
Chapter 7

PDEs in Three Dimensions

7.1 Equilibrium Solutions: Laplace’s Equation.

7.1.1 Harmonic Functions

The three key eqns introduced in Chapter 2 were:

(i) utt = c2∇2u, the wave equation,

(ii) ut = D∇2u, the diffusion equation,

(iii) ∇2u = 0, Laplace’s equation.

equilibrium solutions are independent of time (i.e. ut = utt = 0). So (i), (ii) reduce to (iii)

Defn Solutions of ∇2u = 0 are called harmonic functions, which are different in 1D
(trivial), 2D and 3D (highly non-trivial). 2D harmonic functions are very important in
complex analysis as they correspond to real and imaginary parts of all analytic functions.

7.1.2 Properties of harmonic functions

In 1D, uxx = 0 =⇒ u(x) = px + q for constants p, q. A trivial calculation shows that
u(x) = 1

2 [u(x + a) + u(x − a)] = 1
2(p(x − a) + q + p(x − a) + q) = u(x) for any a. I.e.,

u(x) = average value of two points a distance a from x.

Corollary: On the interval c ≤ x ≤ d, u(x) satisfying uxx = 0 must take its max/min values
at c or d, not in c < x < d.

In 2D and 3D, essentially the same thing...

The Mean Value Property: In 2D/3D, the value of a harmonic function u(x) is the
average of the values on any circle/sphere centred on x.

(Proof by complex variables/vector calculus)
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7.2. THE LAPLACIAN IN NON-CARTESIAN COORDINATES

Maximum Principle: A harmonic function in a domain D cannot have a strict local
min/max within D .

Proof: follows from the MVP above, by contradition.

Corollary: min/max values must occur on the boundaries of a domain D .

For harmonic functions, u, the values of u are determined by the values on the enclosing
curves/surfaces in 2D/3D.

The Zero Solution Property: Suppose u(x) = 0 on a closed curve/surface S, and u
is harmonic (i.e. ∇2u = 0) inside S (i.e. in D) then u ≡ 0 in D .

Proof: Suppose u(x) ≷ 0 for some x ∈ D . Then it has a max/min somewhere in D with a
value ≷ 0. Violates the max/min principle. Hence contradiction.

Uniqueness Theorem: If u(x) is a function satisfying ∇2u = 0 inside D with u(x) = f
on S, a closed curve/surface surrounding D then it is unique.

Proof. Let u1(x) 6≡ u2(x) both satisfy ∇2u1 = ∇2u2 = 0 in D with u1(r) = u2(r) = f on S.
Then let u(x) = u1(x)− u2(x) 6≡ 0 by assumption. Clearly, ∇2u = ∇2u1 −∇2u2 = 0 whilst
u = u1 − u2 = 0 on S. By zero property solution, u ≡ 0. Hence contradiction.

The Dirichlet Problem: is one in which u(x) is given for x on S, the boundary of D .

The Uniqueness Theorem says that the Dirichlet problem has at most one solution.
Existence is beyond the scope of this course in general; typically shown by finding a
solution.

Application: Electrostatics For time-independent problems the electric potential in free
space satisfies Laplace’s equation. This means it is not possible to construct a
time-independent trap for charged particles.

7.2 The Laplacian in non-Cartesian Coordinates

7.2.1 2D Polars (plane polars)

We transform ∇2u = uxx + uyy to (r, θ) coordinates, where

x = r cos θ,
y = r sin θ

}

,

Application of the chain rule (see prob sheet 2, Q8) eventually gives:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
(7.1)
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7.3. SEPARATION SOLUTIONS

7.2.2 3D: Cylindrical Polar Coordinates

Cylindrical polar coordinates are (r, θ, z) with x = r cos θ, y = r sin θ as before, Then

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

∂2u

∂z2
(7.2)

7.3 Separation solutions

7.3.1 Cartesian Coordinates (2D)

Consider ∇2u = 0 inside a rectangular domain, 0 < x < a, 0 < y < b, say. Then

∂2u

∂x2
+

∂2u

∂y2
= 0

Let u(x, y) = X(x)Y(y). Then X′′(x)Y(y) + X(x)Y′′(y) = 0 and so

X′′(x)

X(x)
= −Y′′(y)

Y(y)
= k

where k is the separation constant. Need B.C’s to determine k.

