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7 Hamiltonian dynamics

7.1 Volume preserving systems

In the case of an invertible map or flow, it is easy to check
whether the uniform measure ρ = 1 is invariant. We just
need the Jacobian |det(DΦt|x)| = 1, independent of x
and t. For the flow we can differentiate with respect to t
and set t = 0 to find tr(Df) = 0. Such systems are called
area or volume preserving. It is clear that there can be no
attractors in such systems: Any neighbourhood of such a
set will have larger volume and cannot shrink to it under
the dynamics. Also, we know from above that the sum of
the Lyapunov exponents must be zero.

This condition, together with the fact that the entries
are real, implies that the product of the eigenvalues of DΦ
is ±1 or equivalently (for the flow) that the sum of the
eigenvalues of Df is zero. For two dimensional systems,
this means that fixed points are generically saddles or cen-
tres, may also be one of the marginal cases such as shears,
but may not be a node or focus. Such fixed points are typi-
cally denoted “hyperbolic” (saddle), “elliptic” (centre) or
“parabolic” (shear). Bifurcations of volume preserving
(and specifically Hamiltonian) systems can be classified
accordingly.1 In two dimensions with det(DΦ) = 1, these
may be distinguished by the trace T = trDΦ, which is the
sum of the two eigenvalues: |T | < 2 is elliptic, |T | = 2
is parabolic and |T | > 2 is hyperbolic. In the latter case
T < −2 is sometimes denoted inverse hyperbolic or
reflection hyperbolic. An important class of area pre-
serving maps is given by linear toral automorphisms,
x→ Tx considered modulo one in both coordinates, with
T an integer matrix with unit determinant.

The condition det(DΦt) = 1 in two dimensions is
equivalent to

S∗JS = J

where the star indicates transpose, S = DΦt and

J =
(

0n In
−In 0n

)
in dimension 2n, where 0n and In are zero and identity
matrices respectively as given in the introduction. This
condition says the map Φt is symplectic,2 and DΦt is

1Bifurcations, among others, include the saddle-centre, pitchfork
and Hopf bifurcations, roughly corresponding to the one dimensional
fold, pitchfork and Hopf bifurcations studied in chapter 3, but with
stable/unstable fixed points replaced by centres and saddles. See
the lecture notes “Symmetric Hamiltonian bifurcations,” by P.-L.
Buono, F. Laurent-Polz and J. Montaldi, LMS Lecture Notes 306
357-402 (2005).

2Symplectic maps are reviewed in J. Meiss, Rev. Mod. Phys. 64
795-848 (1992).

Page 1. c©University of Bristol 2017. This material is copyright of the University unless
explicitly stated otherwise. It is provided exclusively for educational purposes at the

University and the EPSRC Mathematics Taught Course Centre and is to be downloaded or
copied for your private study only.



7.2 Hamiltonian systems 7 HAMILTONIAN DYNAMICS

a symplectic matrix. We see that for general n, areas
of two dimensional spaces defined by the corresponding
variables are preserved. Symplectic matrices of a given
size form a group.

For n > 1 the symplectic condition is stronger than
unit determinant. The characteristic polynomial of a sym-
plectic matrix S

p(λ) = det(S − λI)
= det(JS − λJ)
= det(JS − λS∗JS)
= det(−λ−1J + S∗J) det(−λS)
= λ2n det(S − λ−1I)
= λ2np(λ−1)

noting that both S and J have unit determinant. Thus
the eigenvalue spectrum of a symplectic matrix splits into
pairs of inverses (quadruples of inverses and complex con-
jugates where complex). This implies that the Lyapunov
spectrum of Φ is symmetric around zero.

7.2 Hamiltonian systems

Symplectic maps arise naturally in physical systems that
are derived from a HamiltonianH(x) with x = (q,p),q,p ∈
Rn, the coordinates and momenta respectively. The in-
teger n is the number of degrees of freedom. Note
that in general, the Hamiltonian can depend explicitly on
time. The momentum variables, called “canonical mo-
menta” are not necessarily mass times velocity, for exam-
ple if one of the qi is an angle, the corresponding pi could
be an angular momentum.3

Hamilton’s equations of motion are as follows:

ẋ = JDxH(x)

where x = (q,p) ∈ R2n, Dx denotes the gradient, J de-
notes the block matrix

J =
(

0 I
−I 0

)
where the zero and unit submatrices are here of size n.
For a system of N particles in three dimensions, n = 3N .

