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2School of Mathematics, University of Bristol, Bristol, United Kingdom
3Departamento de F́ısica, UNESP - Univ Estadual Paulista Av.24A, 1515 - 13506-900 - Rio Claro - SP - Brazil

4 The Abdus Salam - ICTP, Strada Costiera, 11 - 34151 - Trieste - Italy
(Dated: July 31, 2013)

We consider classical dynamical properties of a particle in a constant gravitational force and
making specular reflections with circular, elliptic or oval boundaries. The model and collision map
are described and a detailed study of the energy regimes is made. The linear stability of fixed
points is studied, yielding exact analytical expressions for parameter values at which a period-
doubling bifurcation occurs. The dynamics is apparently ergodic at certain energies in all three
models, in contrast to the regularity of the circular and elliptic billiard dynamics in the field-free
case. This finding is confirmed using a sensitive test involving Lyapunov weighted dynamics. In the
last part of the paper a time dependence is introduced in the billiard boundary, where it is shown
that for the circular billiard the average velocity saturates for zero gravitational force but in the
presence of gravitational it increases with a very slow growth rate, which may be explained using
Arnold diffusion. For the oval billiard, where chaos is present in the static case, the particle has an
unlimited velocity growth with an exponent of approximately 1/6.

PACS numbers: 05.45.-a, 05.45.Pq, 05.45.Tp

I. INTRODUCTION

In the 1920s billiards were introduced by Birkhoff [1]
into the theory of dynamical systems. They consist of a
point particle moving freely in a region except for spec-
ular collisions with the boundary. Birkhoff’s idea was
to have a simple class of models which shows the com-
plicated behavior of non-integrable smooth Hamiltonian
systems without the need to integrate a differential equa-
tion [1, 2]. Depending on the shape of the boundary, bil-
liard dynamics may be (i) regular, with only periodic or
quasi-periodic orbits present; (ii) mixed, in which chaos,
KAM islands (also called periodic islands) and invariant
spanning curves that limit the chaos in the systems are
present; (iii) completely ergodic, presenting only chaos in
the phase space.

In recent years billiards continue to provide useful
models for Hamiltonian dynamics, as well as problems
involving free motion in cavities and in extended struc-
tures. The latter includes the study of anomalous dif-
fusion in geometries with infinite horizon [3–5]. Mixed
phase space models include mushroom billiards [6, 7].
Time irreversible billiards have also been considered [8]
as well as connections with many wave and quantum me-
chanical problems [9–12]. Further examples are reviewed
in [13].

It can be useful to open the billiard geometry by in-
cluding a hole and investigating escape time and related
distributions. Open billiards provide a useful starting
point for an understanding of more general classes of
open dynamical systems [13] and includes the study of
open circular billiards and the Riemann hypothesis [14].
Sometimes it is useful to investigate the survival proba-
bility or the histogram of particles that reached certain
height in the phase space [15].

An important subject in this area is the study of Fermi
acceleration (FA) [16]. The phenomenon is character-
ized by an unlimited energy growth of a bouncing par-
ticle undergoing collisions with a periodically moving
and heavy wall. According with the Loskutov-Ryabov-
Akinshin (LRA) conjecture [17], the introduction of a
time dependence to the boundary of a billiard is a suf-
ficient condition to observe FA when the corresponding
static billiard has chaotic components. The elliptical case
however must be treated separately and the LRA conjec-
ture does not apply for it. For the static boundary it
is integrable and hence has a phase space showing only
regular structures. There are two quantities which are
preserved in the elliptical billiard with static boundary:
(i) energy (E) and; (ii) product of the angular momenta
about the two foci (F ) as discussed in [18]. However, it
was shown recently [19] that the introduction of a peri-
odically time perturbation to the boundary does lead to
FA. The explanation for observing diffusion in velocity
is mainly related to the existence of a separatrix in the
phase space. According to [19], after introducing a time
perturbation to the boundary, the separatrix turns into a
stochastic layer yielding a type of turbulent behavior in
F therefore leading to diffusion in velocity, hence produc-
ing the FA. More simulations were done in the model [20]
which confirmed the FA. Due to this observation in the
elliptical billiard and considering the LRA conjecture, a
recent work [21] argues that the existence of heteroclinic
fixed point in the phase space may extend the conjecture
in the absence of chaos in the phase space. The circu-
lar billiard does not have such a fixed point and remains
regular even with vibrating boundaries. Even in [21], the
authors claim that FA seems not to be a robust phe-
nomena. The reflection law may be modified so that the
particle experiences a slightly inelastic collision therefore
having a fractional loss of energy upon collision. Even
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in such a small limit of dissipation, the unlimited energy
growth is suppressed.

It is also interesting to study billiards in the presence of
a constant gravitational field. The Galton board (1873)
is a mechanical device that exhibits stochastic behav-
ior. It consists of a vertical (or inclined) board with
interleaved rows of pegs, where a ball moving into the
Galton board moves under gravitation and bounces off
the pegs on its way down [22]. There have been many
recent investigations in gravitational billiards including
a physical experiment observing stable islands in chaotic
atom-optics billiards [23], characterization of the dynam-
ics of a dissipative, inelastic gravitational billiard [24], the
study of linear stability in billiards with potential [2] and
many others [25–28]. It also includes the wedge billiard
[24, 29–31] which has singular regions in the phase space
that cannot be described by the KAM theorem [26].

