
Chapter 4

1D PDE’s on infinite Domains: Fourier
Transforms

PDE’s on infinite domains need a new technique.

We’ve seen that Fourier series naturally arise when representing functions (I.C.’s in PDE’s)
over finite domains.

Take limit of finite domain as size → ∞.

4.1 Complex Form of the Fourier series

Fourier series can be expressed in a different form using

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i

The Fourier series is (see (3.9))

f (x) =
∞

∑
n=0

an cos
(nπx

L

)
+ bn sin

(nπx

L

)

= a0 +
∞

∑
n=1

an

(
enπix/L + e−nπix/L

2

)
+ bn

(
enπix/L − e−nπix/L

2i

)

= a0 +
∞

∑
n=1

1
2(an − ibn)e

nπix/L + 1
2(an + ibn)e

−nπix/L

Let
cn = 1

2(an − ibn) for n > 0, c0 = a0, c−n = 1
2(an + ibn) for n > 0

Then

f (x) = a0 +
∞

∑
n=1

cnenπix/L +
∞

∑
n=1

c−ne−nπix/L

= a0 +
∞

∑
n=1

cnenπix/L +
−1

∑
n=−∞

cnenπix/L
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4.1. COMPLEX FORM OF THE FOURIER SERIES

So we have the Fourier Series written in the complex exponential form

f (x) =
∞

∑
n=−∞

cnenπix/L

Now we get a neat formula for the coefficients cn, For n > 0 we have from (3.10,3.12)

cn = 1
2(an − ibn) =

1
2

1

L

∫ L

−L

[
cos

(πnx

L

)
− i sin

(πnx

L

)]
f (x) dx =

1

2L

∫ L

−L
f (x)e−nπix/L dx

It’s easy to show that the same formula holds for n < 0 and n = 0. Summarising our
results:

f (x) =
∞

∑
−∞

cnenπix/L where cn =
1

2L

∫ L

−L
f (x)e−nπix/L dx

If f is real, then this formula for cn gives c−n = cn.

4.1.1 The Spectrum

Oscillation of period 2L has frequency 1/2L: no. of cycles/unit length.

Defn: Angular frequency = 2π× freq, = number of radians/unit length.

Often called k in x-context, and ω in t-context.

Examples: eipx has angular frequency p, and eπinx/L has ang. freq. πn/L.

We often say “frequency” to mean ang. freq.

Let’s consider a change of variable from n to k: So let k = nπ/L and C(k) = 2Lcn. Now
k ∈ R, but still takes discrete values of . . . ,−2π/L,−π/L, 0, π/L, 2π/L, . . ..

Now our F.S. is:

f (x) =
1

2L ∑
k

C(k)eikx

where

C(k) =
∫ L

−L
f (x)e−ikx dx

These formulae tell you that a function f (x) is composed of a sum of different “signals” or
“modes” each of weight C(k)/2L. So C(k)/2L is called the spectrum of f (x). At the
moment, these are points spaced equally along the k-axis.

E.g.: If f (x) = sin(πx/L) =
1

2i

(
eiπx/L − e−iπx/L

)
then it follows that C(π/L)/2L =

1

2i

and C(−π/L)/2L = − 1

2i
whilst C(k) = 0 for all other values of k. So the spectrum has just

two components at k = ±π/L of equal and opposite weight.
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4.2. THE FOURIER TRANSFORM

4.1.2 Limit as L → ∞

Write ∆k = π/L = distance between the freqs in the spectrum. As L → ∞, ∆k → 0. By
substitution we have

f (x) =
1

2π ∑
k

C(k)eikx∆k

As L → ∞, ∑
k

→
∫ ∞

−∞
and ∆k → dk. So

f (x) =
1

2π

∫ ∞

−∞
C(k)eikx dk

where

C(k) =
∫ ∞

−∞
f (x)e−ikx dx

and f (x) is any PWC function on R (i.e. not periodic).

Note: k is a continuous variable and C(k) is the spectrum of the function f (x).

THIS IS NOT RIGOROUS MATHEMATICAL THEORY.

4.2 The Fourier Transform

4.2.1 Definitions

Replace spectrum function C(k) with f̃ to make the connection with f (x) explicit.