Example: if u(0, y) = 0, u(a, y) = 0 then k = −µ2 and X(x) = sin(nπx/a), where
µ = nπ/a.

Then solving for Y(y), (Y′′(y) = µ2Y(y)) gives

Y(y) = An sinh(nπy/a) + Bn cosh(nπy/b)

or
Y(y) = Cne(nπy/a) + Dne−(nπy/a)

(typical to use the former representation if the y-domain is finite, latter if infinite).

E.g. 1 Let u(x, 0) = 0 and u(x, b) = f (x). Then

u(x, y) =
∞

∑
n=1

(An sinh(nπy/a) + Bn cosh(nπy/a)) sin(nπx/a)

So u(x, 0) = 0 implies Bn = 0 for all n and u(x, b) = f (x) implies

f (x) =
∞

∑
n=1

(An sinh(nπb/a)) sin(nπx/a)

and then, using expansion formula,

An sinh(nπb/a) =
〈 f , sin(nπx/a)〉
|| sin(nπx/a)||2

determines An and hence u.
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7.3. SEPARATION SOLUTIONS

E.g. 2 if u(x, 0) = f (x) and u(x, y) → 0 as y → ∞. For 0 < x < a then Cn = 0 in above (for
bounded solutions) and

u(x, y) =
∞

∑
n=1

Dne(−nπy/a) sin(nπx/a)

is general solution. Find Dn by putting y = 0 with

f (x) = u(x, 0) =
∞

∑
n=1

Dn sin(nπx/a)

and continue as in E.g. 1.

Of course, Dn (and previously An sinh(nπb/a)) are the coefficients of the Fourier Sine
Series for f (x) (see section 3).

7.3.2 Plane Polars

If a 2D problem has boundaries which fit naturally to a circular geometry then separation
in polars is natural.

For example, solving ∇2u = 0 inside a circle, r < a, with u(r, θ) = f (θ) on r = a.

I.e. Solve
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0

Separation ? Look for solutions of the form

u(r, θ) = R(r)Θ(θ)

Plug in

ΘR′′ +
ΘR′

r
+

RΘ′′

r2
= 0

and divide by RΘ/r2

r2R′′

R
+

rR′

R
= −Θ′′

Θ
= k

where k is a separation constant.

So we have
r2R′′ + rR′ − kR = 0, and Θ′′ + kΘ = 0. (7.3)

7.3.3 The Θ Equation

To find the separation constant, we want an inhomog. equation with inhomog BC’s. The
R(r)-eqn won’t do it, but the Θ(θ)-eqn will...

General solutions are
Θ = A cos(

√
k θ) + B sin(

√
k θ) (7.4)
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7.3. SEPARATION SOLUTIONS

Note that if k < 0 then cos and sin become cosh and sinh.

On our original problem, we assume u and its derivatives are continuous for all r, θ. So we
must insist that u(r, θ) = u(r, θ + 2π) and uθ(r, θ) = uθ(r, θ + 2π).

Looking at (7.4) we can do this if
√

k = m (or k = m2) where m is an integer. Then

Θ = Am cos(mθ) + Bm sin(mθ), m ∈ Z

Notes:

• Only need m ≥ 0 since m < 0 gives the same functions with Bm replaced with −Bm.

• with k < 0 cosh and sinh functions won’t work.

7.3.4 The R Equation

The R equation in (7.3) with k = m2 gives

r2R′′ + rR′ − m2R = 0 (7.5)

Solution ? Note non-constant coefficients. Try R(r) = rα where α is a constant. Then (7.5) is

α(α − 1)rα + αrα − m2rα = 0

=⇒ (α2 − m2)rα = 0,

so α2 = m2, and α = ±m.

General solution is
R(r) = Cmrm + Dm/rm (7.6)

However, when m = 0, rm and r−m are the same functions – 1, so there must be another...

The equation for m = 0 is r2R′′ + rR′ = 0. Easy to solve.

