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3 Local dynamics

3.1 Linearised dynamics

Start with the orbit of a one dimensional map, x(n+1) =
Φ(x(n)), assumed to be smooth. We consider a perturbed
orbit x(n + 1) + δ(n + 1) = Φ(x(n) + δ(n)). A Taylor
expansion gives

Φ(x+ δ) = Φ(x) + Φ′(x)δ +O(δ2)

and so to linear order in δ(0)

δ(n+ 1) = Φ′(x(n))δ(n)

δ(n) =

n−1∏
j=0

Φ′|x(j)

 δ(0)

=

n−1∏
j=0

Φ′ ◦ Φj |x(0)

 δ(0)

= (DΦn)|x(0)δ(0)

Where DΦn is the derivative of Φn.
We can do this also in d dimensions: xj(n + 1) =

Φj(x(n)), j ∈ {1, .., d}. A Taylor expansion gives

Φj(x + δ) = Φj(x) +
∑
i

∂Φj
∂xi

δi +O(δ2)

and so (again to linear order)

δ(n+ 1) = (DΦ)δ(n)

δ(n) = (DΦ)|x(n−1) . . . (DΦ)|x(1)(DΦ)|x(0)δ(0)
= (DΦn)|x(0)δ(0)

Now DΦ is the Jacobian matrix of derivatives evaluated
along the orbit, with the sum over i giving matrix multi-
plications.1 Note the convention (DΦ)ji = ∂iΦj .

In the case of a fixed point, we multiply by the same ma-
trix each time, giving (DΦ)n. If all the eigenvalues of DΦ
are of magnitude less than one, it can be shown that the
fixed point is asymptotically stable (see the textbook
K&H, Lemma 3.6), that is, all orbits in a neighbourhood
of it approach it. Note that DΦ need not contract all
vectors, but sufficiently high powers of it do.

1Hence a connection with another active research area, products
of random matrices

Example 3.1. The matrix

M =
(

1 −1
1/2 0

)
has eigenvalues

λ =
1± i

2
which are both of magnitude less than unity. However it
expands the vector (1, 0)T to (1, 1/2)T , where superscript
T denotes transpose.

This can be expressed concisely in terms of the spectral
matrix norm

‖M‖ = sup
v:|v|=1

|Mv|

where v is a vector. This norm also gives the square-root
of the largest eigenvalue of MTM .

We see that ‖M‖ > 1 but ‖Mn‖ < 1 for all sufficiently
large n.2

Example 3.2. Find the fixed points and corresponding
linearised dynamics for the logistic map Φ(x) = rx(1− x)
and determine their stability. A fixed point satisfies x =
Φ(x) so we have

x = rx(1− x)

rx2 − rx+ x = 0

x = 0,
r − 1
r

A small perturbation around fixed point x∗ evolves to lin-
ear order as

δ(n) = Φ′(x∗)nδ(0)

We have Φ′(x) = r(1−2x). For x∗ = 0 we have Φ′(x∗) =
r so it is stable for −1 < r < 1 (normally we consider only
0 ≤ r ≤ 4). At r = ±1 the fixed point is “marginal” and
we cannot determine its stability from a linear analysis.
For |r| > 1 it is unstable; δ(n) grows exponentially, until
it is large enough for the linear theory to break down. For
x∗ = (r − 1)/r we have Φ′(x∗) = 2 − r. Thus it is stable
for 1 < r < 3. We see that at r = 1 both fixed points
coincide at x∗ = 0 and change their stability; this is an
example of a bifurcation.

In the case of a periodic point of order p, we can ap-
ply the same analysis to Φp, the p-composed map, thus
we need to study DΦp. Note that eigenvalues are in-
variant under cyclic permutations of matrix products, so
we get similar behaviour starting from any of the points
{x,Φ(x),Φ2(x), . . .Φp−1(x)}.