The purpose of the present paper is to investigate some
gravitational convex billiards, with or without vibrating
boundaries. As noted above, the static and vibrating cir-
cular billiards and static elliptical billiards have regular
dynamics in the absence of a gravitational field, while
oval and vibrating elliptical billiards usually have mixed
phase space. We apply the approach in Re. [2] to char-
acterise linear stability of fixed points in the presence of
the external field exactly in terms of the curvature of the
boundary and normal component of the velocity at the
point(s) of collision. A numerical search identifies appar-
ently ergodic energy values, even for the circular billiard;
we then apply a sensitive Lyapunov weighted dynamics
test to further confirm this [32]. Ergodicity is interesting
as it may suggest the existence of a new class of ergodic
billiards, extending known results for dispersing and de-
focusing non-gravitational billiards on one hand and for
the gravitational but piecewise linear wedge billiard on
the other. In non-gravitational billiards it is known that
no smooth convex billiard can be ergodic [33, 34].

Finally, we introduce a time-dependence in the billiard,
and show for the circle in the absence of gravitational
field and as expected, the average velocity of the sys-
tem approaches a regime of saturation. In the presence
of gravitational field, the velocity keeps growing for long
number of collisions but with a small slope of growth,
an interesting effect since in the high velocity limit the
gravitational field has less and less effect, so the dynamics
approaches the non-gravitational regular behaviour. We
can explain the continued but slow acceleration in terms
of Arnold diffusion. For the breathing oval billiard, our
numerical result for the slope of growth is slightly larger
than the one obtained in the [35] and theoretically fore-
seen in [36] but still of the same order of magnitude.

This paper is organized as follows: In the section II
we describe the model and obtain the mapping that de-
scribes the dynamical of a particle. In section III we
study the energy regimes and explore the phase space for
different values of the control parameters. Section IV is
devoted to study some periodic orbits, for the oval, ellipse
and consider the low energy regime. Apparent ergodicity

is studied in the section V. In section VI we take into ac-
count the time-dependent billiards. Our conclusions and
final remarks are presented in VII.

II. THE MODEL AND THE MAP

FIG. 1: Sketch of the boundary and angles considering p = 2
and ϵ = 0.3 (oval billiard). As one can see we have locally
negative curvatures in θ = π/2 and θ = 3π/2.

The models we are considering consist of a classi-
cal particle (or an ensemble of non-interacting parti-
cles) confined inside and experiencing collisions with a
closed boundary of circular, elliptic and oval shapes un-
der the presence of a gravitational force. To describe
the dynamics, we follow the same general procedure as
made in [35]. Then the dynamics of each particle is de-
scribed in terms of a four-dimensional nonlinear map-
ping T (θn, αn, |

−→
V n |, tn) = (θn+1, αn+1, |

−→
V n+1 |, tn+1)

where the variables denote: (θ) the angular position of
the particle; (α) the angle that the trajectory of the par-
ticle forms with the tangent line at the position of the
collision; (| −→V |) the absolute velocity of the particle and;
(t) the instant of the collision with the boundary. The
shape of the boundary is defined by its corresponding
radius in polar coordinates which is given by

R(θ, p, ϵ) = 1 + ϵ cos(pθ) , (1)

where ϵ ∈ [0, 1) is a parameter which controls the defor-
mation of the boundary (see for example [18]) and p is a
positive integer number. For ϵ = 0 the circular billiard is
recovered. In the Fig. 1 we have a sketch of the boundary
and angles considering p = 2 and ϵ = 0.3 (oval billiard).
As one can see we have locally negative curvatures in
θ = π/2 and θ = 3π/2. The radius of the elliptic billiard
is given by the following expression (see also [19–21])

R(θ, a, b) =
ab√

(b cos θ)
2
+ (a sin θ)

2
, (2)

where a and b are one-half of the ellipse’s major and
minor axes. If a = b > 0 the circular billiard is observed.
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The rectangular components of the boundary at posi-
tion (θn) are given by

X(θn) = R(θn) cos(θn) , (3)

Y (θn) = R(θn) sin(θn) . (4)

Starting with an initial condition (θn, αn, |Vn|, tn), the
angle between the tangent at the boundary and the hor-
izontal axis at the point X(θn) and Y (θn) is given by
ϕn = arctan[Y ′(θn)/X

′(θn)], where

X ′ = dX/dθ and Y′ = dY/dθ. (5)

Since there is a gravitational force acting on the par-
ticle during the flight, its trajectory is described by arcs
of parabolas. For t > tn the position of the particle as a
function of time is given by

Xp(t) = X(θn) + |−→V n| cos(αn + ϕn)(t− tn) , (6)

Yp(t) = Y (θn) + |−→V n| sin(αn + ϕn)(t− tn)−
g(t− tn)

2

2
.(7)

Once the position of the particle as a function of
the time is known, its distance measured with respect
to the origin of the coordinate system is given by

Rp(θp, t) =
√

X2
p(t) + Y 2

p (t) and θp at (Xp(t), Yp(t)) is

θp = arctan[Yp(t)/Xp(t)]. The angular position at the
next collision of the particle with the boundary, i.e. θn+1,
is numerically obtained by solving the following equation
R(θ, t) = Rp(θ, t). The time is obtained by

tn+1 = tn +

√
∆X2 +∆Y 2

|−→V n|
, (8)

where ∆X = X(θn+1) − X(θn) and ∆Y = Y (θn+1) −
Y (θn). At the instant of collision, we use the following
reflection law

−→
V

′
n+1 ·

−→
T n+1 =

−→
V

′
n · −→T n+1 , (9)

−→
V

′
n+1 ·

−→
N n+1 = −−→

V
′
n · −→N n+1, (10)

where
−→
T and

−→
N are the unit tangent and normal vectors

and
−→
V

′
denotes the velocity of the particle measured in

the moving referential frame. Based on these two last
equations, the particle’s velocity components after colli-
sions are given by

−→
V n+1 ·

−→
T n+1 = Vx cos(ϕn+1) + Vy sin(ϕn+1) ,

−→
V n+1 ·

−→
N n+1 = Vx sin(ϕn+1)− Vy cos(ϕn+1),

where

Vx = |−→V n| cos(αn + ϕn),

Vy = |−→V n| sin(αn + ϕn)− g(tn+1 − tn) .