Defn: The Fourier transform (F.T.) of f (x) is

f̃ (k) =
∫ ∞

−∞
f (x)e−ikx dx

Notes:

1. Sometimes, there is a factor of 1/
√

2π in the definition; sometimes e−ikx is sometimes
eikx.

This is OK, as long as consistent with the definition of the inverse. Also, sometimes f̃

written as f (k) or F(k).

2. Integral only exists if f (x) → 0 “fast enough” as x → ±∞.

3. Can think of F.T. as an operation: f̃ = F{ f }; F is a linear operator.

Defn: The inverse F.T. (from previous section):

f (x) =
1

2π

∫ ∞

−∞
f̃ (k)eikx dk
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4.2. THE FOURIER TRANSFORM

Can think of this as f (x) = F−1{ f̃ } where F−1 is the inverse operator.

Fourier Integral Theorem. If f is absolutely integrable
∫ ∞

−∞
| f (x)| dx < ∞ and PWC on

(−∞, ∞) then integral for f̃ (k) converges. At a point of discontinuity, x = c say, f (x)
defined by its inverse F.T. converges to 1

2( f (c−) + f (c+)) as in F.S.

Proof: too difficult for this course.

Example 1. Take f (x) = e−a|x|, with a > 0. Then

f (x) =

{
eax for x < 0
e−ax for x > 0

Taking the F.T.:

f̃ (k) =
∫ 0

−∞
e(a−ik)x dx +

∫ ∞

0
e(−a−ik)x dx

=

[
1

a − ik
+

1

a + ik

]

=

(
2a

a2 + k2

)
.

Example 2. Inverse F.T. says that

f (x) = e−a|x| =
1

2π

∫ ∞

−∞

2a

a2 + k2
eikx dk

We don’t need to confirm this result – the inverse F.T. theorem tells us it must be true. But
can we confirm it ? (Useful exercise in integration in the complex plane – sometimes
inevitable when considering F.T.’s)

R.H.S. of above is
a

π

∫ ∞

−∞

eikx

a2 + k2
dk

Need complex function theory from Calc 2 here. The integrand can be written as

g(k) =
eikx

(k − ia)(k + ia)

Treat k as a complex number.

There are simple poles (i.e. demoninator vanishes) at k = ia and k = −ia.

To compute the
∫ ∞

−∞
. . . dk, form a closed contour in the complex k-plane which includes

the real k-axis. Why ? Because Cauchy’s residue theorem (CRT) tells us that the integral
round a closed contour is equal to 2πi times the sum of the residues at the poles inside the contour.

Residue at k = ia is lim
k→ia

(k − ia)g(k) =
eix(ia)

2ia
.

Residue at k = −ia is lim
k→−ia

(k + ia)g(k) =
eix(−ia)

−2ia
.

Page 39. c©University of Bristol 2012. This material is copyright of the University unless explicitly stated otherwise. It is provided
exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.



4.2. THE FOURIER TRANSFORM

How to close the contour ?

Two (sensible) possibilities: Either close contour with a large semi-circle in the upper-half
complex k-plane or in the lower-half plane. Which way to go ?

Large semi-circle is k = Reiθ as R → ∞. Then

exp{ikx} = exp{ixReiθ} = exp{iRx cos θ}exp{−Rx sin θ}

• If x > 0 then if 0 < θ < π above tends to zero as R → ∞. I.e. go into upper half plane.

• If x < 0 then if 0 > θ > −π above tends to zero as R → ∞. I.e. go into lower half
plane.

I.e. if x > 0,
a

π

∫ ∞

−∞

eikx

a2 + k2
dk = 2πi

( a

π

) e−ax

2ia
= e−ax

by CRT, picking up pole at k = ia.

If x < 0 then pick up residue from pole at k = −ia

a

π

∫ ∞

−∞

eikx

a2 + k2
dk = −2πi

( a

π

) eax

−2ia
= eax

where the minus sign out front is because the contour being closed is now clockwise (CRT is
usually stated for anticlockwise contours).

This confirms the result !

Example 3: Take f (x) = ex. F.T. does not exist because the integral not convergent. Same
for e−x.

Example 4: Take fth(x) =

{
1/2a for |x| < a
0 for |x| > a

.