For r 6= 0 we have r
dR′

dr
= −R′. Separate variables and integrate to get

log R = − log r + log D0 so that R′(r) = D0/r. Then integrate again to get R, giving

R(r) = C0 + D0 log r (7.7)

7.3.5 The full solution

Putting all different solutions together using superposition gives the general solution

u(r, θ) = (C0 + D0 log r)A0 +
∞

∑
m=1

(

Cmrm +
Dm

rm

)

(Am cos mθ + Bm sin mθ) (7.8)

[Note: For m = 0 we have A0 cos 0θ + B0 sin 0θ = A0, giving u(r, θ) = A0(C0 + D0 log r).]
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7.4. THE WAVE EQUATION: NORMAL MODES

Example 1. ∇2u = 0 for r < a with BC u(a, θ) = f (θ) where f is a given function for
0 < θ < 2π.

The domain includes the point r = 0. Must avoid singularities (infinities) in the solution
and so Dm = 0 for all m and D0 = 0.

Hence

u(r, θ) = a0 +
∞

∑
m=1

rm(am cos mθ + bm sin mθ)

where am = AmCm and bm = BmCm in the notation of (7.8).

The B.C. at r = a gives

a0 +
∞

∑
1

am(am cos mθ + bm sin mθ) = f (θ) for 0 < θ < 2π

where f is a given function. Thus am, bm are (apart from factors of am) the Fourier Series
coefficients. Find using expansion formula (section 3).

Example 2. ∇2u = 0 in 1 < r < 2. This region is called an annulus.

B.C.’s needed on r = 1, 2:

u(1, θ) = f (θ), u(2, θ) = g(θ) for 0 < x < 2π

where f and g are given functions.

The solution is given by (7.8), but can include all the Dm’s and D0 as r = 0 is not part of the
annular region. Follow as before but apply conditions on both r = 1 and r = 2 and get
coupled equations for Cn and Dn.

7.4 The Wave Equation: Normal Modes

7.4.1 Normal modes for the 2D wave equation

Consider
utt = c2∇2u ≡ c2(uxx + uyy) (7.9)

inside a domain D .

Solution determined by:

• Initial values of u and ut at all points of D ,

• Values of u on S, boundary of D for all t.

We shall only consider the case where u = 0. This corresponds to vibrations on a drum skin
with fixed edges. Easy to generalise to setting the normal derivative of u equal to zero on S.
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7.4. THE WAVE EQUATION: NORMAL MODES

The simplest vibration is sinusoidal in time. I.e. motion is proportional to sin ωt or cos ωt
where period of oscillations is 2π/ω.

A normal-mode solution of (7.9) to be a solution of the form

u(x, y, t) = φ(x, y) cos(ωt + δ) (7.10)

where δ is constant phase-shift.

Plugging (7.10) into (7.9) gives

−ω2φ(x, y) cos(ωt + δ) = c2(∇2φ) cos(ωt + δ)

=⇒ −∇2φ = (ω2/c2)φ

The function φ is an eigenfunction of −∇2 with eigenvalue λ = ω2/c2. So the angular
frequency is

ω = c
√

λ

in terms of the eigenvalue.

7.4.2 An Example

We find the eigenvalues and eigenfunctions of −∇2 on rectangle 0 < x < a, 0 < y < b with
u = 0 on the boundary.

I.e. solve
−(φxx + φyy) = λφ (7.11)

with φ(0, y) = φ(a, y) = φ(x, 0) = φ(x, b) = 0 Solve (7.11) by separating variables. I.e. let
φ(x, y) = X(x)Y(y), with X(0) = X(a) = 0 and Y(0) = Y(b) = 0. Then, substitute into
(7.11), and the usual argument gives

X′′

X
= −Y′′

Y
− λ = k

where k is a separation constant.

Solve for X(x), so that k = −n2π2/a2 and X(x) = sin(nπx/a).

The Y(y) equation is then
Y′′(y) + (k + λ)Y(y) = 0

Since λ is unknown, we let k + λ = µ so that the Y-eqn is Y′′ + µY = 0 with with
Y(0) = Y(b) = 0. Just like the eqn for X, we have µ = m2π2/b2 with Y(y) = sin(mπy/b)
for m = 1, 2, . . . and so k + λ = m2π2/b2 implying:

λ =
n2π2

a2
+

m2π2

b2
, n, m = 1, 2, . . .

and φ(x, y) = sin(nπx/a) sin(mπy/b). The frequencies of the normal modes are ω = c
√

λ
so that

ω = ωnm = cπ

√

n2

a2
+

m2

b2
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7.4. THE WAVE EQUATION: NORMAL MODES

There exist an infinite, discrete set of frequencies.