The most common Hamiltonian function is of the form

H(q,p) =
∑
i

p2
i

2mi
+ V (q)

3The precise prescription, which we will not need, is as fol-
lows: For a given arbitrary set of coordinates qi which can be
any independent functions of positions and velocities, construct a
Lagrangian function L(q, q̇, t) equal to the kinetic minus poten-
tial energies. Then invert the expressions pi = ∂L/∂q̇i to write
q̇i = fi(q,p, t) in terms of which the Hamiltonian is H(q,p, t) =P

i pifi(q,p, t)− L(q, f(q,p, t), t).
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for particles indexed by i with masses mi moving with a
potential energy function V (q) that depends on the posi-
tions of all the particles, for example for Newtonian grav-
ity as discussed in the introduction, we have

V (q) = −
∑
i<j

Gmimj

|qi − qj |

Another example we have seen is the simple pendulum,
where q represents the angle from the lowest position, p
the angular momentum, and

H(q, p) =
p2

2ml2
−mgl cos q

where l is the length of the pendulum, m the mass of the
bob and g the acceleration of gravity.

Hamilton’s equations imply

Df = J(∂2
xH)

with ∂2
xH a symmetric matrix. Thus

(Df)∗J + J(Df) = 0

which then implies that DΦt is a symplectic matrix for all
t, in particular that the dynamics is volume preserving and
the Lyapunov spectrum is symmetric. Also, the involution
i(q,p) = (q,−p) shows that the dynamics is reversible if
the Hamiltonian is even in the momentum H(q,−p) =
H(q,p).

Using Hamilton’s equations, the time dependence of
any phase variable f(x) is

df

dt
= {f,H}

where

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
is called the Poisson bracket.

It is easy to see that {H,H} = 0, so Hamiltonian sys-
tems have a constant of motion given by the Hamiltonian
function itself, normally corresponding to energy. Thus
they have at least two zero Lyapunov exponents, one cor-
responding to the flow direction, and one for perturbations
to the energy.

Hamiltonian systems may also have other constants of
motion. In the case of Newtonian gravity, the energy, total
momentum and total angular momentum are all constants
of motion. It follows directly from Hamilton’s equations
that if H does not depend on qi for some i, then pi is
constant. Then, properties such as ergodicity make sense
only on the invariant surfaces where all the constants of
motion are fixed. Also, there are zero Lyapunov exponents
corresponding to both the qi and pi coordinates: Varying
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qi leads to an identical system shifted in this coordinate,
while a perturbation in pi is unchanged.

A Hamiltonian with n degrees of freedom is called Li-
ouville integrable, if there are n conserved quantities
Ji including the Hamiltonian itself, that are functionally
independent and have mutual zero Poisson brackets. In
this case, the Hamiltonian may be transformed so it is a
function only of the Ji as momenta, and so the correspond-
ing coordinates have constant time-derivative. These are
called action-angle coordinates and if the energy sur-
face is compact, the dynamics in these coordinates is sim-
ply free motion on a torus.

A Poincaré section fixing a coordinate, say qn of a
Hamiltonian flow, and using a given constant energy E to
determine pn at each iteration, also leads to a symplectic
map in the other variables. For example, a 2D billiard
map is symplectic using the arc length s and component
of the momentum parallel to the boundary, p‖ = |p| sin θ,
where θ is the angle between the particle direction follow-
ing a collision and the inward normal to the boundary,
and furthermore the normalisation constants are consis-
tent. This fact leads to an exact formula for the mean
free path in billiards. Let us calculate the total phase
space volume for the speed fixed to unity. Using the flow
invariant measure this is 2π|D| where |D| is the area of
the billiard and the 2π corresponds to directions. This
must be equal to the same quantity calculated using the
above boundary invariant measure 2τ̄ |∂D| where the 2 is
the domain of sin θ, τ̄ is the average time per collision,
and |∂D| is the perimeter. Thus we have

τ̄ =
2π|D|
2|∂D|

=
π|D|
|∂D|

There are similar formulas is higher dimensions.
The most common Hamiltonian function is of the form

H(q,p) =
∑
i

p2
i

2mi
+ V (q)

for particles indexed by i with masses mi moving with a
potential energy function V (q) that depends on the posi-
tions of all the particles, for example Newtonian gravity as
discussed in the introduction. Another example we have
seen is the simple pendulum, where q represents the angle
from the lowest position, p the angular momentum, and

H(q, p) =
p2

2ml2
−mgl cos q

where l is the length of the pendulum, m the mass of the
bob and g the acceleration of gravity.