For a flow ẋ = f(x) the same analysis gives, again to
linear order in δ(0)

d

dt
δ(t) = (Df)δ(t)

2In this situation a natural approach is to redefine the norm to
align with the eigenvectors.
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3.1 Linearised dynamics 3 LOCAL DYNAMICS

which may be integrated (analytically or numerically) to

δ(t) = (DΦt)δ(0)

where Φt is the corresponding flow. Its derivatives satisfy
the matrix differential equation

d

dt
(DΦt) = (Df ◦ Φt)(DΦt) DΦ0 = I

which in general must be integrated along the trajectory,
an extra d2 equations.

We can similarly specialise to the case of fixed points
(Φt(x) = x for all t). Here, we see that

DΦt = exp(t(Df))

so that the eigenvalues of DΦt are the exponentials of
those of Df .

We can also consider periodic orbits (ΦT (x) = x and
the period is the smallest positive such T ). A (non-fixed)
periodic orbit may be analysed using DΦT , which always
has one eigenvalue equal to one corresponding to the flow
direction. If all other eigenvalues are of magnitude less
than one, the periodic orbit is asymptotically stable and
is called a limit cycle (K&H, Sec 2.4.3).

Actually, linear and nonlinear dynamics are related for
many unstable situations also:

Definition 3.3. Two dynamical systems (either flows or
maps) with Φt and Ψt are conjugate if there is an invert-
ible function h satisfying

h ◦ Φt = Ψt ◦ h

Topological conjugacy requires that h and its inverse
be continuous. Smooth conjugacy requires that h and
its inverse be differentiable (eg Ck). Local conjugacy
requires that the relation holds only in the neighbourhood
of a specific point. A related concept is

Definition 3.4. Two flows Φt and Ψt are orbit equivalent
if they are related by

h(Φt(h−1(x))) = Ψα(t,x)(x)

for h invertible and α an increasing function of t.

Theorem 3.5. (Hartman-Grobman theorem) If a differ-
ential equation has a fixed point with Jacobian Df hav-
ing all eigenvalues with non-zero real part (“hyperbolic”),
there is a local topological conjugacy between the linear
and nonlinear flows.3

Notes: The change of variables is continuous (normally
Hölder continuous) — but derivatives may not match or

3See Teschl; also note that global versions exist, for example in
P. Zgliczynski arXiv:1405.6733

even exist.4 The non-zero real part is equivalent to DΦt

for the flow having magnitude not equal to one. The
equivalent statement also holds for diffeomorphisms (ie
differentiably invertible maps).

Warning: The word hyperbolic is used in several dif-
ferent senses in dynamical systems and between authors.
The most common other usage would require eigenvalues
with real part less and greater than zero, or magnitude
less and greater than one, as appropriate.

We can also relate the stability of a flow Φt(x) to its
Poincaré map Φτ(x)(x). The chain rule gives

δj(n+ 1) =
∑
i

d

dxi
Φτ(x(n))
j (x(n))δi(n)

=
∑
i

[
∂τ

∂xi
f(Φτj ) +

∂Φτj
∂xi

]∣∣∣∣∣
x(n)

δi(n)

The second term evolves the system by a fixed τ , however
τ is in general a function of x so this is adjusted by the
flow term f to project the perturbation to the Poincaré
surface Y .

Example 3.6. If we consider the previous examples, har-
monic oscillator with Poincaré section at x = 1, y = v, we
have as before, Φt(x, y) = (x cos t+y sin t,−x sin t+y cos t)
and τ(y) = 2 arctan y, y > 0. Using the y-component of
Φt and substituting x = 1 we find

δ(n+ 1)
δ(n)

=
dτ

dy

d

dτ
Φτ (y) +

d

dy
Φτ (y)

=
2

1 + y2
(−1 cos τ − y sin τ) + 1 cos τ

=
2

1 + y2

[
−1− y2

1 + y2
− 2y2

1 + y2

]
+

1− y2

1 + y2

= −1

which is just the derivative of the Poincaré map F (y) =
−y.

If the surface Y is given by the solution of

g(x) = 0

we can find the above derivatives of τ by implicit differ-
entiation of

g(Φτ(x)(x)) = 0

with respect to the coordinates.5 It is clear that (assum-
ing Y is transverse to the orbit and smooth) exponential

4In two dimensions, life is generally C1 smooth, though: See D.
Stowe J. Diff. Eq. 63, 183-226 (1986) for this, and also a discus-
sion of the resonance conditions (relations between eigenvalues) that
inhibit smoothness.