Therefore, the velocity of the particle at collision (n+1)
is given by

|−→V n+1| =
√
(
−→
V n+1 ·

−→
T n+1)2 + (

−→
V n+1 ·

−→
N n+1)2 . (11)

Finally, αn+1 is obtained as

αn+1 = arctan

[−→
V n+1 ·

−→
N n+1

−→
V n+1 ·

−→
T n+1

]
. (12)

III. ENERGY REGIMES

In this section we present our numerical results for
the circular, elliptic and oval billiards. To construct the
phase space of the systems, it is essential to note the
conserved energy E = K + U , where K = mV 2/2 is the
kinetic energy of the particle. The potential energy is
given by U = mgh, where h is the height of the particle
measured with respect to an arbitrary reference and m
is the mass of the particle considered as unitary in our
simulations. Equation (1) has as its origin the center
of the circle/oval billiard, but we consider as a reference
level the bottom of the billiard. Therefore the reference
level for the gravitational energy is obtained applying
Y → Y + Yref , where Yref is used to translate the verti-
cal axis and is given by Yref = R(θ = π/2) sin(pπ/2) =
1 + ϵ cos(pπ/2). Hence the potential energy of a particle
is given by U = g(Y (θ) + Yref ), leading to

U(p, ϵ, θ, g) = g sin(θ)[1 + ϵ cos(pθ)] + 1 + ϵ cos(pπ/2).
(13)

For the elliptic billiard we have that Yref = R(θ =
π/2) = b. Setting the energy constant, we write the
initial velocity as

V0 =
√
2[E − U(θ0)]. (14)

If E = 0 the particle does not have enough energy to
leave the bottom of the billiard, then we consider E > 0.

Having constructed the collision map and incorporated
energy conservation, let us now investigate the dynamics
looking at the phase space. We start with the circle bil-
liard, which can be obtained considering ϵ = 0 in Eq. 1
or a = b > 0 in Eq. 2. Figure 2(a) shows a phase space
for the circular billiard considering the energy E = 2 and
g = 0.5.

Each of the phase space shown in the figure was con-
structed considering a grid of 10 by 10 equally spaced
initial conditions in the intervals θ0 ∈ [0, 2π) and α0 ∈
[0, π), where the initial velocity is given by Eq. (14) and
t0 = 0. Each initial condition was iterated up to 2000
collisions with the boundary. For E = 2 and g = 0.5, as
shown in Fig. 2(a), we see two islands around θ = π/2
and θ = 3π/2 (for α = π/2), defining a period two peri-
odic orbit in the center. In the limit of E → ∞ the veloc-
ity of the particle increases and the arcs of parabola de-
scribing the motion of the particle become straight lines.
The phase space for the circular billiard in the absence of
gravitational field billiard is recovered, and only periodic
and quasi-periodic obits are observed.

Decreasing the energy to E = 1.416 as shown in Fig.
2(b) we see the phase space is of mixed type. Now chang-
ing the energy to E = 1.088, we see the fixed points in
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FIG. 2: Phase space for the circle (ϵ = 0) with g = 0.5, considering: (a) E = 2; (b) E = 1.416; (c) E = 1.088; (d) E = 0.72;
(e) E = 0.3; (f) E = 0.1.

θ = π/2 or θ = 3π/2 become unstable, creating a period
four elliptic periodic orbit. For E = 0.72 (see Fig. 2(d))
KAM islands are not observed and an apparent ergodic
region emerges. More details are shown later.

Decreasing the energy to E = 0.3 (see Fig. 2(e)) the
chaotic sea occupies a small region of the phase space and
some KAM islands are now visible. Decreasing yet more
the energy to E = 0.1 (Fig. 2(f)) we see that periodic (or
quasi periodic) orbits are present and chaos is no longer
present. The fixed point in θ = 3π/2 is stable (elliptical).
More details about the change of stability of the fixed
points are shown in the section IV.

Let us study the phase space for a convex oval billiard
considering ϵ = 0.1 and p = 2. In Fig. 3(a) we see a
phase space for g = 0 (absence of gravitational field).
The phase space is then of mixed type. Another way
to obtain Fig. 3(a) for g = 0.5 is to consider the energy
E → ∞. In Fig. 3(b) g = 0.5 for a constant energy E = 1
while fixed point in θ = π/2 and 3π/2 becomes unstable
and creates a period four elliptical fixed point. Consider-
ing E = 0.8 and for fixed value of g = 0.5 we observe in
Fig. 3(c), that there is a region where the orbits cannot

access. This happens because of the energy conservation
and the particle does not have enough energy to reach
such regions. Figure 3(d), with E = 0.651256, shows a
phase space where KAM islands are not observed. De-
creasing the value of energy to E = 0.3 (see Fig. 3(e))
the chaotic sea is confined in a small region of the phase
space. Changing the energy to E = 0.1 (Fig. 3(f)) we see
only periodic (or quasi periodic) orbits are observed and
the chaos is no longer present, as similar to Fig. 2(a).