The shape of the normal mode is constructed from the separate components so that

u(x, y, t) = φnm(x, y) cos(ωnmt + δ) = sin(nπx/a) sin(mπy/b) cos(ωnmt + δ)

Defn The fundamental frequency means the lowest value of ωnm which is when
n = m = 1 and

ω11 = cπ

√

1

a2
+

1

b2

and the corresponding fundamental mode is φ11(x, y) = sin(πx/a) sin(πy/b)

7.4.3 Square domain

In the simplest case where the domain is a square, with a = b, the frequencies ωnr are given
by the infinite matrix

ωnr =
cπ

a









√
2

√
5

√
10 . . .√

5
√

8
√

13 . . .√
10

√
13

√
18 . . .

. . . . . . . . . . . .









(7.12)

The 3, 2 mode φ32(x, y) = sin

(

3πx

a

)

sin

(

2πy

a

)

is illustrated below by a contour

diagram, showing the curves in the x, y plane along which φ32(x, y) is constant.

The solid contours
are where φ32(x, y) > 0 and the dotted contours
are where φ32(x, y) < 0. There are three maxima
and three minima. The straight lines are where
φ(x, y) = 0. They divide the rectangle into six regions,
called cells; each cell consists of a single peak or valley.

As
time increases the peaks and valleys each oscillate up

and down with angular frequency ω32 = (cπ/a)
√

13.
When φ is increasing in one cell, it is decreasing
in the adjacent cells; the peaks become valleys
and the valleys become peaks after a time π/ω32.

The other normal modes are similar, but with different numbers of cells in the x and y
directions. The fundamental mode has just one cell.

The solution of an initial value problem can be found as a superposition of normal modes.
So when you bang a drum, the sound produced is a combination of the normal modes. The
principle is similar to Fourier series solutions, but the details are lengthy and beyond the
scope of this course.
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7.4. THE WAVE EQUATION: NORMAL MODES

7.4.4 Why the guitar is tuneful and drums are noisy

Guitars

A guitar string satisfies the 1-d wave equation with boundary conditions that u = 0 at the
endpoints, x = 0 and a say. It is easy to see that it has normal modes

sin
(nπx

a

)

cos

(

nπct

a
+ δ

)

, n = 1, 2, . . .

The angular frequencies are cπ/a, 2cπ/a, 3cπ/a, . . .; they are integer multiples of the
fundamental frequency cπ/a. So the sound wave that travels to your ears is a combination
of frequencies which are integer multiples of the fundamental (angular) frequency cπ/a. It
is therefore a periodic function of time with period 2a/c; the higher frequencies correspond
to higher terms in the Fourier series solution of the wave equation.

A periodic sound wave like this is heard by the ear as a musical note. The pitch of the note1

is determined by the period of the wave; high frequencies give high notes. The Fourier
coefficients an, bn determine the character of the sound. If a1 or b1 is much larger than all
the n > 1 coefficients, then the note sounds flute-like and smooth. But if an or bn does not
decrease rapidly with n (for example, if the n-th coefficient behaves like 1/n) then the note
sounds quite sharp in character and perhaps even harsh. Thus you can hear something
about the Fourier coefficients in a musical sound.

Drums

The vertical vibration of a drumskin satisfies the wave equation in 2d. The boundary
condition is zero displacement at the edge of the drum. If the drum is rectangular, its
vibration is a combination of the normal modes derived above. For a square drum, where
a = b, the normal modes have frequencies ω given by (7.12); the first few are

ω =
√

2πc/a,
√

5πc/a,
√

8πc/a,
√

10πc/a, . . .

They are not integer multiples of the fundamental frequency. Therefore the sound
produced by a drum is not heard as a musical note, it is heard as a noise.

Of course most drums are not square but round. We will work out the normal modes for a
circular drum, and the answer shows that their frequencies are not integer multiples of the
fundamental frequency. That is why drums bang while strings play tunes.

1pitch describes whether it is a high or a low note
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7.5. THE WAVE EQUATION IN PLANE POLAR COORDINATES

7.5 The Wave Equation in Plane Polar Coordinates

7.5.1 Separation of Variables

Consider the wave equation in a circular domain (vibrations of a circular drumskin,
oscillations on the surface of a cup of tea):

utt = c2∇2u ≡ c2

[

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

]

, 0 < r < a (7.13)

with u = 0 on r = a.

