
Chapter 6

First Order PDEs

6.1 Characteristics

6.1.1 The Simplest Case

Suppose u(x, t) satisfies the PDE
aut + bux = 0

where b, c are constant.

If a = 0, the PDE is trivial (it says that ux = 0 and so u = f (t). If a 6= 0, it reduces to

ut + cux = 0 where c = b/a. (6.1)

We know from §5.4 that the solution is f (x − ct). This represents a wave travelling in the x
direction with speed c, and with constant shape.

t=0
t=1

t=2

u(x,t)

x
c

We now take a new and more general point of view.

The equation (6.1) can be written

ut +
dx

dt
ux = 0, or dt ut + dx ux = 0 (6.2)

where dx/dt = c. Then integrating gives x = ξ + ct where ξ is an integration constant such
that x = ξ when t = 0.
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6.1. CHARACTERISTICS

From the chain rule,
∂u

∂s
=

∂t

∂s
ut +

∂x

∂s
ux = 0 (6.3)

where s is a parameter lin. indep. of ξ. We think of (ξ, s) being a change of variables from
(x, t) and so u(ξ, s) ≡ u(x, t). Integrating (6.3) gives

u(ξ, s) = g(ξ)

where g is an arbitrary function. If we choose s = 0 on t = 0, then an I.C. of u(x, 0) = f (x)
is transformed to u(ξ, 0) = f (ξ) and so must have g ≡ f . I.e. solution is u(ξ, s) = f (ξ) or,
in terms of (x, t),

u(x, t) = f (ξ) = f (x − ct).

Solution is constant and equal to its initial value along curves ξ = x − ct = constant. Such
curves are called Characteristic curves.

ξ= constant

x

t

Solution constant along each curve in (x,t) space

(different constant on each curve)

Each curve is a straight line passing through t = 0 at x = ξ with slope 1/c.

This agrees with §5.4.

6.1.2 A more complicated example

Consider a 1st order inhomogeneous linear PDE with non-constant coefficients:

ut + xux = sin t

with I.C. u(x, 0) = f (x).

As before, introduce (ξ, s) s.t. x = ξ, s = 0 on t = 0. By chain rule

∂u

∂s
=

∂t

∂s
ut +

∂x

∂s
ux = sin t

Matching terms, we have

∂t

∂s
= 1, ⇒ t = s, (since s = 0 on t = 0)

∂x

∂s
= x, ⇒ x = ξes, (since x = ξ on s = 0)

Also,
∂u

∂s
= sin t = sin s, with u(ξ, 0) = f (ξ)

Integrate up, using I.C. to get

u(ξ, s) = − cos s + 1 + f (ξ)
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6.1. CHARACTERISTICS

Inverting variables: s = t and ξ = xe−s = xe−t. So solution is, in terms of (x, t)

u(x, t) = 1 − cos t + f (xe−t)

In this example, characteristics are not straight lines; given by ξ = xe−t = constant. Or
t = log(x/ξ) for different constant values of ξ.

x

t ξ= constant

6.1.3 First Order Quasilinear PDEs

We consider the PDE

ut + g(u)ux = 0 (6.4)

where g is a given function of one variable. The equation is called quasilinear, because it is
linear in ut and ux, but may be nonlinear in u. Also, have I.C.

u(x, 0) = f (x)

As before, let x = ξ and s = 0 on t = 0. Then we have

∂t

∂s
= 1,

∂x

∂s
= g(u),

∂u

∂s
= 0

The first one gives t = s, the last one gives u(ξ, s) = f (ξ). Then

∂x

∂s
= g( f (ξ))

which we can integrate up to give

x = sg( f (ξ)) + ξ

so that x = ξ on s = 0 as required. Using s = t, we have

x = tg( f (ξ)) + ξ (6.5)

as the equation defining characteristic curves. These are straight lines in the (x, t) plane
with slope 1/g( f (ξ)). Solution is constant along characteristics, with

u(x, t) = f (ξ) = f (x − tg( f (ξ))).

I.e. solution determined by data at t = 0.

Note: Since u = f (ξ), can eliminate ξ:

u(x, t) = f (x − tg(u))
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which is an implicit equation defining u(x, t).

Remark: The method of characteristics works straightforwardly for quasilinear equations
of the form

a(u, x, t)ut + b(u, x, t)ux = c(u, x, t)

in terms of ODEs for the variables u, x and t, which may in general be coupled. The ICs
may be defined along any curve not tangent to a characteristic curve. In this case s = 0 on
the IC curve and ξ is an arbitrarily chosen parameter along the curve. More details (also
for second order problems) in the Methods course.

6.2 Examples of Nonlinear Wave Problems

6.2.1 Examples with Shock Waves

Example 1. Suppose

g(u) = 1 + u, so ut + (1 + u)ux = 0. (6.6)

with

u(x, 0) = f (x) =







1 for x ≤ 0
1 − x for 0 < x < 1

0 for x ≥ 1

A simple physical interpretation of the solution goes as follows. The wave speed
c = 1 + u = 1+initial height. So for x < 0, c = 1 + 1 = 2 and travels faster than for x > 1,
where c = 1 + 0 = 1.

speed = 2

speed = 1

In the I.C. we can interchange x with ξ.

So

• For ξ < 0, g( f (ξ)) = 1 + u(ξ, 0) = 1 + 1 = 2. So slope of char. is 1/2 and equation of
char. is x = 2t + ξ (from (6.5)).

• For ξ ≥ 1, g( f (ξ)) = 1 + u(ξ, 0) = 1 + 0 = 1. So slope of char is 1 and equation of
char. is x = t + ξ

• For 0 < ξ < 1, g( f (ξ)) = 1 + 1 − ξ = 2 − ξ. So slope of char is 1/(2 − ξ) and
equation of char is x = (2 − ξ)t + ξ.