This is called a “top-hat” function. Then

f̃th(k) =
∫ a

−a

1

2a
.e−ikx dx =

[
eika − e−ika

2ika

]
=

sin ka

ka

Example 5:

Take f (x) =
e−x2/a2

a
√

π
.

This is a “Gaussian” with a peak of 1
2 -width a.

Note:
1

a
√

π

∫ ∞

−∞
e−x2/a2

dx = 1 is a standard integral (from probability).

Then (see problem sheet)
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4.2. THE FOURIER TRANSFORM

f̃ = e−a2k2/4.

So transform of a Gaussian of half-width a is a Gaussian of half-width 2/a.

Note: Last two examples have shown how “narrow signals” give “wide transforms”.

4.2.2 Simple Properties

1. F is a linear operator: For fns f , g and consts a, b we have
F{a f + bg} = aF{ f }+ bF{g}

2. If f (x) is even in x, then f̃ (k) is even in k.

Proof:

f̃ (k) =
∫ ∞

−∞
f (x)e−ikx dx =

∫ ∞

−∞
f (−x)eikx dx

=
∫ ∞

−∞
f (x)e−i(−k)x dx

= f̃ (−k)

where f (x) = f (−x) and a change of variables x → −x have been used.

Similarly, if f (x) is odd then f̃ (k) is odd also.

3. Furthermore, if f is real & even, then f̃ is real.

Proof:

f̃ (k) =
∫ 0

−∞
f (−x)e−ikx +

∫ ∞

0
f (x)e−ikx dx

= 2
∫ ∞

0
f (x) cos(kx) dx

Similarly, if f (x) is real & odd, then f̃ (k) is imaginary.

4. (V. Important) f̃ ′ (k) ≡ F

{
d f

dx

}
= ik f̃ (k). This is key result for application of F.T.’s

to PDEs.

Proof:

f̃ ′ (k) =
∫ ∞

−∞

d f

dx
e−ikx

=
[

f (x)e−ikx
]∞

−∞
+ ik

∫ ∞

−∞
f (x)e−ikx dx

= ik f̃ (k)

by integration by parts and using f (x) → 0 as x → ±∞.

5. (Shift Property) If g(x) = f (x + a), then g̃(k) = eika f̃ (k).

Proof:

g̃(k) =
∫ ∞

−∞
f (x + a)e−ikx dx =

∫ ∞

−∞
f (x′)eikae−ikx′ dx′ = eika f̃ (k)

After using x′ = x + a.
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4.3. THE DELTA “FUNCTION”

4.2.3 Products and Convolutions

F{ f g} 6= F{ f }F{g}, it’s more complicated.

Defn: The convolution of fns f , g is the fn f ∗ g defined by

( f ∗ g)(x) =
∫ ∞

−∞
f (ξ)g(x − ξ) dξ

Then f ∗ g = g ∗ f .

Proof: Easy.

(g ∗ f )(x) =
∫ ∞

−∞
g(ξ) f (x − ξ) dξ =

∫ ∞

−∞
g(x − ξ ′) f (ξ ′) dξ ′

after a change of variables ξ ′ = x − ξ.

Transforms of Products and Convolutions

F{ f ∗ g} ≡ f̃ ∗ g = f̃ g̃

Proof: Start with the L.H.S. of above:

∫ ∞

−∞
e−ikx

[∫ ∞

−∞
f (ξ)g(x − ξ) dξ

]
dx =

∫ ∞

−∞
f (ξ)e−ikξ

[∫ ∞

−∞
g(x − ξ)e−ik(x−ξ) dx

]
dξ

=
∫ ∞

−∞
f (ξ)e−ikξ

[∫ ∞

−∞
g(ξ ′)e−ikξ ′ dξ ′

]
dξ

= f̃ (k)g̃(k)

after switching order of integration and using a change of variable ξ ′ = x − ξ, get

4.3 The Delta “Function”

4.3.1 Introduction

From e.g. 5 in §4.2.1 we showed that if f (x) =
e−x2/a2

a
√

π
then (i)

∫ ∞

−∞
f (x) dx = 1 and (ii)

f̃ (k) = e−a2k2/4

As a → 0 the peak becomes narrower and higher; area under the curve is always equal to 1.

Also f̃ (k) → 1 as a → 0.