5An example where the equation for τ is not analytically solvable,
but the Jacobian may be obtained by implicit differentiation is given
in J. Lloyd, M. Niemeyer, L. Rondoni and G. P. Morriss, Chaos 5,
536-551 (1995).
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3.2 Linear dynamics 3 LOCAL DYNAMICS

growth or decay of a perturbation of a periodic orbit of
the flow evolves at the same rate for the fixed point of the
corresponding Poincaré map.

3.2 Linear dynamics

Having seen we can approximate dynamics in the vicinity
of fixed (and periodic) points by linearisation, we now
need to classify such behaviour.

Consider the map

xt+1 = Axt

where A is a d × d matrix. We can change coordinates
x = Cy (with C invertible) so that

yt+1 = Byt

with B = C−1AC. We choose C so that B is in Jordan
normal form, that is, zero except for eigenvalues on the
diagonal, with possibly 1’s immediately above the diag-
onal where there are equal eigenvalues. Specifically, the
columns of C are right eigenvectors of A, solutions of

(A− λI)v = 0

If the algebraic multiplicity is greater than the geometric
multiplicity, ie not enough linearly independent eigenvec-
tors exist, we find generalised eigenvectors using

(A− λI)vj+1 = cvj

to give a c above the diagonal. The standard Jordan
normal form has c = 1, but it is also convenient to use
c = λ. Finally if there are complex conjugate eigenvalues
and eigenvectors it is convenient to use the real combina-
tions (v +v∗)/2, (v−v∗)/(2i) which lead to a 2×2 block
in B of the form (

a b
−b a

)
Alternatively, we can consider the differential equation

ẏ = Dy

with D in real Jordan normal form, having the solution

y(t) = eDty(0)

where the matrix exponential can be defined using the
usual power series. Putting t = 1 we arrive back at the
map case. The exponential of a matrix in Jordan block
form can be found explicitly, for example

exp
(
λt t
0 λt

)
=
(
eλt teλt

0 eλt

)
Thus we reduce to the map case, with the main difference
being that the solution is continuous in t. The boundary

Figure 1: Node

between stable and unstable for a flow is where the eigen-
values of D cross the imaginary axis, while for a map it is
the exponential of this, ie the unit circle.

Case: d = 1. A = λ (scalar) and so xt = λnx0. The
fixed point at 0 is stable if |λ| < 1, marginal if |λ| = 1 and
unstable if |λ| > 1. The orbit remains on one side of the
fixed point if λ > 0 and flips if λ < 0.

Case: d = 2, distinct real eigenvalues λ and µ with
|λ| ≥ |µ|. We have

B =
(
λ 0
0 µ

)
y1(n) = λny1(0), y2(n) = µny2(0)

thus points lie on the invariant curves

|y2| = c|y1|ln |µ|/ ln |λ|

with
c = y2(0)y1(0)ln |µ|/ ln |λ|

in the map case, and consist of a branch of these curves
(ie choice of signs) in the flow case. These are named

• |λ| > 1, |µ| > 1: Unstable node

• |λ| > 1, |µ| < 1: Saddle

• |λ| < 1, |µ| < 1: Stable node

When one of the eigenvalues has magnitude one, the in-
variant curves become parallel.
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Figure 2: Saddle

Case: d = 2, complex conjugate eigenvalues λe±iω. In
this case we use the real form of the Jordan normal form.

B = λ

(
cosω sinω
− sinω cosω

)
so that

Bn = λn
(

cosnω sinnω
− sinnω cosnω

)
The invariant curves are spirals, and the fixed point is
called a (stable or unstable) focus. If λ = 1, the map is
a rotation by angle ω and is called a centre. In this case
its properties depend sensitively on ω: If ω is a rational
multiple of π, all orbits are periodic, while if not, all orbits
fill the invariant curves densely and uniformly.