Results for the elliptic billiard are shown in Fig. 4. The
control parameters used in the simulations were a = 1.2,
b = 1 and g = 0.5. Figure 4(a) shows the phase space
considering E = 4. As one can see the chaotic sea is
observed near α ∼= π/2, and periodic or quasi periodic
regions can be observed above and below such α. For
E → ∞ only periodic or quasi-periodic orbits are ob-
served, therefore the results for the absence of gravita-
tional field are recovered. Of course this case can also be
obtained considering g = 0. The fixed points in θ = π/2
and θ = 3π/2 (for α = π/2) are elliptical (stable). De-
creasing the value of the energy for E = 1.288 produces a
phase space where a saddle fixed point can be observed in
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FIG. 3: Phase space for a convex oval billiard (p = 2 and ϵ = 0.1). In (a) g = 0. For g = 0.5 we have: (b) E = 1; (c) E = 0.8;
(d) E = 0.651256; (e) E = 0.3; (f) E = 0.1.

θ = π/2 and θ = 3π/2, as shown in Fig. 4(b). Decreas-
ing even more the energy turns the fixed point unstable
(hyperbolic fixed point). The phase space for E = 0.94
is shown in Fig. 4(c), and as one can see the fixed point
in θ = π/2 is no longer available. Again there is a for-
bidden region that appears due to the conservation of
energy. For E = 0.824 the phase space is apparently
ergodic (see Fig. 4(d)). Figure 4(e) shows the chaotic
sea is observed in a small region of the phase space, and
the number of KAM islands is quite large. Finally, in
the limit E → 0 the phase space presents periodic and
quasi-periodic regions, as shown in Fig. 4(f) considering
E = 0.1, again similar to the previous cases.

To conclude, we see that the phase space for the cir-
cle, elliptic and oval billiard have some common char-
acteristics: all of them present apparent ergodic regions
for some combinations of control parameters; for E → 0
the chaotic sea tends to disappear; these systems present
changes of stability for the fixed points in θ = π/2 or
θ = 3π/2 (α = π/2). However, despite of the similarities
pointed here, there are also marked differences.

A. Supplemental Data I

As attached files we have three different videos
showing details about the phase spaces of Fig. 2, Fig.
3 and Fig. 4. For all, we have considered g = 0.5
and the energy is varied in the interval E ∈ (0, 2).
The phase space α vs θ for the circle, oval and elliptic
billiards can be found in the following addresses: http:
//www.youtube.com/watch?v=Brb3GHXjfFE&feature=
c4-overview&list=UUG 8BL4kcVV1rYYR4Zyn9ew, http:
//www.youtube.com/watch?v=heWA0HPJcGQ&feature=
share&list=UUG 8BL4kcVV1rYYR4Zyn9ew and http:
//www.youtube.com/watch?v=BM4oSeXTGxk&feature=
c4-overview&list=UUG 8BL4kcVV1rYYR4Zyn9ew. To
construct the frames, we used a grid of 500 by 500
different initial conditions and each orbit was iterated
up to 2000 times. As we can see there exist a lot of
duplication of periods and a complicated behavior can
be observed.
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FIG. 4: Phase space for an elliptic billiard (a = 1.2, b = 1.0 and g = 0.5) considering: (a) E = 4; (b) E = 1.28; (c) E = 0.94;
(d) E = 0.824; (e) E = 0.3; (f) E = 0.1.
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FIG. 5: (Colour online) For the oval billiard with p = 2 and
ϵ = 0.1 we have in (a) the trajectory for an elliptic fixed point
in θ = π/2 or θ = 3π/2 (α = π/2) when considering g = 0. As
one can see the particle bounces between the top and bottom
parts of the billiard. In (b), for g = 0.5 and E = 1, we can an
example of trajectory after the bifurcation, with the creation
of a period four fixed point.

IV. PERIODIC ORBITS

In this section we concentrate to study the linear stabil-
ity of some periodic orbits in the phase space. We start

with investigating what happens with the fixed points
θ = π/2 and θ = 3π/2 (for α = π/2) in Figs. 2(b,c) or
3(a,b). In them we see the left fixed point (θ = π/2 and
α = π/2) in the Fig. 2(b) and Fig. 3(a) is elliptical and
after decreasing the energy (Figs. 2(c) and 3(b)), it be-
comes unstable and a period four fixed point arises. The
duplications in the left occur in the horizontal axis and
in the right occurs in the vertical. It happens this way
because the trajectories are arcs of parabola for g > 0
and as can be seen in Fig. 5(b) it needs to hit another
part (by looking at two separate parts measured with re-
spect to an imaginary line cutting/separating the billiard
at x = 0) of the billiard to continue in a periodic orbit.
This behavior is different for g = 0 or E → ∞, where the
fixed point hits the top and bottom of the billiard (see
Fig. 5(a)). Another way to observe the phenomenon in
Fig. 3(a,b) is to consider initially g = 0 and increasing it
until the fixed point becomes unstable.

