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1. There is always a fixed point at y = 1. If we write f(y) = a ln y+y−1,
we find f ′(1) = a + 1 so the fixed point is marginal only for a = −1.
When a < 0, f(y) tends to infinity for both y → 0 and y → ∞, so
there is a second fixed point y∗ with f ′(y∗) < 0 and 0 < y∗ < 1 for
−1 < a < 0; and y∗ > 1 and f ′(y∗) > 0 for a < −1. The two fixed
points coincide for a = −1, corresponding to a transcritical bifurcation.
This is confirmed by the Taylor expansion

d

dt
(y − 1) = (a+ 1)(y − 1) +

1

2
(y − 1)2 + . . .

2. The analysis is very similar to the logistic map.

Fixed points are x = 0 and x∗± = ±
√

1− r−1. f ′(0) = r and f ′(x∗±) =
3− 2r. Thus the fixed points x∗± appear at r = 1 in a pitchfork bifur-
cation, and become unstable at r = 2 at period doubling bifurcations.
An example of a fold bifurcation is the creation of the period 3 sta-
ble/unstable pair at r ≈ 2.45. At r = 3

√
3/2 the local maximum at

x = 1/
√

3 maps to 1 and then 0; beyond this the two attractors at
positive and negative x merge in an attractor merging crisis. Finally at
r = 3 there is a fixed point at the boundary x = 2/

√
3; this is a bound-

ary crisis as for larger r almost all initial conditions are unbounded.

At r = 1 we have for small perturbations δ = x:

δn+1 = δn − δ3
n

which (replacing δn+1 − δn by a derivative) leads to

δn =
1√
2n

+O(n−3/2)

At r = 2 we have for small perturbations δ = x− 1/
√

2:

δn+2 = δn − 32δ3
n +O(δ4

n)

This leads to

δn =
(−1)n

√
32n

+O(n−1)
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The fold case (creation of period three) is similar but more involved;
the normal form gives

δn+3 = δn − cδ2
n +O(δ3

n)

for some constant c arising from the Taylor expansion of the three times
composed map. Assuming δn > 0 we find

δn =
3

cn
+O(n−2)

The Schwarzian derivative is −6(1 + 6x2)/(1 − 3x2)2 (independent of
r) which is clearly negative, and the critical points are quadratic, so
the general theory applies; there are 3 monotonic intervals so at most
4 coexisting stable fixed points (in practice either the origin or the
pair x∗±). Yes, the conditions of a period doubling cascade with the
Feigenbaum constants are met.

3. The Jacobian has eigenvalues 0 and 1, which are neutral and unstable
respectively. The centre manifold corresponding to the neutral direc-
tion is easy to identify: The entire line x = y consists of fixed points.
The unstable manifold may be found by solving

dy

dx
=
ẏ

ẋ
= x+ y

This is a linear first order equation, with solution

y = Cex − x− 1

for some constant C, equal to 1 for an orbit approaching the origin.
Thus it intersects another fixed point when x = ex − x − 1, that is,
approximately x = y = 1.25643.

4. The centre at x = 0 becomes first a stable spiral (underdamped) then
a stable node (overdamped) with the addition of damping. The hyper-
bolic point at x = π remains so. Almost all orbits now limit to x = 0,
thus the stable manifold of this point is now the whole phase space
except for the hyperbolic points and their stable manifolds (which now
extend outwards to higher |v|). The unstable manifold of the fixed
point at x = π now limits to the point at x = 0 rather than to itself.
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