Case: d = 2, Equal eigenvalues, proportional to the
identity

B =
(
λ 0
0 λ

)
The map now just scales all directions equally, and the
invariant curves are directed radially.

Case: d = 2, Equal eigenvalues, otherwise. We can
transform the problem to

B =
(
λ λ
0 λ

)
from which we find

Bn = λn
(

1 n
0 1

)

Thus
y1(n) = λn(y1(0) + ny2(0))

y2(n) = λny2(0)

Solving the second equation for n and substituting into
the first, we find

y1(n) = y2(n)
[
y1(0)
y2(0)

+
ln(y2(n)/y2(0))

lnλ

]
which is a (stable or unstable) degenerate node. When
λ = ±1 we have (solving from the beginning again)

y1(n) = (±1)ny1(0) + ny2(n)

which is a shear.
A similar analysis can be carried out in higher dimen-

sions.

Example 3.7. Classify the fixed point of the map
(x1, x2) → (3x1 + x2, x2 − x1) and give an explicit ex-
pression for the nth iterate. We have

A =
(

3 1
−1 1

)
There is a repeated eigenvalue λ = 2 but only a single
eigenvector v1 = (1,−1)T . Thus we find a generalised
eigenvector

(A− λI)v2 = 2v1(
1 1
−1 −1

)
v2 =

(
2
−2

)

Figure 3: Focus
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Figure 4: Centre

Figure 5: Degenerate node

for example v2 = (2, 0)T . Thus we can use

C =
(

1 2
−1 0

)

which reduces the problem to:

B = C−1AC =
(

2 2
0 2

)
The general solution is (similar to above)

y(n) = 2n
(

1 n
0 1

)
y(0)

Using C and C−1 to transform back, we find

x(n) = 2n−1

(
n+ 2 n
−n −n+ 2

)
x(0)

This is a degenerate unstable node.

Example 3.8. Classify the fixed point of the damped har-
monic oscillator ẋ = v, v̇ = −x − αv for each possible
α. The matrix

D =
(

0 1
−1 −α

)
has eigenvalues λ = (−α±

√
α2 − 4)/2.

For α = 0 we have the undamped harmonic oscillator,
which is a centre. For 0 < α < 2 (underdamped) we have
two complex conjugate eigenvalues with negative real part;
this is a stable focus. For α > 2 (overdamped) we have two
negative real eigenvalues, a stable node. For α = 2 (crit-
ical damping) we have both eigenvalues equal to −1. We
need to check the geometric multiplicity. An eigenvector
satisfies

(D − λI)v =
(

1 1
−1 −1

)
v = 0

We see there is only a single eigenvector (1,−1)T . Thus
we have a stable degenerate node. For negative α (unphys-
ical) we have similar but unstable behaviour: An unstable
focus for −2 < α < 0, an unstable degenerate node for
α = −2 and an unstable node for α < −2.

3.3 Local bifurcations

Generically we expect the eigenvalues of DΦt for a fixed or
periodic point to be hyperbolic, ie differ from magnitude
one, and hence expect node, saddle and focus behaviour
unless there is a good reason, eg a symmetry in the model.
An important exception to this, namely, Hamiltonian dy-
namics, will be considered at the end of the course.

Hyperbolic fixed or periodic points have the impor-
tant property of structural stability, that is, all suf-
ficiently small perturbations6 the perturbed system is lo-
cally topologically conjugate to the original for maps, or

6in a specified topology; we need at least C1 to ensure the Jaco-
bian exists and is close to that of the unperturbed system.
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orbit equivalent for flows. More precisely, consider a map
Φµ : Rd → Rd depending on a parameter µ ∈ R and C1 in
x and µ. Then, by applying the implicit function theorem
to the equation Ψ(x, µ) = Φµ(x)− x = 0 we have

Theorem 3.9. (Lack of bifurcation) Suppose x0 is a
hyperbolic fixed point of a map Φµ0 (all eigenvalues of
DΦµ0 have magnitude different from unity), then there
are neighbourhoods U of µ0 and V of x0 and a map
X : U → V so that x ∈ V is a fixed point of Φµ if and
only if x = X(µ).