The position (θ, α) of the elliptical fixed points in
θ ∼= π/2 and θ ∼= 3π/2 (for α = π/2) can be obtained
numerically. Therefore it is possible to find the critical
value of g in which there is a change from stable to un-
stable (saddle) fixed point denoted as gc. We then obtain
a period-doubling bifurcation. For the oval billiard, we
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FIG. 6: (Colour online) For t0 = 0, θ0 = π/2 + 10−8 and
α0 = π/2 we have the numerical and analytical results for: (a)
gc/E vs ϵ ∈ [0.01, 0.135] for the oval billiard with p = 2 and
considering four different values of energy E; (b) gc/E vs a ∈
[1, 2] for the elliptic billiard with b = 1.

have in Fig. 6(a) gc/E as function of the control parame-
ter ϵ and using four different values of E. We rescaled the
vertical axis by E because it is proportional to g. Then
gc/E is a constant as can be seen in Fig. 6(a) looking
at the fact that for different values of E, the curve has
an universal behavior. Therefore, these curves of gc/E as
function of ϵ are scaling invariant for E. Under this curve,
the fixed point in α = π/2 and θ = π/2 (or θ = 3π/2) is
elliptical and above this, it is a unstable (hyperbolic).

Similar analysis can be done in the elliptic billiard.
The results of gc/E as function of the control parameter
a for different values of energy are shown in Fig. 6(b) for
b = 1. The curves are again scaling invariant for E.

The behavior of the fixed points can be obtained an-
alyzing the linear stability. To compute this it is conve-
nient to introduce Green’s residue R and its complement
R̄, which are defined by R̄ = 1−R = tr(4)/4 = (2+tr)/4,

where tr
(4)
j = tr

∏j
i=1 M

(4)
i K

(4)
i . K(4) is the linearized

reflection matrix. The stability is split up into contribu-

tions from the reflection K(4) and from the free motion
M(4). j is the period of the orbit. More details can be
obtained in the Ref. [2].

We use the following formulae to calculate the Residue
of symmetric orbits:

R = 4R′(1−R′) R̄ =
(
1− 2R̄′)2 . (15)

For the fixed points mentioned in Fig. 3(a), i.e., orbits
that touch the top and bottom of the billiard, we show
the residue for α = π/2 and θ = π/2 (or θ = 3π/2) is

equal to [2]

R′ = 1− V ∗κτ ′, (16)

where τ ′ = τ/2 and τ is the time spend for the particle to
return to the initial point. V ∗ is the normal component of
the velocity and κ is the curvature in the collision point.
It is important to say that if 0 < R < 1 the fixed point
is elliptical.

For E > 2g(1 − ϵ) we ensure the particle touches the
top and bottom of the billiard (see Fig. 5(a)). The time
τ ′ for the particle to travel the distance between the top
and bottom (or vice versa) is equal to

τ ′ =
Vd − Vu

g
. (17)

Here Vd =
√
2E and Vu =

√
2E − 4gR(θ = π/2) are the

velocities, respectively, in the bottom part (where the
potential energy U is equal to zero) and in the upper
part of the billiard.

For billiards, the curvature κ can be obtained using
the following expression (see for example [37])

κ(θ) =
X ′(θ)Y ′′(θ)−X ′′Y ′(θ)

[X ′2(θ) + Y ′2(θ)]
3/2

, (18)

where X ′′ = d(X ′)/dθ and Y ′′ = d(Y ′)/dθ (X ′ and Y ′

were previously defined in Eq. (5).
In order to better present the analytical and numerical

results, we separate the findings in two different parts.
First we analyse the oval/circle billiards and after that
the results for the elliptic billiard are obtained.

A. Oval

For the oval billiard, when considering θ = π/2 or θ =
3π/2, the curvature, using the Eq. (18), is written as

κ =
R
[
R−R′′2

]
+ 2R′2(

R2 +R′′2
)3/2 . (19)

In this case R = R(θ = π/2), R′ = ∂R
∂θ (θ = π/2) and

R′′ = ∂R′

∂θ (θ = π/2).
After obtaining R′ in Eq. (16), we can evaluate R in

Eq. (15). Considering R = 0 and V ∗ = Vu, we show that
gc is given by

gc = −E
4κ [1 + 2κ(ϵ− 1)]

[1 + 4κ(ϵ− 1)]
2 , (20)

where κ is given by Eq. (19). As one sees from previous
equation, E is scaling invariant. If we define a new vari-
able g/E the result obtained for different E are basically
the same, confirming the rescaling made in Fig. 6(a).

Now considering R = 0 and V ∗ = Vd, we found that
gc/E is written as

gc
E

= 2κ− 4κ2(ϵ− 1) + 2κ [1 + 2(ϵ− 1)] . (21)
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We need to find the condition in which Eq. (20) and
Eq. (21) have the same values, and the value of g when
it happens is given by

g∗ =
1

2

(2κ− 1)

κ
. (22)

According to our results, Eq. (20) fits the numerical
results for g < g∗, and Eq. (21) is used when g > g∗.
The results here are general, applying to every control
parameter g, E, ϵ and p of the oval billiard.
For a particular case, with p = 2 (convex oval billiard)

we have that the curvature is equal to

κ(ϵ) =
(1− 5ϵ)

(1− ϵ)
2 . (23)

In this situation, we value of g∗ is equal to 1/9 (see Eq.
(22)). The results for ϵ < 1/9 in Fig. 6(a) can be ob-
tained considering R = 0 and V ∗ = Vu. As result we
obtain analytically a curve for gc as function of ϵ which
is equal to

gc = E
(5ϵ− 1)

(19ϵ− 3)(ϵ− 1)

[
a1

(
a2ϵ− a3 + |1− 9ϵ|

√
2
)

19ϵ− 3
− 2

]
, (24)

where a1 =
√
2, a2 = 10a1 and a3 = a2/5. For ϵ = 0

(circle billiard), the value of gc is equal to 4/9. For ϵ >
g∗ = 1/9, it is necessary to consider V ∗ = Vd and R = 0,
and the result obtained is

gc = E
(5ϵ− 1)

(ϵ− 1)2

[
a1

(
a2ϵ− a3 + |1− 9ϵ|

√
2
)

ϵ− 1
− 2

]
. (25)

As one can see for both cases dividing both sides of the
equations for E yields gc/E , which is a function of
ϵ, therefore confirming the results shown in Fig. 6(a).
Moreover the critical value of g is scaling invariant for
the energy E. The analytical results obtained can be ob-
served in Fig. 6(a) as the black dashed curves. As one
can see, the numerical and analytical results are in good
agreement.