We can think of f (x) as representing a distribution of density s.t. the total mass,∫ ∞

−∞
f (x) dx = 1 is always the same.
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4.3. THE DELTA “FUNCTION”

Suppose all the mass is concentrated at x = 0, s.t. f (x) = 0 for x 6= 0, and yet∫ ∞

−∞
f (x) dx = 1 remains.

This is impossible for “ordinary functions” but can define such as function as a
“generalised function” or “distribution”. Equations involving distributions can be made
rigorous by first multiplying by a suitable arbitrary test function (with sufficient
smoothness and rapid decay at infinity) and then integrating, but this is well beyond the
scope of this unit.

Define

δ(x) = lim
a→0

f (x) = lim
a→0

e−x2/a2

a
√

π
.

Then

Defn: The Dirac delta function, δ(x), is defined by

• δ(x) = 0 for x 6= 0

•
∫ b

a δ(x) dx = 1 for any a < 0 < b.

The limiting form of the Gaussian is not the only definition – there are many – of δ(x).

E.g. Take “top-hat” e.g. 4 in §4.2.1: fth(x) =

{
0, |x| > a
1/2a, |x| < a

. Then
∫ ∞

−∞
fth(x) dx = 1

and clearly then the definition above is satisfied by writing

δ(x) = lim
a→0

fth(x)

4.3.2 Properties of the Delta Function

1. δ(x) is an even function.

Proof: δ(−x) = 0 for x 6= 0 and

∫ b

a
δ(−x) dx =

∫ −a

−b
δ(x) dx = 1, a < 0 < b

2. Shifted δ-Function. (obvious) δ(x − c) = 0 for x 6= c and
∫ b

a
δ(x − c) dx = 1 provided

a < c < b. Otherwise integral is zero.

3. Sampling Property (V. Important). For any sufficiently smooth function f (x) (i.e. f
and all derivatives are continous) then

∫ ∞

−∞
δ(x − c) f (x) dx = f (c)

I.e. it “picks out” value of f (x) at x = c.

Justification: Use δ(x) = lim
a→0

fth(x).
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4.3. THE DELTA “FUNCTION”

Then

∫ ∞

−∞
δ(x − c) f (x) dx = lim

a→0

∫ c+a

c−a

(
1

2a

)
f (x) dx

= lim
a→0

1

2a

∫ c+a

c−a
[ f (c) + (x − c) f ′(c) + 1

2(x − c)2 f ′′(c) + . . .] dx

= lim
a→0

[
f (c) +

1

6
a2 f ′′(c) . . .

]
= f (c)

NOTE: need f (x) to be suff. smooth.

4.3.3 Relationship to discontinuous functions

Defn: The Heaviside function H(x) is defined by

H(x) =





0 for x < 0
1
2 for x = 0
1 for x > 0

H′(x) = 0 for x 6= 0, but H′(x) not defined for x = 0, whilst

∫ b

a
H′(x) dx = H(b)− H(a) = 1, if a < 0 < b

Suggests H′(x) = δ(x)...

Justification: Let H(x) = lim
a→0

h(x) where

h(x) =





0 for x < −a

x + a

2a
for |x| < a

1 for x > a

And so h′(x) = fth(x) (top-hat function). So limit as a → 0 gives

H′(x) = δ(x)

Notes:

1. sgn(x) =





−1 for x < 0

0 for x = 0

1 for x > 0

(the signum function). Then

H(x) =
1

2
(1 + sgn(x)), and

d

dx
[sgn(x)] = 2H′(x) = 2δ(x)

2. Can we differentiate δ(x) ? Yes - but not needed here.
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4.4. DIFFUSION EQUATION ON AN ∞-DOMAIN

4.3.4 Fourier Transforms

F{δ(x)} =
∫ ∞

−∞
δ(x)e−ikx dx = 1

So F.T. of δ(x) is unity !

Fourier inversion formula gives

δ(x) =
1

2π

∫ ∞

−∞
eikx dk =

1

π

∫ ∞

0
cos kx dk !!

since sin kx is odd in k and integrates to zero.

Transform of Shifted Delta Function

F{δ(x − a)} =
∫ ∞

−∞
δ(x − a)e−ikx dx = e−ika

(Consistent with the general property of FTs that if g(x) = f (x + a) then g̃ = eika f̃ .)