Apparently the implicit function theorem is only con-
cerned with eigenvalues equal to one, however a change in
stability can be associated with any eigenvalue of magni-
tude one, and we also want to describe higher iterates of
the map, for example an eigenvalue of −1 may be asso-
ciated with a period doubling (below). For a flow, fixed
points may have hyperbolic eigenvalues, however for limit
cycles there is always a unit eigenvalue corresponding to
the flow direction. In this case it is possible to apply the
above theorem to a transverse7 Poincaré map; the period
of the orbit will in general vary with µ.

Conversely, cases where one or more eigenvalues has
magnitude one are sensitive to small effects due to non-
linearity or varying a parameter. As mentioned before,
bifurcations are variations in qualitative behaviour of a
dynamical system due to variation of a parameter. Local
bifurcations are due to eigenvalue(s) of DΦt for a fixed or
periodic point reaching magnitude one.

In order to analyse bifurcations, we perform Taylor se-
ries expansions8 in both the dynamical variable(s) (eg x)
and parameter (eg µ), locating the fixed point without loss
of generality at x = 0 for all µ and the bifurcation point at
µ = 0. As with the linear maps above, coordinate changes
(in general nonlinear) can be used to reduce many prob-
lems to certain “normal forms”, including forcing higher
order terms to vanish.9

Now, we restrict to one-dimensional maps and flows.
The most fundamental bifurcation is that of the fold (also
called tangent bifurcation) with normal forms

ẋ = µ− x2

xn+1 − xn = µ− x2
n

for flow and map respectively. Here µ is the parameter.
For µ < 0 there are no fixed points, while for µ > 0 there
are two, at x = ±√µ. Differentiating the right hand sides,

7That is, not parallel to the flow.
8We assume here that the dynamical system has sufficient

smoothness (continuous derivatives). An active area of study is
that of bifurcations for non-smooth systems, see eg di Bernado and
Hogan, Phil. Trans. Roy Soc A 368, 4915-4935 (2010).

9Mathematical justification for this kind of approach comes from
centre manifold theory; see Wiggins, Introduction to applied nonlin-
ear dynamical systems and chaos, Springer 2003

we find to linear order

δ̇ = −2xδ

δn+1 = (1− 2x)δn

Thus the fixed point at x =
√
µ is stable, while the fixed

point at x = −√µ is unstable.
This bifurcation is itself structurally stable: A small10

perturbation in the family of systems can be mapped back
to the original by a topological conjugacy together with a
reparametrisation of µ. Its generality is represented by a
theorem, proved using the implicit function theorem:11

Theorem 3.10. (Fold bifurcation) Suppose

1. Φµ0(0) = 0

2. Φ′µ0
(0) = 1

3. Φ′′µ0
(0) 6= 0

4. ∂Φ
∂µ µ0

(0) 6= 0

Then there is an interval I about zero and a smooth func-
tion p : I → R such that

Φp(x)(x) = x

as well as p(0) = µ0, p′(0) = 0, p′′(0) 6= 0.

Thus for every x close to the bifurcation value (here,
zero) there is a µ giving x as a fixed point. The function
has a quadratic shape, giving no fixed points on one side of
µ0 and two on the other. Notice we have used the implicit
function theorem with different variables here - for the
“no-bifurcation” theorem we could vary µ and always find
a fixed point x, while here we vary x and find a parameter
µ = p(x) for which it is fixed. As we know, the µ on one
side of µ0 have no fixed points.

The transcritical bifurcation has normal form

ẋ = µx− x2

xn+1 − xn = µxn − x2
n

from which we find fixed points at x = 0 and x = µ, which
coincide at µ = 0. To linear order we have

δ̇ = (µ− 2x)δ

δn+1 = (1 + µ− 2x)δn

so that x = 0 is stable for µ < 0 while x = µ is stable
for µ > 0. The two fixed points thus switch stability at
the bifurcation. This bifurcation is not structurally stable
unless restricted to dynamics exhibiting a fixed point for
an interval around µ = 0.

10That is, C2

11See eg Devaney.