B. Ellipse

Considering the elliptic billiard with radius given by
Eq. (2), the curvature for θ = π/2 or θ = 3π/2 is given
by

κ =
b

a2
. (26)

First of all we solve R = 0 considering V ∗ = Vd. After
some calculations, the result obtained is

g

E
= −2b

a4
(
a2 − 2b2 +

∣∣a2 − 2b2
∣∣). (27)

The solution of R = 0 and considering V ∗ = Vu is given
by

g

E
=

2b
(
2b2 − a2 +

∣∣a2 − 2b2
∣∣)

(a2 − 4b2)
2 . (28)

Combining Eq. (28) and Eq. (27) we have

a =
√
2b. (29)

After analysing either the numerical and analytical re-
sults, we observe that Eq. (27) and Eq. (28) are used

for a >
√
2b and a <

√
2b, respectively. These analytical

results are confirmed in Fig. 6(b) as the black dashed
lines, where the analytical and numerical results are in
good agreement. For the situation shown in Fig. 6(b),
with b = 1, we see that the minimum value of gc/E is√
2 (see Eq. (29)). As known, for a = b = 1, we have

a circle with unitary radius. Considering Eq. (28), we
show that gc/E = 4/9. This is the same result obtained
when considering ϵ = 0 in the oval billiard.

It is interesting to see that the eccentricity of a ellipse

is defined as

√
1− (b/a)

2
, therefore gc = 0 when the

eccentricity is 1/2.

C. Low energy

The results previously described cannot be applied to
orbits that start in θ = 3π/2 (α = π/2) and do not reach
the top boundary of the billiard. As example Fig. 9(a)
shows a period one orbit with g = 0.5, p = 2, ϵ = 0.1 and
E = 0.38. It happens for orbits with E < 2gR(θ = π/2),
where a period one fixed point is present. One can ob-
serve that the fixed point in (θ, α) = (3π/2, π/2) is ellip-
tical in Figs. 2(f) and 3(e,f), where E is a small value.
Increasing E, the stable period one fixed point undergoes
an inverse parabolic transition creating an elliptic period
two orbit in a period doubling bifurcation, as shown in
Figs. 2(e) and 3(d). Another example of such a bifurca-
tion is shown in Fig. 9(b), for g = 0.5, p = 2, σ = 0.1
and E = 0.416, where a period two fixed point does not
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FIG. 7: (Colour online) For p = 2, t0 = 0, θ0 = 3π/2 and
α0 = π/2 we have: (a) Ec vs g for ϵ = 0.01. After a linear fit,
the slope obtained is 0.51243; (b) Ec vs κ considering g = 0.1.
A non-linear curve fitting produces as result Ec = 0.05026/κ.

FIG. 8: (Colour online) Phase space (black dots) for different
values of g: (a) g = 0.1; (b) g = 0.25. As red colour we have
the LWD considering µ = +1 and in green colour µ = −1.
We used E = 0.5, p = 2 and ϵ = 0.1.

touch the top of the billiard. It happens because for fo-
cusing boundaries the orbit is elliptic for small energies
and becomes inverse hyperbolic if the energy becomes
large compared with the radius of curvature.

For the oval billiard, a good method to detect the bi-
furcation is to follow the position of the fixed points when
varying E from 0 to 2gR(θ = π/2). We call Ec as the

-1 0 1
X

-1

0

1

Y

-1 0 1
X

-1

0

1

(a) (b)

FIG. 9: (Colour online) An example of period one fixed point
with g = 0.5, p = 2, ϵ = 0.1 and E = 0.38. In (b) we have
a bifurcation and the creation of a period two fixed point for
E = 0.416. As one can see, the orbits do not reach the top
for the billiard.

energy in which the first period-doubling bifurcation is
observed. In Fig. 7(a) we have Ec as function of g for
ϵ = 0.01 and p = 2, and after a linear fit we observe that
Ec = 0.51243g (Ec ∝ g). Ec can be obtained by vary-
ing ϵ(consequently the curvature κ, which is given by Eq.
(23)). It was done in Fig. 7(b) using g = 0.1. After fit-
ting with a non-linear curve we obtained Ec = 0.05026/κ
(Ec ∝ 1/κ). We conclude that Ec ∝ g/κ. Such result can
be proved analytically if one consider that τ = 2V ∗/g for
the residue R = 2κE/g. We then obtain

g = 2Eκ, (30)

where E is numerically equal to the kinetic energy for
θ0 = 3π/2, i.e., E = V ∗2/2.

Similar results can be found for the elliptic billiard,
where one needs to consider the curvature given by Eq.
(26).