Inverse F.T.

δ(x − a) =
1

2π

∫ ∞

−∞
eik(x−a) dk

Transform of Complex Exponential

F{eiax} =
∫ ∞

−∞
e−i(k−a)x dx = 2πδ(k − a)

using formula above (and interchanging the variables, k and x, and conjugating).

4.4 Diffusion Equation on an ∞-Domain

Consider
ut = Duxx for − ∞ < x < ∞

with an I.C. of
u(x, 0) = φ(x), φ(x) a given function

Let ũ(k, t) =
∫ ∞

−∞
u(x, t)e−ikx dx (i.e. ũ(k, t) is the F.T. of u(x, t) w.r.t. x).

Take the F.T. of P.D.E. (i.e. multiply ut = Duxx by e−ikx and integrate over −∞ < x < ∞).
Then

F{ut} = DF{uxx}
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4.4. DIFFUSION EQUATION ON AN ∞-DOMAIN

or ∫ ∞

−∞

∂u

∂t
e−ikxdx = D

∫ ∞

−∞

∂2u

∂x2
e−ikxdx

and so
∂

∂t

∫ ∞

−∞
ue−ikxdx = D(ik)F{ux} = D(ik)2

F{u}

which gives
ũt = −Dk2ũ

because ∂/∂t does not interfere with the F.T. in x and using the property of F.T.’s of
derivatives.

This is just a 1st order O.D.E. in t.

Solution: ũ(k, t) = Ce−k2Dt

for the “integration constant”, C ≡ C(k) but independent of t.

To determine C(k) need extra info... the I.C. is what we need (there are no ‘boundaries’ in
this problem, although ±∞ may be regarded as boundaries. In some problems – not this
one – boundedness of solutions at infinity is required to determine unique solutions.

Taking the F.T. of the I.C. gives
ũ(k, 0) = φ̃(k)

as before, trivial O.D.E. in t with I.C. fixing the integration “constant”.

I.e. Solution in Transform space is:

ũ(k, t) = φ̃(k)e−Dk2t.

Inversion ? For specific φ(x), will know φ̃(k) and may be able to invert directly.

Here we don’t have a specific φ̃(k)... Can use convolution because ũ is in the form of a
product of two transform functions of k. All that’s needed for convolution to work is that
we know the functions that give the two F.T.’s in the product.

Well F{φ(x)} = φ̃(k), so that’s easy.

Example 5 from §4.2.1 says F{e−x2/a2
/(a

√
π} = e−a2k2/4. To fit in with what we have,

choose a2 = 4Dt and then we have

F

{
e−x2/4Dt

√
4πDt

}
= e−k2Dt

So the convolution theorem gives

u(x, t) = F
−1{φ̃(k)e−k2Dt} =

1√
4πDt

∫ ∞

−∞
φ(ξ)e−

(x−ξ)2

4Dt dξ
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4.5. PARTICULAR INITIAL CONDITIONS

We can check by direct substitution that this satisfies the PDE and IC. For the IC, note that

lim
t→0

=
e−

(x−ξ)2

4Dt√
4πDt

= δ(x − ξ)

and use the sampling property of the delta function (4.3.2, part 3).

4.5 Particular Initial Conditions

4.5.1 Delta Function

If u(x, 0) = δ(x) (e.g. all the heat/chemical initially dumped at the origin – a decent
mathematical model), then φ(x) = δ(x)

and

u(x, t) =
1√

4πDt

∫ ∞

−∞
δ(ξ)e−

(x−ξ)2

4Dt dξ =
e−

x2

4Dt√
4πDt

Defn: This is the fundamental solution of the diffusion equation.

Properties of this solution

• Initially u(x, 0) = δ(x) and so
∫ ∞

−∞
udx = 1. This is the total amount of “stuff” in the

system at t = 0.

• For each fixed t, u(x, t) is a Guassian in x, but spreads out with increasing t.

• For t > 0 we have
∫ ∞

−∞
u dx =

1√
4πDt

∫ ∞

−∞
e−x2/4Dt dx =

1√
4πDt

√
4πDt = 1 (from

e.g.5 in §4.2.1). I.e. the amount of stuff in the system remains constant. Expected.