Page 6. c©University of Bristol 2017. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and the EPSRC Mathematics Taught Course Centre and is to

be downloaded or copied for your private study only.



3.3 Local bifurcations 3 LOCAL DYNAMICS

x

µ

Figure 6: The fold bifurcation. Here, and in the later
figures, solid lines indicate stable fixed points and dotted
lines unstable fixed points.

x

µ

Figure 7: The transcritical bifurcation.

The supercritical pitchfork bifurcation has normal
form

ẋ = µx− x3

xn+1 − xn = µxn − x3
n

from which we find fixed points at x = 0 and (for µ > 0)
±√µ. To linear order we have

δ̇ = (µ− 3x2)δ

δn+1 = (1 + µ− 3x2)δn

so that x = 0 is stable for µ < 0 and the two other fixed
points are stable for µ > 0. The subcritical case has a
plus in the first equation, leading to two fixed points that
are unstable and exist at µ < 0. This bifurcation is not
structurally stable unless restricted to systems with odd
symmetry.

x

µ

Figure 8: The supercritical pitchfork bifurcation. With
the solid curves as period two orbits, it represents a period
doubling bifurcation. With the solid curves as stable limit
cycles, it represents a Hopf bifurcation.

x

µ

Figure 9: The subcritical pitchfork bifurcation (or period
doubling, or Hopf, as in Fig. 8).

In addition, maps can have fixed points with eigenvalue
−1 which has no analogue for flows. This leads to a bifur-
cation unique to maps (or Poincaré sections of flows), the
flip or period doubling bifurcation, with normal form

−xn+1 − xn = µxn − x3
n

Note the extra minus on the left hand side. Again, there
is a fixed point at x = 0 which is stable for µ < 0. There
are no other fixed points, however the twice iterated map
gives

xn+2 = (1 + µ)2xn − (1 + µ)(2 + 2µ+ µ2)x3
n +O(x5

n)

which is the correct form for a pitchfork bifurcation. Thus
there is a period two orbit present and stable for µ >
0. This bifurcation is structurally stable; in particular a
quadratic term can be removed by a conjugation of the
form h(x) = x+ ax2 + . . .. A relevant theorem is thus
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Theorem 3.11. (Period doubling) Suppose

1. Φµ(0) = 0 for all µ in an interval around µ0.

2. Φ′µ0
(0) = −1

3. ∂(Φ2
µ)′

∂µ µ0
(0) 6= 0.

Then there is an interval I around zero and a function
p : I → R such that

Φp(x)(x) 6= x, Φ2
p(x)(x) = x

Note that in the period doubling bifurcation, the fixed
point changes stability without another fixed point being
created or destroyed; the object created is a period two
orbit.

There are higher dimensional analogues of these bifur-
cations, for example adding an expanding or contracting
direction as with ẏ = cy with c 6= 0 (and similarly for
a map) to the fold gives a generic saddle-node bifurca-
tion in which a saddle and node are created. Sometimes
the one-dimensional fold is called a saddle-node for this
reason.

There is also one different and commonly encountered
bifurcation found in higher dimensional flows.12 The
Hopf (or Poincaré-Andronov-Hopf) bifurcation has nor-
mal form in polar coordinates

ṙ = r(µ− r2)

θ̇ = 1

We see that in the r variable this is just a pitchfork bifur-
cation, however r > 0 is no longer a point, it is a circle.
Hence the stable focus at µ < 0 has become a limit cy-
cle. As with the pitchfork, there is a subcritical version
obtained by changing the sign. This bifurcation is struc-
turally stable.

Theorem 3.12. (Hopf bifurcation) Suppose a flow in R2

ẋ = fµ(x) satisfies fµ(0) = 0 for all µ and that Dfµ
has eigenvalues α(µ) ± iβ(µ) with α(0) = 0, β(0) 6= 0,
α′(0) 6= 0, then any neighbourhood of the origin contains
a nontrivial periodic orbit for some µ.

Example 3.13. Consider the linear flow

ẋ =
(

µ 1
−1 µ

)
x

Then α = µ and β = 1. The conditions of the theorem
are satisfied, but we find that the periodic orbits exist only
for µ = 0 (harmonic oscillator). This is equivalent to
replacing µ− r2 by µ in the normal form.