V. ERGODICITY

In this section we test the ergodicity of the dynamics
appearing in the above phase space plots, using a tool
called Lyapunov weighted dynamics (LWD) to identify
rare physical trajectories in the phase space [32]. Basi-
cally the method consists of considering a number of 104

trajectories equally distributed in the phase space. Each
has a perturbed trajectory, separated by δθi = 10−3.
Both are evolved in in phase space and they are per-
turbed by a weak random force of intensity

√
σ = 10−6

that slightly modifies the angle θ. If the particle reaches
the boundary of the billiard, a new mutual separation
is calculated (δθf ) and the separation ratio is obtained
(pa = |δθf |/|δθi|). The initial separation is renormalized
by δθi = δθf/pa. The method includes a real parameter
µ, which is positive if we seek unstable dynamics, and
negative otherwise. If pµa > 1 a clone of the trajectory
and perturbation is created with a probability pµa−1, oth-
erwise the trajectory is killed with a probability 1 − pµa .
For this method, the maximum number of iterations con-
sidered are 103.
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FIG. 10: For different values of E we have the position of 104 the trajectories and clones using the Lyapunov weighted dynamics
(LWD) after 103 iterations and for µ = −1. We have considered ϵ = 0 (circle billiard) in (a), (b), (c) and (d). In (e), (f), (g)
and (h) the control parameters used were p = 2, ϵ = 0.1 and g = 0.5 for the oval billiard and in (i), (j), (k) and (l) we have
considered a = 1 for the elliptic billiard.

Figure 8(a,b) shows a plot of the phase space (black
dots) for different values of g. A period doubling bifur-
cation is observed for E = 0.5, p = 2 and ϵ = 0.1 (oval
billiard). For g = 0.1 (Fig. 8(a)) one sees the green dots
(µ = +1) are circulating the two large KAM islands,
centering a saddle fixed point. The red dots concentrate
more inside the KAM islands. Then we use µ = −1 in
the LWD to highlight the periodic islands. After increas-
ing g to g = 0.25 (Fig. 8(b)) we see the green dots do
not have a preferred region and it is clear that a period
doubling bifurcation happened and the red dots follow
the four big KAM islands.

Now we use LWD to show for some special combina-
tions of parameters that KAM islands are not observed
in the phase space, leading to an apparent ergodic dy-
namics. For the simulations we consider g = 0.5 and in
Figs. 10(a,b,c,d) we have ϵ = 0 (circle billiard), in Figs.
10(e,f,g,h) we considered p = 2 and ϵ = 0.1 (oval bil-
liard) and finally in Figs. 10(i,j,k,l) we have a = 1.2 and

b = 1 (elliptic billiard). For E = 0.524 in the circle (Fig.
10(a)), E = 0.602 in the oval (Fig.10(e)) or E = 0.667
in the ellipse (Fig.10(i)) we observe that the trajectories
and clones for the LWD are highlighting a period four
KAM island. Increasing slightly more the value of E to
0.58 for the circle (Fig. 10(b)), to 0.65 for the oval (Fig.
10(f)) and to 0.71 for the ellipse (Fig. 10(j)) we see that
the trajectories/clones are not tending to go any specific
region. Possibly these regions are ergodic, but we could
not prove the opposite, where several simulations were
made trying to identify small KAM islands. Considering
the circle with E = 0.603 (Fig. 10(c)), the oval billiard
with E = 0.675 (Fig. 10(g)) and the elliptic billiard with
E = 0.737 (Fig. 10(g)), we see eight KAM islands. The
behaviour of LWD for the billiards are not the same, and
they have more complex structures with different periods
that have not been shown. They have however similar-
ities near the seemingly ergodic region. Using E = 0.8,
E = 0.73 and E = 0.9, respectively for the circle, oval
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FIG. 11: For g = 0.5 and µ = −1 we have the θ coordinate for the LWD as function of E and considering the circle in (a), oval
(p = 2 and ϵ = 0.1) in (b) and the ellipse (b = 1 and a = 1.2) in (c). In (d), (e) and (f) we have the fraction f for the number
of occupied rectangles as function of E for the circle, oval and elliptic billiard, respectively.

and ellipse, we observe again the trajectories/clones are
not tending to go to any specific region.

In Figs. 11(a,b,c) it is shown θ as a function of E
for each trajectory/clone in the circle, oval and elliptic
billiard, respectively. The control parameters are labeled
in the figures. For a constant value of E the periodic
regions can be identified as the ones to which θ does not
vary for long range.

Now we split both θ and α coordinates of the phase
space in ndiv different equally spaced regions. There-
fore we have a grid with different rectangles than can
be measured if are occupied by a trajectory/clone in the
LWD. f corresponds to the fraction of the number of
rectangles occupied over n2

div. We consider in simula-
tions ndiv = 1000. Figs. 11(d,e,f) show f vs E for the
circle, oval and elliptic billiards. We see that the appar-
ent ergodic region has f ∼= 0.02 for the circle and f ∼= 0.05
for the oval and ellipse. The regions with periodic orbits
tend to have f → 0. We see for the circle (Fig. 11(d)) the
ergodic and non-ergodic behaviors appear many times, as
indicated by the values of E in which f < 0.01 for exam-
ple. Therefore, figures of f vs E in other opportunities
can be used as an indicative of ergodicity in a system.

A. Supplemental Data II

As a complementary material, we have as attached
files a video showing the LWD for µ = −1 and consider-
ing E ∈ [0.602, 0.79] for the circle. The Figs. 10(a,b,c,d)
show some frames of this video. The video can be

seen seen in the following electronic address http:
//www.youtube.com/watch?v= V0G39yVG2I&feature=
share&list=UUG 8BL4kcVV1rYYR4Zyn9ew.