Numerical integration of Hamiltonian systems is most
commonly performed using symplectic integrators. These
use exactly symplectic maps that approximate the true
(symplectic) dynamics, and hence retain phase space vol-
ume conservation, and conservation of a quantity very
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close to the real energy. In a splitting method the
Hamiltonian is split into a sum of parts, for example ki-
netic (T ) plus potential (V ), each of which can be inte-
grated by an exact symplectic map. The product of such
symplectic maps is also symplectic, and approximates the
true Hamiltonian dynamics.

If the time step is τ , a purely kinetic Hamiltonian (in
the usual form) gives

ΦτT (q,p) = (q + τp/m,p)

while a purely potential Hamiltonian gives

ΦτV (q,p) = (q,p− τ∇qV )

For small time step, the combined evolution can be ap-
proximated in terms of these, for example the Störmer-
Verlet algorithm

Φτ ≈ Φτ/2T ◦ ΦτV ◦ Φτ/2T

7.3 The bouncer model

This was first introduced by Pustylnikov in 1983. Con-
sider a plate vibrating with vertical position y0(t) = ε cosωt
and a particle that moves above it y(t) accelerating down-
wards due to a gravitational field −g and making perfectly
elastic collisions at times tn with the plate. If the plate is
assumed to have infinite mass, conservation of energy and
momentum at collision leads to the rule

ẏ(t+) = −ẏ(t−) + 2ẏ0(t)

Scaling the position and time, we can set g = ω = 1,
leaving a single parameter ε. We ignore air-resistance.

This system is non-autonomous, but the periodicity of
the vibrations allows us to use either a time 2π map or col-
lision map to reduce the problem to an autonomous map.
We take the latter approach, describing the collisions by
the phase at collision φn = tn mod 2π and velocity subse-
quent to collision vn = ẏ(t+n ).

The displacement from one collision to the next is

ε cosφn+1 − ε cosφn = vn∆n −
1
2

∆2
n

where ∆n = tn+1 − tn. Also, the velocity decreases by
an amount ∆n during this time (since g = 1). Thus the
outgoing velocities are related by

vn+1 = −(vn −∆n)− 2ε sinφn+1

These equations cannot be solved explicitly, since they in-
volve the intersection of a sinusoidal curve and a parabola.
Numerical methods can use a Newton-like iteration to
solve the equation numerically.4

4See for example C. P. Dettmann and E. D. Leonel, Physica D
241 403-408 (2012).
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A simpler and numerically more efficient approach makes
an additional assumptions: Assume that v is much greater
than ε. Then particle is moving fast enough so that it
cannot be overtaken by the upwardly moving plate (no
repeat collisions), and the distance it travels any time it
is near the plate is also much greater than that of the
plate. These constitute the static wall approximation.
Thus we find ∆n ≈ 2vn, leading to

vn+1 = vn − 2ε sinφn+1

φn+1 = φn + 2vn

Note the subscript n+ 1 on the right hand side.
The original system appears Hamiltonian5 but we need

to check whether the symplectic (effectively just area pre-
serving) property holds under the static wall approxima-
tion (SWA):

DΦ =

(
∂φn+1
∂φn

∂φn+1
∂vn

∂vn+1
∂φn

∂vn+1
∂vn

)

=
(

1 2
−2ε cos(φn + 2vn) 1− 4ε cos(φn + 2vn)

)
which we see has unit determinant as required. The trace
is 2− 4ε cosφn+1.

Fixed points are of two types: For true fixed points we
have φ and v multiples of π. These are elliptic if ε < 1
and φ is an even multiple of π, and hyperbolic otherwise.
Then, for ε > π/2 there are travelling fixed points, called
accelerator modes where v increases by a multiple of π
at each step (if decreasing, clearly the SWA would become
invalid). Again, stability is determined by the trace and
may either be elliptic or hyperbolic. In the elliptic case,
there is very likely a positive measure set where v increases
without bound, the phenomenon of Fermi acceleration.

