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2 Dynamics and time

2.1 Maps and flows

We have seen two types of dynamical systems so far, differ-
ential equations such as Newton’s or Lorenz’s equations,
and discrete time systems, such as the logistic map. In
each case there is a on-parameter family of maps Φt :
X → X on the space X (say Rd) which moves forward
the dynamics in time by an amount t for any initial time
s:1

x(s+ t) = Φt(x(s))

In the map case t ∈ N and Φ1 = Φ is just the original map,
while for differential equations, (d/dt)x = f(x), t ∈ R and
the Φt is a called a flow, found (if possible) by solving the
differential equation for arbitrary initial condition x:

d

dt
Φt(x) = f ◦ Φt(x), Φ0(x) = x

Example 2.1. For the harmonic oscillator (d/dt)(x, v) =
(v,−x) we have Φt(x, v) = (x cos(t) + v sin(t),−x sin(t) +
v cos(t)).

We can easily see that for either a map or flow, Φ
satisfies the semigroup property:

Φs ◦ Φt = Φs+t

and hence
Φ0(x) = x

Saying a map is invertible means that Φ−1 : X → X
is uniquely defined, so the Φt form a group under com-
position.2 Normally, flows are invertible from the Picard-
Lindelöf theorem.3 For either invertible or non-invertible
maps, Φ−1 is a function on sets A ⊂ X

Φ−1(A) = {x ∈ X : Φ(x) ∈ A}
1We assume here that the system is autonomous; more generally

we could consider Φ a function of both s and t. Generalising dy-
namical results to non-autonomous systems is a popular source of
research problems. In some cases it is useful to add the time as an
extra variable.

2It is also possible to use a semi-group larger than N or R as a
“time” variable; this comes under the name of “group actions,” also
a popular research topic. A famous example is Furstenberg’s conjec-
ture that the system Φ(i,j)(x) = 2i3jx (mod 1) has no nontrivial
invariant measures. H. Furstenberg Mathematical Systems Theory
1 1-49 (1967).

3Piecewise smooth flows, which need not be invertible, form an-
other rich source of research problems. See for example M. di
Bernado and S. J. Hogan, Trans. Roy. Soc. A 368, 4915-4935
(2010).
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giving the pre-images of a point or larger set.4 Invertible
systems may also be (time)-reversible; this means that
there is a transformation i : X → X satisfying

i ◦ Φt ◦ i = Φ−t

Setting t = 0 we note that i2 is the identity, that is, i is an
involution (hence the notation). For example, Newton’s
law of gravitation is reversible, with i reversing all the
velocities.5

Often a system can have more than one description,
using either a map or a flow. These can be related as
follows: A time-one or stroboscopic map is obtained by
considering a flow Φt and treating Φ1 (or more generally
some Φ∆t) as a map in its own right. An alternative,
and probably more useful approach is the Poincaré map,
defining a hypersurface Y and stopping whenever this is
reached. If the time from one event to the next is

τ(y) := min
t>0
{t : Φt(y) ∈ Y }

the Poincaré map can be defined as

F (y) = Φτ(y)(y)

The reverse process is called a suspension: Given a map
F : Y → Y and “roof function” τ : Y → (0,∞), we can
construct a flow on the space X = {(y, s) : y ∈ Y, 0 ≤ s <
τ(y)} in the natural way - increase s until τ(y) is reached,
then apply F and set s = 0.

Example 2.2. For the harmonic oscillator above, and the
Poincaré section (hypersurface) x = 1 the Poincaré map
is F (y) = −y (taking y = v), but note that not all tra-
jectories of the original flow reach it.6 The roof function
is

τ(y) =

 2 arctan |y| y > 0
2π y = 0

2π − 2 arctan |y| y < 0

A dynamical billiard consists of a point particle that
moves freely except for mirror-like reflections with the
boundary, that is, angle of reflection equals angle of inci-
dence. The flow is discontinuous (in the momentum vari-
able) at collisions, so it is natural to consider a Poincaré
section consisting of the boundary.

An induced map is obtained starting from a map
Φ : X → X and a subset Y of full dimension, and pro-
ceeding in the same manner. This can help if (almost)
all orbits pass through Y and the induced dynamics has
more uniform properties.

4Sometimes set-valued dynamics is considered in the forward
time direction, too.