VI. TIME-DEPENDENT BILLIARDS
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FIG. 12: (Colour online) For the circle billiard (ϵ = 0 and
a = b), with V0 = 0.01 and η = 0.01 we have: (a) V vs n
considering different values of g; (b) Magnification near the
curve with g = 10, where it is possible to observe that the
curve does not have enough time to saturate for 108 iterations
of the mapping.
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FIG. 13: (Colour online) For ϵ = 0.2, p = 2, g = 0.1 and
η = 0.01 we have V vs n considering different values of V0.

In this section we introduce a time-dependence in the
boundary of the oval/circle billiard. We consider that
the boundary is breathing and the radius is given by

R(p, ϵ, η, θ, t) = 1+η cos(t)+ϵ[1+η cos(t)] cos(pθ). (31)

For η = 0 the static boundary case is recovered. Our
main purpose is to study and understand the influence
of the gravitational field g in the Fermi acceleration phe-
nomena. To do so, we define the average velocity as

V (n) =
1

M

M∑
j=1

[
1

n

n∑
i=1

Vi

]
, (32)

where M = 500 defines an ensemble of different initial
conditions randomly chosen in θ0 ∈ [0, 2π), α0 ∈ [0, π)
and t0 ∈ [0, 2π).
To discuss the results of the time dependent bound-

ary, let us start with the case of absent gravitation field,
g = 0. For the circle billiard, there is no chaos in the
phase space for the static version. Hence initializing the
simulation with a very low initial velocity, the curve of
average velocity starts to grow with and then suddenly
changes to a regime of saturation. Such regime marks
a final limit of grow for the velocity of the particle then
no unlimited energy growth is observed. This is in well
agreement to what is known in the literature, particularly
the LRA conjecture.
Then let us make g ̸= 0 but considering small values,

as labeled in the figure. Because now g ̸= 0, thin regions
of the phase space for the circular case have chaos for
the static boundary. The curves of average velocity seem
not to saturate but rather they appear to grow at a very
small rate as shown in Fig. 12(b) for a magnification con-
sidering g = 10. The slope of growth is 0.0209(4). Why
this exponent is remarkably small? Indeed according to
Arnold [38], who proved there exist solutions exhibiting
arbitrarily large growth in the action variables in nearly
integrable dynamical systems with several degrees of free-
dom. Therefore we believe few orbits are having diffusion
in velocity while others are in regular dynamics that, in
the average are producing the behaviour shown in Fig.
12, as observed.
Now let us consider the oval billiard for p = 2, ϵ = 0.2,

g = 0.1 and η = 0.01. It is shown in Fig. 13(a) a plot of

V as function of n for different initial velocities V0. As
one sees, the higher V0 the higher is the initial plateau V
observed until the curve changes to a regime of growth.
The curves have an initial plateau with constant velocity,
and after passing by a crossover nx, they start growing
with slope ∼ 0.1734. We notice this result is slightly
larger than the one obtained [35], i.e. ∼ 0.16 . . . for the
breathing case and foreseen theoretically in [36] as ∼ 1/6.
However our result is within the same order of magnitude
of either results obtained previously.

VII. CONCLUSIONS

We studied some classical particles undergoing colli-
sions inside in a circle or oval billiard under a gravita-
tional force field. The mapping and model were studied
and details about the dynamic of these particles were
realized. The linear stability of some fixed points was
studied and it was possible to obtain analytically and nu-
merically the conditions where we have a period-doubling
bifurcation of a period one and two fixed points. We dis-
covered apparently ergodic dynamics for certain values of
the control parameters, which passed through a sensitive
test using Lyapunov weighted dynamics. After introduc-
ing a time-dependence in the boundary, we showed for
the circle with null gravity g that the system has average
velocity that tends to saturate after some number of it-
erations n, but for g > 0 it is possible to see that we have
a Fermi acceleration phenomenon with slope very small,
where this phenomena can be explained using the LRA
conjecture and Arnold diffusion. We observed that the
slope for the oval billiard is slightly greater than the one
obtained in the Ref. [35], but before the Fermi acceler-
ation the particles tend to enter in a deceleration region
for high enough values of initial velocity.

The numerical finding of ergodicity (strengthened by
Lyapunov-weighted dynamics) for a smooth convex grav-
itational billiard is new; it would be interesting to ob-
tain rigorous mathematical proofs for the examples given
here, and determine conditions analagous to the defo-
cusing mechanism for non-gravitational billiards that are
sufficient for ergodicity. In addition, the dynamics of
ergodic billiards is largely determined by the amount
“stickiness,” regular (albeit zero measure) orbits that
trap trajectories for long periods. For example, the level
of stickiness in the chaotic region of mushroom billiards
is controlled by the existence of marginally unstable peri-
odic orbits (MUPOs), which in turn is related to approx-
imation of real numbers by certain rationals [7]. It would
be interesting to know if the gravitational billiards con-
sidered here have dynamics controlled by similarly sticky
orbits.

Likewise, we have observed Fermi acceleration in the
gravitational circular billiard, despite the fact that the
high velocity limit is integrable. While this is apparently
due to Arnold diffusion, it would be very interesting to
explore this mechanism in more detail, and in general
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the limit of high velocity of gravitational billiards with
diverse geometries. For the oval billiard, the accelera-
tion exponent is consistent with other (non-gravitational)
Fermi acceleration problems, but this need not be the
case in general. Finally, we note that both gravitational
effects and time-dependent boundaries can be explored
through atom-optics experiments [23].
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