12The map version is called a Neimark-Sacker bifurcation, but it
is significantly more complicated due to resonance phenomena, in
particular if the eigenvalue is a kth root of unity for k ≤ 4.

Example 3.14. The van der Pol oscillator (used for ex-
ample in electric circuits) has equations

ẍ+ b(x2 − 1)ẋ+ x = 0

Writing y = ẋ we have

ẋ = y

ẏ = b(1− x2)y − x

This has a fixed point at the origin with derivative

Df =
(

0 1
−1 b

)
and hence α = b/2, β =

√
1− b2/4. Thus there is a

periodic orbit near b = 0. Note however that again this
corresponds to b = 0 exactly (harmonic oscillator). For
b > 0 there is a limit cycle in this system, but it is a finite
distance from the origin, and so not directly related to the
Hopf bifurcation.

3.4 Local bifurcations in the logistic map

The logistic map rx(1−x) provides examples of several of
these bifurcations. As discussed previously, there are two
fixed points, x = 0 and x = (r− 1)/r with stability eigen-
values r and 2−r respectively. Both are non-hyperbolic at
r = 1 so we consider the dynamics in that region, writing
x = δ, µ = r − 1:

δn+1 = (1 + µ)δn(1− δn)
= (1 + µ)δn − δ2

n +O(µδ2
n, δ

3
n)

which corresponds to a transcritical bifurcation.
There is another non-hyperbolic point at r = 3. Here

we have for x = x∗ + δ, x∗ = (r − 1)/r, µ = r − 3:

Φµ(x∗ + δ) = x∗ − (1 + µ)δ − (3 + µ)δ2

Φ2
µ(x∗ + δ) = x∗ + (1 + µ)2δ − µ(1 + µ)(3 + µ)δ2 + . . .

so we can see the conditions of the period doubling the-
orem are satisfied, and we have created a stable period 2
orbit. Analysing this orbit in the same way, we find that
it too undergoes a period doubling bifurcation to a period
4 orbit at r = 1 +

√
6.13

This mechanism explains the appearance of the periodic
orbits which are powers of two, but not the others, for
example the period 3 window. The map Φ3 has, for large
r, maxima corresponding to orbits that reach the highest
point of the map in the third iteration: x0 → x1 → 1/2→
r/4. The largest value of x0 ≈ 0.9. As r increases, this
peak rises until a point near is top is tangent to the line
y = x, making a fixed point of Φ3 which is thus a period

13It might be best to enlist the aid of a computer algebra package
such as maple or mathematica for this.

Page 8. c©University of Bristol 2017. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and the EPSRC Mathematics Taught Course Centre and is to

be downloaded or copied for your private study only.



3.4 Local bifurcations in the logistic map 3 LOCAL DYNAMICS

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Figure 10: The logistic map Φr for r = 0.7, 1, 1.3 illustrat-
ing the transcritical bifurcation.

3 orbit of Φ. Beyond this point, the peak intersects the
line twice, making a stable and an unstable fixed point of
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Figure 11: The map Φ2
r for r = 2.8, 3, 3.2 illustrating the

first period doubling of Φr, which is a pitchfork bifurcation
of Φ2

r.
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Figure 12: The map Φ3
r for r = 3.8, 1 +

√
8, 3.856 illus-

trating the birth of a stable and unstable pair of period
three orbits in a fold bifurcation.

Φ3: A fold bifurcation. The relevant parameter value is
r = 1 +

√
814

It is helpful to analyse the behaviour of orbits close to
these periodic points. In the case of a stable periodic
orbit, 0 < |DΦp| < 1, we know that the perturbation
δn = xn − x∗ evolves as

δn+p = (DΦp)δn(1 +O(δn))

Iterating this we find

δnp = (DΦp)nδ0(1 +O(δ0))

where the coefficient of the correction term is a convergent
geometric series.

