
Applied Dynamical Systems Solution Sheet 1

1. Use the chain rule (and subscripts to denote derivatives)

d

dt
H(q,p) =

dq

dt
·Hq +

dp

dt
·Hp

= Hp ·Hq −Hq ·Hp

= 0

For the pendulum we have equations of motion

q̇ = Hp = p/m, ṗ = −Hq = −mgl sin q

Conservation of energy is

d

dt

(
p2

2m
−mgl cos q

)
= ṗp/m+mglq̇ sin q

= −pgl sin q + pgl sin q

= 0

2. Separation of variables (ie divide by
√
x and integrate) gives

√
x =

1

2
(t− t0)

where t0 is the constant of integration. Since (as usual)
√
x must be

positive, this solution is only valid for t ≥ t0. The separation of vari-
ables implicitly assumes that x 6= 0; if instead x = 0 we see that a
constant x = 0 is also a solution. Thus the general solution is

x(t) =

{
0 t < t0

1
4
(t− t0)2 t ≥ t0

where t0 can be +∞ corresponding to the zero solution everywhere.

If we consider initial data x(0) = 0 we could have any solution with
t0 ≥ 0. Thus the solution is not unique. The Picard-Lindelöf theorem
is not satisfied because

√
x has unbounded derivative in the vicinity of

x = 0 and hence is not Lipshitz continuous there.
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3. Exponential sensitivity of initial conditions in chaotic systems suggests
that the variance of errors should grow exponentially with prediction
time and then saturate as prediction is effectively impossible. However
there are many other factors such as uncertainty in some of the forcing
terms, that complicate the analysis.

4. It is usually possible to distinguish periodic and chaotic regimes, but
period doubling may require professional equipment.

5. The fixed points are solutions of f(x) = x where f(x) = rx(1 − x).
As discussed in lectures these are at x = 0, (r − 1)/r. The period two
points are the solutions to f(f(x)) = x. This is a quartic equation, but
we can divide by the known (fixed point) solutions to get a quadratic;
the answer is

x =
r + 1±

√
r2 − 2r − 3

2r

These solutions are real and distinct (and hence the period 2 point
exists) for r > 3 (also r < −1).

6. We have the damped oscillator ẋ = v, v̇ = −x − αv, (α > 0). This
is linear with constant coefficients - we can either substitute to get a
second order equation for x, or use matrix methods. The flow is(
x(t)
v(t)

)
= Φt

(
x(0)
v(0)

)

= e
−αt
2

(
cosωt+ α

2ω
sinωt 1

ω
sinωt

−1
ω

sinωt cosωt− α
2ω

sinωt

)(
x(0)
v(0)

)

where ω =
√

1− (α/2)2 is assumed to be real (that is, α < 2). The

time-one map is just Φ1, that is, substitute t = 1 into the above. Return
to the surface x = 0 occurs every time π/ω. We find

v(t+ π/ω) = e−
απ
2ω v(t)

so this is the Poincaré map. The flow is invertible: We can uniquely
define the above for negative t.

The question of reversibility is rather difficult: It is clear that the usual
v → −v does not reverse the dynamics. However, noting that in the
variables (x, v/ω + (αx)/(2ω)) the dynamics is just that of a focus —
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rotation with exponential decay, and that a transformation of the form
v → 1/v can reverse an exponential decay, we find that

(x, v)→ 1

r2
(x,−v − αx)

with
r2 = x2 + (v + αx/2)2/ω2

satisfies the conditions for a reversing involution, except for the fixed
point itself. This is physically rather unintuitive, since the damped
oscillator models dissipative processes. Note that there is no involution
that takes account of the fixed point; it must reverse into an unstable
focus but there is none. So it is correct in this sense to argue that the
system is not reversible.

7. My code uses the change of variable to find a Poincare section where
the surface is a level surface of one of the coordinates as here; times
when x = 1 come to

t=1.0492 x=1 y=-1.725

t=5.2565 x=1 y=1.6669

t=7.3138 x=1 y=-1.6536

t=11.559 x=1 y=1.5961

t=13.578 x=1 y=-1.5837

t=17.862 x=1 y=1.5266

t=19.841 x=1 y=-1.515

t=24.167 x=1 y=1.4583

t=26.103 x=1 y=-1.4476

t=30.472 x=1 y=1.3912

t=32.364 x=1 y=-1.3813

t=36.778 x=1 y=1.3251

t=38.624 x=1 y=-1.3159

t=43.086 x=1 y=1.2598

t=44.883 x=1 y=-1.2514

t=49.395 x=1 y=1.1954

t=51.14 x=1 y=-1.1876

t=55.705 x=1 y=1.1315

t=57.396 x=1 y=-1.1245

t=62.017 x=1 y=1.0681
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t=63.651 x=1 y=-1.0617

t=68.331 x=1 y=1.0049

t=69.903 x=1 y=-0.99913

t=74.646 x=1 y=0.94167

t=76.154 x=1 y=-0.93656

t=80.964 x=1 y=0.87823

t=82.403 x=1 y=-0.87372

t=87.284 x=1 y=0.81419

t=88.649 x=1 y=-0.81025

t=93.608 x=1 y=0.74911

t=94.892 x=1 y=-0.74572

t=99.935 x=1 y=0.68239

t=101.13 x=1 y=-0.67954

t=106.27 x=1 y=0.61319

t=107.37 x=1 y=-0.61085

t=112.6 x=1 y=0.54023

t=113.59 x=1 y=-0.53839

t=118.95 x=1 y=0.46138

t=119.81 x=1 y=-0.46002

t=125.31 x=1 y=0.3725

t=126.02 x=1 y=-0.3716

t=131.69 x=1 y=0.26308

t=132.21 x=1 y=-0.26262

t=138.17 x=1 y=0.063134

t=138.29 x=1 y=-0.063107
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