There are a number of similar systems in which a par-
ticle is injected into a periodically oscillating region after
a time dependent on its energy. These include the Fermi-
Ulam model of a particle between a fixed and oscillating
wall t ∼ v−1, and the Kepler model of a comet in an ec-
centric orbit that spends most of its time far from the sun
but is perturbed on its closest approach by Jupiter: The
diffusing quantity is energy E, with t ∼ |E|−3/2. Unlike
the bouncer model, however, the condition for stability
of fixed points (which then influences the rest of phase
space) in these models depends on the magnitude of the
energy.

7.4 The standard map

We can treat the post-collision velocity v in the SWA
bouncer model as an angle modulo 2π. An advantage

5We would need to check that the hard collisions make sense as
the limit of a sequence of time-dependent potential energy functions.
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of this is that the dynamical system now has a finite area
(hence normalised invariant measure). A change of vari-
ables, Xn = −φn+1, Yn = −2vn, K = 4ε leads to the
equations of the Standard map:6

Xn+1 = Xn + Yn+1

Yn+1 = Yn +K sinXn

For K = 0 the dynamics is a completely regular shear,
while for K → ∞ it appears (but has not been proven)
that the dynamics is completely chaotic. The transition
to chaos occurs in several stages (see Fig.1).

At K = 0, Y is constant and the system is inte-
grable, with the orbits in X having a rotation number
ω = Y/(2π): If this rotation number is rational m/n, the
orbits are n-periodic, while otherwise they are dense in
the invariant curve Y = const.

For small K, Kolmogorov-Arnold-Moser (KAM) the-
ory shows that most of the invariant curves remain, with
exceptions only at resonances. To see this, consider both
K and Y small, and replace differences by derivatives:

Ẋ = Y

Ẏ = K sinX

This (with X = −θ) is just a pendulum, with conserved
energy and Hamiltonian

H(X,Y ) =
Y 2

2
+K cosX

There are two fixed points connected by a separatrix of
width W = 4

√
K in the Y direction. Similarly, we may

perturb around Y = 2πm/n; this leads to island chains
of width W ∼ Kn/2. Inside the separatrices all orbits
have rotation number m/n. Around the separatrices are
chaotic regions arising from homoclinic tangles. Outside
the separatrices, there remain invariant curves with rota-
tion numbers that are badly approximable by rationals.7

The most “irrational” number is the golden ratio g =
(1+
√

5)/2, so its invariant curve is the last to be destroyed
as K increases. The Chirikov criterion suggests that this
happens around when the main island chains overlap, that
is W = 2π or K = π2/4 ≈ 2.467. This is however rather
inaccurate: The transition actually occurs at K ≈ 0.9716.
Beyond this point, orbits in the chaotic regions can diffuse
throughout the system, and in the bouncer model, up to
arbitrarily high velocity.

The fixed point at zero becomes unstable at K = 4,
and beyond this point there are only small elliptic islands
visible in phase space. For many large values of K there

6B. V. Chirikov, Nuclear Physics Institute of the Siberian section
of the USSR Academy of Sciences Report 267 (1969).

7These have continued fraction expansions with coefficients that
are not too large. See for example A. M. Rockett and P. Szüsz
Continued fractions (World Scientific, 1992).

Page 7. c©University of Bristol 2017. This material is copyright of the University unless
explicitly stated otherwise. It is provided exclusively for educational purposes at the

University and the EPSRC Mathematics Taught Course Centre and is to be downloaded or
copied for your private study only.



7.4 The standard map 7 HAMILTONIAN DYNAMICS

Figure 1: The Standard map, from left to right then top
to bottom: K = 0.2, 0.8, 1.2, 4, 6, 8.
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are no islands visible, but there are many open questions,8

for example

For any fixed K, show that there is a set
of positive measure of orbits with posi-
tive entropy.

8See for example A. Giorgilli and V. F. Lazutkin, Phys. Lett. A
272, 359-367 (2000). Note that it is possible to slightly perturb the
standard map to obtain positive entropy: P. Berger and D. Turaev,
arxiv:1704.02473
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