If DΦp = 0 (that is, 1/2 is one of the points in the orbit)
we have a superstable orbit;15 typical behaviour is

δn+p = Cδ2
n(1 +O(δn))

leading to quadratic convergence, similar to the Newton-
Raphson method:

δnp = exp[2n ln δ0(1 +O(δ0))]

14This is not easy to derive; if you want to give up, read J. Bech-
hoefer, Math. Mag. 69, 115-118 (1996).

15We can generalise superstable orbits to study orbits for which
the critical point is pre-periodic rather than periodic. See R. V.
Jensen and Christopher R. Myers. “Images of the critical points of
nonlinear maps.” Phys. Rev. A 32 1222-1224 (1985).
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If DΦp = 1, we have two cases. In the transcritical
bifucation at r = 1 and later fold bifurcations we have

δn+p = δn − cδ2
n

This decreases to zero (the fixed point is still marginally
stable), but not exponentially. We see that the equation
can be satisfied order by order with

δn = cn−1 +O(n−2)

At the left of each period doubling interval we have

δn+p = δn − cδ3
n +O(δ5

n)

which is satisfied by

δn =
1√
2cn

+O(n−3/2)

These effects are important for numerical simulation.
If we simulate the map directly with double precision
(roughly 16 digit) arithmetic, we cannot expect to get
closer than about 10−16/3 ≈ 10−5 at period doubling
parameters, since the increments δ3

n are smaller than
the roundoff. Even getting this far will take of order
δ−2 ≈ 1011 iterations. If the application allows super-
stable parameter values instead, these are clearly prefer-
able.

3.5 General one dimensional maps

The logistic map is interesting as the quadratic (hence
perhaps simplest nonlinear) example of one dimensional

Figure 13: The period 3 window in the logistic map
(blowup of Fig 2), together with the unstable period 3
orbit (dotted line).

maps, but it is important to know how many of its proper-
ties apply to other examples. The answer is, surprisingly
many. We already met the period three theorem in the
introduction. For the remaining results the main property
we need is that of negative Schwarzian derivative:

Definition 3.15. The Schwarzian derivative of a func-
tion f(x) is

S[f ] =
f ′′′(x)
f ′(x)

− 3
2
f ′′(x)2

f ′(x)2

If a map Φ has negative Schwarzian derivative (this
statement always means for all x), so do all its iterates
Φn for n ≥ 2. Using this condition we have

Theorem 3.16. (Singer) If Φ is piecewise monotonic
with l intervals and has negative Schwarzian derivative
within each interval, Φ has at most l+1 stable or marginal
periodic orbits, obtained as limits of the orbits of its l+ 1
local extrema.

For the logistic map, the stable/marginal periodic orbits
are either the fixed point at zero (found from iterating the
endpoints of the interval) or at most one found by iterating
the critical point x = 1/2.

Another interesting feature is that of Feigenbaum uni-
versality. The period doublings in maps with negative
Schwarzian derivative and a single quadratic critical point
occur at shorter and shorter intervals in r, such that the
ratio of consecutive intervals

δ = lim
n→∞

rn − rn−1

rn+1 − rn

exists and is equal to 4.6692 . . ., independent of the map.
The reason is that at the endpoint, the map Φr∞ tends,
under the operation of doubling and scaling, to a univer-
sal function, the fixed point of the functional dynamical
system

RΦ = αΦ2(xα)

for a universal constant α = −2.5029 . . .. This fixed point
(the solution of RΦ = Φ) has a single unstable eigen-
value given by δ. The remaining infinitely many dimen-
sions are contracting (hence stable). Thus the fixed point
may be reached by varying the single parameter r. Rig-
orous proofs of these statements exist, but are technical
(see K&H, section 11.3). Maps with higher order critical
points, such as r[1/2k− |1/2−x|k], k > 2 have a separate
universality class (hence δ and α constants) for each k.
Note that this terminology, “universality,” “renormalisa-
tion,” comes from an analogy with the physics of phase
transitions.

Example 3.17. The map Φ(x) = r sinπx has negative
Schwarzian derivative and a single quadratic critical point
on [0, 1] for r ∈ (0, 1].
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Figure 14: The main bifurcation cascade of the logistic
map (blowup of Fig. 2).
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