
Applied Dynamical Systems Solution Sheet 2

1. (a) rx(1− x) = 0, Df = r(1− 2x). So, the fixed points are at x = 0,
which is unstable for r > 0 and stable for r < 0; x = 1 which is
unstable for r < 0 and stable for r > 0. At r = 0 all points are
fixed; since perturbations do not grow, this means the fixed points
are stable but not asymptotically stable.

(b) We can write this as

ẋ = y

ẏ = b(1− x2)y − x

The fixed point condition gives y = 0 and hence x = 0 also. We
have

Df =

(
0 1
−1 b

)
with eigenvalues λ = (b/2)±

√
(b/2)2 − 1. Thus for −2 < b < 0 we

have two complex values with negative real part (stable focus), 0 <
b < 2 gives positive real part (unstable focus) and |b| > 2 two real
values (unstable/stable node for positive/negative respectively).
The marginal cases are b = 0, λ = ±i (centre; just a harmonic
oscillator) and b = ±2, a single eigenvalue λ = ±1, but because
this is not a multiple of the unit matrix it is an unstable/stable
degenerate node for positive/negative respectively.

(c) For positive values of the parameters we find from the first equa-
tion y = x, then from the third equation z = x2/β then the second
equation becomes

−x3/β + ρx− x = 0

so x = 0 or x = ±
√
β(ρ− 1), assuming ρ > 1. We have

Df =

 −σ σ 0
ρ− z −1 −x
y x −β


Thus the fixed point at the origin (0, 0, 0) has eigenvalues −β,
−(1 + σ)/2 ±

√
(σ + 1)2/4 + σ(ρ− 1). If ρ < 1 these are all sta-

ble (negative real part), so we have a node, while for ρ > 1 one
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becomes positive and we have a saddle with one unstable and two
stable eigenvalues.

The other fixed points both lead to the characteristic equation for
the eigenvalues

λ3 + (1 + β + σ)λ2 + β(ρ+ σ)λ+ 2σ(ρ− 1) = 0

All coefficients are positive, so there cannot be any unstable real
eigenvalues. If there are complex eigenvalues we can write them in
the form A,B±iC. It is straightforward to express the coefficients
of a general cubic x3 + ax2 + bx+ c in terms of A, B and C, and
hence show that c−ab = 2B((A+B)2 +C2), thence that the sign
of this expression is the same as that of B. We thus find that if
there are complex conjugate eigenvalues they will be positive if

2σβ(ρ− 1) + (1 + β + σ)β(ρ− σ) > 0

That is,

ρ >
σ(σ + β + 3)

σ − β − 1

Determining whether the roots are all real or there is a complex
conjugate pair is straightforward using the discriminant of the
cubic, easiest with symbolic algebra packages. Thus depending
on the parameters we have a stable node, or a stable or unstable
focus with the third direction stable.

2. The period may be found by waiting until the trajectory has reached the
limit cycle, then using a Poincare section method (as in the question on
sheet 1) to determine the period T (eg time it takes to return to x = 0
twice). Then integrate both the original and linearised equations for
this time to obtain the stability matrix DΦt. The result is T = 6.66329
with eigenvalues 1 (corresponding to the flow direction) and 8.59695×
10−4 which is of magnitude less than one, so indicating stability.

3. (a) Φ(x) = tanhx has a fixed point at zero with unit derivative; all
points (not just in the neighbourhood of the fixed point) approach the
origin asymptotically. (b)

Φ

 x
y
z

 =

 1 1 0
0 1 1
0 0 1

 x
y
z


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is a linear map with a degenerate spectrum and non-trivial Jordan
normal form. We see z is constant; if z 6= 0 it makes y grow linearly,
which in turn makes x grow quadratically.

4. Following the instructions, we write (with f(x) = rx(1 − x) and its
linearisation about zero rx so that Ψt(x) = ertx)

h ◦ Φt = Ψt ◦ h

(h′ ◦ Φt)(f ◦ Φt) = rerth

At t = 0 this becomes

h′(x)rx(1− x) = rh(x)

Expanding h(x) = h1x + h2x
2 + . . ., equating terms and summing a

geometric series; or alternatively solving by separation of variables, we
find a solution

h(x) =
ax

1− x
for arbitrary a. We can choose any conjugation, so set a = 1. Then
h−1(x) = x/(1 + x). Thus we find

Φt(x) = h−1(Ψt(h(x))) =
ertx

1− x+ ert(x)

which it can be confirmed satisfies the required conditions

Φ0(x) = x,
d

dt
Φt(x) = f(Φt(x))

5. We have (
Fn+1

Fn+2

)
= A

(
Fn
Fn+1

)
with

A =

(
0 1
1 1

)
This has eigenvalues (1 ±

√
5)/2 = {g,−g−1} and eigenvectors (1, g),

(−g, 1) where g = (1 +
√

5)/2 is the golden ratio. We construct the
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transformation matrix C, so that B = C−1AC is the diagonal matrix
with entries {g,−g−1} using the eigenvectors as columns:

C =

(
1 −g
g 1

)
so that

C−1 =
1

g
√

5

(
1 g
−g 1

)
since g2 + 1 = g

√
5. Thus(

Fn
Fn+1

)
= An

(
F0

F1

)
= C−1BnC

(
0
1

)
=

1√
5

(
gn − (−g)−n

gn+1 − (−g)−n−1

)
from which we can read the formula from the top line.

6. (a) Any polynomial, or ecz with |c| < 1.

(b) ecz with c > 1.

(c) eωz with ω a complex cube root of unity. If you want a real function,
eωz + eω

2z.

(d) eiπcz with c 6∈ Q.

(e)

∞∑
n=0

an
n!

with an a typical realisation of an iid random variable with support
the whole of C and density decaying polynomially at infinity.

Linear operators on infinite dimensional spaces have much richer be-
haviour than the finite case, for which a dense orbit is not possible.
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