Sketch of chars:
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6.2. EXAMPLES OF NONLINEAR WAVE PROBLEMS

t

x1

1

2

• The two bounding curves are (A): x = 2t and (B): x = t + 1. They cross when (x, t)
are the same, i.e. at 1 + t = 2t or t = 1, x = 2.

• Interior curves are given by x = (2 − ξ)t + ξ for 0 < ξ < 1. Easy to see they all pass
through x = 2, t = 1.

Solution: u = f (ξ) so

u(x, t) =















1 for ξ ≤ 0

0 for ξ ≥ 1

1 − ξ for 0 < ξ < 1

or, in terms of (x, t),

u(x, t) =























1 for x ≤ 2t

0 for x ≥ 1 + t
(

1 + t − x

1 − t

)

for 2t < x < 1 + t

(last equation comes from x = (2 − ξ)t + ξ implies ξ(1 − t) = x − 2t implies
ξ = (x − 2t)/(1 − t) and so 1 − ξ = 1 − ((x − 2t)/(1 − t))).

Can see that the solution blows up at t = 1. This is where the characteristics cross one
another. Always the case: when characteristics cross the solution breaks down. Indicative of
shock waves.

Physically, in this problem, it is where the linear ramp becomes vertical; infinite gradient
implies derivatives don’t exist.

Very interesting... but not here.

Example 2. The same PDE but a smooth initial condition: 1
2 [1 − tanh 3(x − 1

2)]. Here is its
graph:

x

0 41

u(x, 0)
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6.2. EXAMPLES OF NONLINEAR WAVE PROBLEMS

It is a smoothed-out version of Example 1.

Characteristics:

x

t

2−1

1

6.2.2 Example with an Expansion Fan

Example 3: The same PDE ut + (1 + u)ux = 0, but this time with an initial condition which
increases with x:

u(x, 0) = f (x) =







0 for x ≤ 0
x/a for 0 < x < a

1 for x ≥ a
where a > 0

The characteristics spread out, and there are no shocks in this problem.

0 x

t

gradient=1

gradient = 1/2

a

In the limit as a → 0 the solution is called an expansion fan.

0 x

t

gradient=1

gradient = 1/2
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6.3. TRAFFIC FLOW

6.3 Traffic Flow

This theory was invented in Manchester in 1955 by Sir James Lighthill and G. B. Whitham.

6.3.1 The Traffic Flow Equation

Let x be distance along a road (not necessarily straight).

Traffic density ρ(x, t) on a road is defined as the number of cars (or other vehicles) per
unit distance at the point x and time t.

Then the number of cars at time t in the region a < x < b is
∫ b

a
ρ(x, t) dx.

ρ is really a subtle kind of average.

Conservation Law: No cars can be created or destroyed and so can use the conservation
law in §2.3.1 (‘stuff’ is now cars).

∂ρ

∂t
= −

∂φ

∂x

where φ(x, t) is flux. In this context, flux is the rate at which cars are crossing the fixed point x.
I.e. it is (density of cars) × (speed of cars).

φ(x, t) = ρ(x, t)u(x, t)

where u(x, t) is the Traffic speed. So we have

0 = ρt + (ρu)x = ρt + ρxu + ρux (6.7)

This one equation involves two dependent variables ρ and u. Need another equation
linking ρ and u to close the model.

Instead of u = u(x, t), propose u = u(ρ) = u(ρ(x, t)).

I.e. ones speed is not dependent where you are on the road, or what time it is, only on the
density of the traffic surrounding you. So

φ = ρu = ρu(ρ) ≡ f (ρ), say.

Now we get

0 =
∂ρ

∂t
+

∂

∂x
f (ρ) = ρt + f ′(ρ)ρx (6.8)

This is a quasi-linear PDE of the type already investigated in §6.1.3.

6.3.2 The Quadratic Model

Assumptions:
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6.3. TRAFFIC FLOW

1. When ρ = 0, u = umax, the maximum speed a car will travel at on an empty road (the
speed limit ?)

2. u = 0 when ρ = ρc where ρc = 1/spacing between cars in a jam.

Consider the simplest model, in which u is a linear function of ρ:

u = umax

(

1 −
ρ

ρc

)

for ρ ≤ ρc (6.9)

Now f (ρ) = ρu = umaxρ(1 − ρ/ρc) and

Plug into the conservation eqn (6.8) to get

ρt + c(ρc − 2ρ)ρx = 0 (6.10)

where
c =

umax

ρc
. (6.11)

This is the type of PDE considered in §6.2, but with a negative coefficient for the quadratic
term ρρx.

Wave speed = 1/(slope of characteristics) = c(ρc − 2ρ). Can be +ve or -ve.

Speed of traffic is c[ρc − ρ] > 0 from (6.9) and (6.11).

So the wave speed < traffic speed.

This means that changes in density travel more slowly than cars. So when you drive, you
go faster than the changes in density; that’s why you have to slow down to avoid
thickening of traffic. This is the other way round from water waves, where as you float
with the wave, breakers come up behind you. The reason is the nonlinear term ρρx in (6.10)
has a minus sign, where the nonlinear term in (6.6) has a plus sign.

It is easy to verify that if ρ(x, 0) is an increasing function, you get shock formation, so when
traffic starts to get thicker (as when a motorway lane closes), discontinuities tend to
develop. Anyone who has driven on a busy motorway knows that traffic jams can form
suddenly and for no obvious reason. They are shock waves formed by the steepening of
initially smooth changes of density.

Remark:

These quasi-linear equations also closely connected to other observable phenomena, such
as glacier flows and sedimentation in river deltas.
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