• For the I.C. to u(x, 0) = δ(x − a), easy to see solution is u(x, t) =
e−

(x−a)2

4Dt√
4πDt

4.5.2 Heaviside Function

Assume u(x, 0) = H(x) =

{
1 for x > 0

0 for x < 0
.

Note: Appears not to be valid, as one can’t take the F.T. of the I.C. (it doesn’t tend to zero at
infinity), but can be made rigorous by taking limits (see problem sheet).

From the General Solution,

u(x, t) =
1√

4πDt

∫ ∞

0
e−(x−ξ)2/4Dtdξ
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Change of variable: s = (ξ − x)/
√

4Dt. Then

u(x, t) =
1√
π

∫ ∞

−x/
√

4Dt
e−s2

ds =
1

2
erfc(−x/

√
4Dt)

where

erfc(z) =
2√
π

∫ ∞

z
e−s2

ds

is a special function called the Complementary Error Function. Also, define

erf(z) = 1 − erfc(z) =
2√
π

∫ z

0
e−s2

ds

as the Error Function. This relationship follows since

erf(∞) =
2√
π

∫ ∞

0
e−s2

ds =
1√
π

∫ ∞

−∞
e−s2

ds = 1

using e.g. 5 in §4.2.1. Note also that erf(z) = −erf(−z) is an odd function whilst erf(0) = 0.

z

erf(

erfc(

)

z)

z

−1

1

Using this information, gives

u(x, t) = 1
2(1 + erf(x/

√
4Dt))

as the solution with the Heaviside function as the I.C.

t=0

small t

large t

x

u(x,t)

Final note:
d

dx
(erf(x/

√
4Dt)) =

e−x2/4Dt

√
4Dt

.

4.5.3 Use of Superposition

The P.D.E. is linear, so can apply the principle of superposition. E.g. infinite domain with
mass Qa at x = a and mass Qb at x = b. Then solution is the sum of the solutions of the two
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parts separately:

u(x, t) =
Qae−(x−a)2/4Dt + Qbe−(x−b)2/4Dt

√
4πDt

4.6 Diffusion Equation on Semi-Infinite Domain

Problem:

ut = Duxx and u(x, 0) = φ(x) for x > 0

Need BC at x = 0.

4.6.1 Zero BC at x = 0

Let u(0, t) = 0 for t > 0.

Now φ(x) is given for x > 0. Let Φ be its odd extension.

I.e. let Φ(x) = φ(x) for x > 0 and let Φ(x) = −φ(−x) for x < 0.

Now consider P.D.E. for x ∈ R with I.C. u(x, 0) = Φ(x). Solution is from before

u(x, t) =
1√

4πDt

∫ ∞

−∞
Φ(ξ)e−

(x−ξ)2

4Dt dξ

=
1√

4πDt

[∫ 0

−∞
+
∫ ∞

0

]

=
1√

4πDt

∫ ∞

0
φ(ξ)

[
e−

(x−ξ)2

4Dt − e−
(x+ξ)2

4Dt

]
dξ

where in the negative integral, a change of vars, ξ → −ξ, has been applied, and oddness,
Φ(−ξ) = −φ(ξ) used.

Clearly u(0, t) = 0 (as required)

So this integral, for x > 0, gives solution of diffusion eqn. for x > 0 with u(0, t) = 0 for all
t > 0.

Example: φ(x) = δ(x − a).

u(x, t) =
e−

(x−a)2

4Dt − e−
(x+a)2

4Dt√
4πDt

.

This is fundamental solution for diffusion eqn. on half-line with zero B.C.
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−a

a x

u

Physical domain

Unphysical or image
domain

4.6.2 No-Flux Condition at x = 0

Similar argument using even extension of φ gives soln of diffusn eqn for x > 0 with
ux(0, t) = 0:

u(x, t) =
1√

4πDt

∫ ∞

0
φ(ξ)

[
e−

(x−ξ)2

4Dt + e−
(x+ξ)2

4Dt

]
dξ

Easy to check the B.C. holds.

Example: φ(x) = δ(x − a).

u(x, t) =
e−

(x−a)2

4Dt + e−
(x+a)2

4Dt√
4πDt

.

Unphysical or image
domain

−a

a

u

Physical domain

x
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