5More on dynamical reversibility can be found in J. A. G. Roberts
and G. R. W. Quispel, Phys. Rep. 216, 63-177 (1992).

6If you start on the Poincaré section, there are often results that
show you almost certainly return, for example the Poincaré recur-
rence theorem discussed in chapter 6.
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Example 2.3. The Farey map is

Φ(x) =
{

x
1−x x < 1/2
1−x
x x > 1/2

which has very slow behaviour near x = 0. Iterating the
left branch we find for small x

Φ2
L(x) =

x
1−x

1− x
1−x

=
x

1− 2x

Φ3
L(x) =

x

1− 3x

ΦnL(x) =
x

1− nx
Suppose we induce on the right branch, ie Y = [1/2, 1).
We take τ iterations to return to the right branch, ie

F (y) = Φτ−1
L (ΦR(y)) =

1−y
y

1− (τ − 1) 1−y
y

=
1− y

τy − (τ − 1)

Equivalently since we have alternating strings of τ − 1
iterations of ΦL followed by a single ΦR we can consider
the dynamics immediately after the right branch iteration,
ie

G(x) = ΦR(Φτ−1
L (x)) =

1− x
1−(τ−1)x
x

1−(τ−1)x

=
1
x
− τ

This the famous Gauss map, and the τ values give the
continued fraction expansion of x. It is much faster to
calculate, and no longer has a region near zero that be-
haves very differently to the rest of the map, however we
have replaced a map with two branches by one with an
infinite number.

2.2 Numerical considerations

If we have an explicit equation for a map, it is straightfor-
ward to simulate it numerically, although there are issues
to do with instability and finite precision that we will dis-
cuss later.

Similarly, a flow (ordinary differential equation) can
be simulated using standard numerical techniques, which
effectively approximate the stroboscopic map using small
step size, for example the simplest (Euler) method for
approximating ẋ = f(x) is

xt+h = xt + hf(xt)

This requires extremely small step size for accuracy (which
then takes longer, and suffers from round-off error); a
slightly better algorithm is the midpoint method, which
(approximately) calculates the derivative from the mid-
point of the interval

xt+h = xt + hf(xt +
h

2
f(xt))
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There are a variety of more accurate and reliable meth-
ods discussed in texts on numerical analysis and used by
numerical software.7

In order to compute a Poincaré map, we need to do
more work, however. We need to simultaneously solve the
differential equation, and an algebraic equation in a single
variable, the time. Fast methods for algebraic equations
g(t) = 0 include Newton’s method

tn+1 = tn −
g(tn)
g′(tn)

— another source of discrete dynamical systems. This
converges quadratically (double the number of digits at
each step) for good initial guesses, but no guarantee of
convergence otherwise.8 If there is a change of sign, g(t1)g(t2) <
0, the bisection method is guaranteed to find a solution,
with linear convergence. There may however be several
changes of sign in the initial interval. So, ideally there
should also be a rigorous lower bound on the time.

Example 2.4. Find the smallest positive solution of at =
sin t for 0 < a < 1. Choose t0 to be a small positive value.
Since g(t) = sin(t) − at, we know g′′(t) ≥ −1 and so,
integrating twice

g(t) ≥ −(t− tn)2/2 + (t− tn)g′(tn) + g(tn)

Thus the desired solution of g(t) = 0 is greater than the
smallest root (greater than tn) of this quadratic equation.
Also, since we match both the value of g(tn) and its deriva-
tive, the iteration will be quadratically convergent like the
Newton method.

An alternative approach is a simple change of variable.
Suppose we have a system with d variables, and we can
write the system in the form

dg

dt
= f1(g, x2, . . . , xd)

dxj
dt

= fj(g, x2, . . . , xd), j ≥ 2

where the Poincaré section is at g = 0. Then, making g
the independent variable we have

dt

dg
=

1
f1

dxj
dg

=
dxj
dt

dt

dg
=
fj
f1

In this form we can integrate directly to g = 0.
7Accuracy is improved by combining linear combinations of the

function evaluated at different times, the Runge-Kutta methods.
Stability is improved by including xt+h on the RHS, requiring New-
ton’s method or similar at each step, the implicit methods. Often
these approaches are combined.

8Intriguingly, multiplying the last term by a random variable
may sometimes be guaranteed to converge almost surely: H. Sumi
arxiv:1608.05230.
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