Let u(x, y, t) = φ(r, θ) cos(ωt + δ) as before.

Then

−
(

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2

)

=
(ω

c

)2
φ = λφ

and λ is the eigenvalue, to be found.

Separate variables: φ(r, θ) = R(r)Θ(θ) and then above is

−
(

R′′Θ +
R′Θ

r
+

RΘ′′

r2

)

= λRΘ (7.14)

Divide by R(r)Θ(θ)/r2 to get

r2R′′

R
+

rR′

R
+ λr2 = −Θ′′

Θ
= k

where k is sep. const.

The Θ Equation

We have Θ′′ + kΘ = 0.

Since we are solving inside a circle, need Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π) and so

k = m2 and Θ = Am cos mθ + Bm sin mθ, for m = 0, 1, 2, . . .

where Am, Bm are constants.

The R Equation

With k = m2, so the R equation in (7.14) is

R′′ +
R′

r
− m2

r2
R + λR = 0

where λ is unknown eigenvalue (once λ is known then so is ω) and m is an integer.
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7.5. THE WAVE EQUATION IN PLANE POLAR COORDINATES

This equation cannot be solved in terms of elementary functions. But it can be analysed by
Sturm-Liouville theory. Instead, put into SL form as

(rR′)′ − m2

r
R + λrR = 0, 0 < r < a (7.15)

This is a SL equation with p(r) = σ(r) = r, q(r) = −m2/r. Must have boundedness of R
and R′ at r = 0 whilst R(a) = 0 because u vanishes on the circle r = a.

Simplifying the Equation

Rescale the independent variable: x = r
√

λ and let y(x) = R(x/
√

λ) or R(r) = y(r
√

λ).

Then d/dr =
√

λd/dx so that

√
λ(xy′)′ − m2

√
λ

x
y(x) +

λx√
λ

y(x) = 0

=⇒ x2y′′(x) + xy′(x) + (x2 − m2)y(x) = 0 (7.16)

This is called Bessel’s equation.
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7.5. THE WAVE EQUATION IN PLANE POLAR COORDINATES

7.5.2 Solutions of Bessel’s Equation

Bessel’s equation (7.16) does not have solutions in terms of elementary functions. Their
solutions are called Bessel functions. The are well-studied and have many useful
properties.

There are two linearly independent solutions:

{

Jm(x), (bounded at the origin ∼ xm)

Ym(x), (singular at the origin ∼ x−m log(x))

[We won’t include Ym as we don’t want to include singularities at x = 0 (r = 0) in our
solution, although for problems which exclude the origin you must include them (not in
this course)]

The functions Jm(x) have the following features:

1. Power series representation (cf. cos or sin)

Jm(x) =
xm

2mm!

[

1 − x2

221!(m + 1)
+

x4

242!(m + 1)(m + 2)
− . . .

]

(7.17)

2. Sketch:

J0

J1

J2

1

0

−0.4

0.4

0.8

202 6 14 1610

The first three Bessel functions.

3. Jm(x) are roughly like cos(x + ǫ)/x1/2 for large x.

4. J0(0) = 1 and Jm(0) = 0 for m ≥ 1

5. (Important) Jm(x) = 0 has infinitely many solutions. Label these roots, x = zm,i,
i = 1, 2, 3, . . ..
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7.5. THE WAVE EQUATION IN PLANE POLAR COORDINATES

7.5.3 Normal Modes of a Circular Membrane

Go back to the problem: circular membrane, radius r = a.

Since y(x) = Jm(x) and R(r) ≡ y(x) = y(r
√

λ), the general solutions, bounded at r = 0 of
the R(r)-eqn are given by

R(r) = Cm Jm(r
√

λ)

where Cm an arbitrary constant.

The boundary condition at the edge of the drum gives R(a) = 0. So

Jm(a
√

λ) = 0. (7.18)

Therefore we must have
a
√

λ = zm,i, i = 1, 2, . . .

where zm,i are the zeros of Jm(x). Hence

R(r) = Cm,i Jm

(zm,i r

a

)

for r ≤ a, i = 1, 2, . . . (7.19)

with Cm,i constants, after modifying the notation.

