e−2π|s|. Since

e2π > 2, the second integral of the error term converges as well, and the lemma follows with

Pj(α) =
1

2πi

∫
C
(−iα)−jei

π
2

sgn(α)s|α|−s
(
−s
j

)
∆f (s) ds

+
1

2πi

∫
<(s)=k− 1

2

(−iα)−jei
π
2

sgn(α)s|α|−s
(
−s
j

)
Λf (s)

π2

sin2(πs)
ds.

�

Now, to conclude the proof, let us define

g(y) = F (α + iy) + A(α + iy)−
M−1∑
j=0

Pj(α)yjχ(0,|α|/4](y)

− εN−
k
2

M−1∑
m=0

(−iα)−m−k

2πi

∫
<(s)= k

2
+1

(
s+m− k

m

)(
Nα2

2π

)s+m
· Γ(s+m)Df̄

(
s+m,− 1

Nα

)
y−s ds,

where χ(0,|α|/4](y) = 1 if y ∈
(
0, |α|

4

]
and 0 otherwise. Combining Lemmas 3, 5 and 6, we

have that g(y) = Oα,M(yM−b
k+3
2
c) for y ∈

(
0, |α|

4

]
. On the other hand, it is easy to see that

g(y) decays rapidly as y → ∞. Thus, (2π)s

Γ(s)

∫∞
0
g(y)ys−1 dy defines a holomorphic function

for <(s) > bk+3
2
c −M .

Note that

(2π)s

Γ(s)

∫ ∞
0

M−1∑
j=0

Pj(α)yjχ(0,|α|/4](y)ys
dy

y
=

(2π)s

Γ(s)

M−1∑
j=0

Pj(α)
(|α|/4)s+j

s+ j

extends to an entire function of s. Together with (7) and Lemma 4, this shows that (2) is
holomorphic for <(s) > bk+3

2
c −M . Finally, we replace M by M + 1 and discard the final

term of the sum over m to see that (2) is in fact holomorphic for <(s) > k+1
2
−M . �
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6. Hervé Jacquet and Joseph A. Shalika, A non-vanishing theorem for zeta functions of GLn, Invent. Math.

38 (1976/77), no. 1, 1–16. MR 0432596 (55 #5583)
7. Jerzy Kaczorowski and Alberto Perelli, On the structure of the Selberg class, VII: 1 < d < 2, Ann. of

Math. (2) 173 (2011), no. 3, 1397–1441. MR 2800717
8. Micah B. Milinovich and Nathan Ng, Simple zeros of modular L-functions, preprint, 2012.

School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW,
United Kingdom

9