Hence, the frequencies of oscillations are given by

ω/c =
√

λ = zm,i/a, or ωm,i =
zm,ic

a

The modal shape of the membrane comes from reconstructing the solution from its
separable parts

u(r, θ, t) = φm,i(r, θ) cos(ωm,it + δ) = Cm,i Jm

(zm,i r

a

)

[Am cos mθ + Bm sin mθ] cos(ωm,it + δ)

where ωm,i = zm,ic/a.

The first few zeros of the Bessel functions (approx)

z0,1 = 2.4 . . . , z1,1 = 3.8 . . . , z2,1 = 5.1 . . . , z0,2 = 5.5 . . .

So the fundamental (lowest-frequency) mode has frequency ≈ 2.4c/a where a is the radius
of the drum and c is the speed of waves on the drumskin. The larger the radius, the lower
the frequency. This is why a bass drum must be big.

7.5.4 The Initial-value problem

In both the rectangular and circular membrane problem, an initial value problem in which
u and ut are specified at t = 0, a general solution is formed by the superposition of all
possible normal modes. The unknown coefficients can, in principle, be found by applying
initial conditions on u and ut at t = 0, but this is too complicated for this course.
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7.6 Diffusion in a Cylinder

Consider diffusion in a long cylinder (e.g. heat flow in a hot water pipe). Choose
cylindrical polars, z along cylinder axis.

Assume u is independent of z and θ. So u = u(r, t) and satisfies

ut = D

(

urr +
1

r
ur

)(

≡ D
1

r

d

dr

(

r
du

dr

))

(7.20)

where D > 0 is the diffusion coefficient.

We need an initial condition:

u(r, 0) = f (r) for 0 < r < a (7.21)

We also need a B.C. on r = a, so consider

u(a, t) = 0 for t > 0 (7.22)

Separation of Variables

Let u(r, t) = R(r)T(t), substitute into (7.20):

T′

DT
=

1

R

(

R′′ +
R′

r

)

= −k.

(We chose −k, because from what we know about diffusion we expect exponential decay in
time, thus implying that k > 0 in the above assignment)

The T eqn: Easy T′ = −kDT has solutions Ce−kDt. Still need to know what values k takes.

The R eqn: is
(rR′)′ + krR = 0. (7.23)

This is the same as (7.15) with m = 0 and k = λ. So solutions bounded at r = 0 given by

Bessel functions J0(r
√

k) and

R(r) = BJ0(r
√

k) (7.24)

for constant B.

Values of k determined by B.C. R(a) = 0. I.e. J0(a
√

k) = 0 so
√

k = z0,i/a, i = 1, 2, . . . and

R(r) = Bi J0(z0,ir/a)

are the radial solutions.

General solution

Superposition of all sep. solutions gives a general solution

u(r, t) =
∞

∑
i=1

ai e







−z2
0,i D t

a2







J0

(z0,ir

a

)

(7.25)
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for unknown coefficients ai, which are contracted from C and Bi.

To find ai, apply the I.C. u(r, 0) = f (r), r < a so

∞

∑
i=1

ai J0(z0,ir/a) = f (r) for 0 < r < a (7.26)

From the expansion theorem (this is all S-L),

ai =
〈 f (r), J0(z0,ir/a)〉

〈J0(z0,ir/a), J0(z0,ir/a)〉 ≡

∫ a

0
f (r)J0(z0,ir/a)rdr

∫ a

0
J2
0(z0,ir/a)rdr

which can be found (at least numerically).

Note that the orthogonality result of Bessel functions is, ensured by SL theory is

〈J0(z0,ir/a), J0(z0,jr/a)〉 ≡
∫ a

0
J0(z0,ir/a)J0(z0,jr/a)rdr = 0, i 6= j

General Character of the Solution

For the diffusion equation in 1d, with u = 0 at the endpoints, any initial condition gets
smoother and smoother (as a function of x) as t increases, and for large t looks like a single
hump of a sine curve decreasing exponentially with time.

The picture here is very similar. The later terms in the series (7.25) are wiggly, but → 0
faster as t increases. So the solution as a function of r gets smoother as t increases and its
shape approaches a single hump of J0, decreasing exponentially with time, more or less
equivalent to the fundamental mode of the wave problem.
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