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The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized
using the decay rate of the survival probability. The system consists of an ensemble of non interacting
particles confined to move along and experience elastic collisions with two infinitely heavy walls.
One is fixed, working as a returning mechanism of the colliding particles while the other one moves
periodically in time. The diffusion equation is solved and the diffusion coefficient is numerically
estimated by means of the averaged square velocity. Our results show remarkably good agreement
of the theory and simulation for the chaotic sea below the first elliptic island in the phase space.
From the decay rates of the survival probability, we obtained transport properties that can be
extended to other nonlinear mappings, as well to billiard problems.

PACS numbers: 05.45.Pq, 05.45.Tp

We study the dynamics of an ensemble of non
interacting particles moving constrained by two
infinitely heavy walls, where one of then is moving
periodically in time and the other is fixed. This
problem, also known as Fermi-Ulam model, has
application in many areas, including astrophysics,
atom-optics, quantum mechanics, among others.
The diffusive behaviour of the velocity, here set
as the way the transport of orbits occurs in the
phase space, is investigated considering transport
properties obtained from the decay rate of the
survival probability, defined by means of escape
formalism. Since the system present mixed dy-
namics, stickiness phenomenon may influence the
transport causing anomalous diffusion. In this
study we developed an analytical approach for the
diffusion coefficient along the transport through
the chaotic sea considering escape rate formalism
and survival probability analysis. The numeri-
cal results we obtained are in good agreement
with the theory, and confirm the robustness of
the formalism. The results obtained here can be
extended to other similar dynamical systems.

I. INTRODUCTION

Typical dynamics of Hamiltonian systems are non-
integrable and non-ergodic [1]. Such behavior, leads the
system to present mixed phase space, with chaotic seas,
invariant tori and Kolmogorov-Arnold-Moser (KAM) is-
lands [2]. For strongly chaotic systems, the dynamics has
a normal diffusive behavior, where particles move freely
in the phase space like a Brownian motion [1, 2]. In a
nearly-integrable system, an initial condition started in
the chaotic sea may present a very complicate behavior.
Stability islands influence directly the dynamics gener-

ating anomalous effects in the transport properties for a
chaotic orbit [3]. In fact, thanks to the presence of cantori
(fractal dimension tori) [2], and due to labyrinth islands
and chains of them, generated by resonances; orbits orig-
inated in the chaotic sea, may be trapped for long, but
finite time intervals, around these stability structures.
Such effect is caused by a dynamical trapping which is
called stickiness [3, 4]. This finite trapping can cause
irregular diffusion of particles where an intermittent be-
havior may occur, alternating between normal diffusion
(chaotic behavior) and irregular (stickiness influence).
The stickiness phenomenon was originally proposed in
early 70’s, by Contopoulos [5] in his study about galaxy
dynamics. Nowadays, sticky orbits lead to a new sce-
nario of modern science, where anomalous transport and
statistical properties can be obtained in the dynamics
of systems in different areas of research such as plasmas
[6, 7], acoustic [8], astronomy [9], biology [10], among
others (See Ref.[11] for a review).

In this study we propose to use diffusion and decay
rates of the survival probability to investigate transport
in the chaotic dynamical regime of the Fermi-Ulam model
(FUM) [12]. The FUM was originally proposed by Ulam
in early 60’s [12], as an attempt to produce a proto-
type that could explain the Fermi Acceleration [13] (un-
bounded energy growth). The system consists of an en-
semble of non interacting particles confined to move be-
tween two infinitely heavy walls, which the particles col-
lide elastically. One wall is assumed to be fixed while the
other one oscillates periodically in time. Despite the sim-
ple mechanics of the model, it leads to a complex variety
of nonlinear phenomena in both conservative and dissipa-
tive dynamics [14–18]. Also, one may find applications of
its dynamics in different areas of research as astrophysics
[19], atom-optics [20, 21], quantum effects [22–24], exper-
imental devices [25, 26], among others. The phase space
of the system is mixed and contains both periodic islands
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surrounded by a chaotic sea which is limited by a set of
invariant curves. The lower one is analytically obtained
as function of the control parameter [27] and works as
a barrier blocking a flow of particles through it. This
implies that we have a finite portion of the phase space
for orbits to diffuse, and hence we have a mixed phase
space dynamics, we are interested in study how the diffu-
sive process and transport occur for this region and if the
survival probability analysis would give us transport coef-
ficients related with the escape formalism already known
in the literature [28–33].
In many scenarios, we are not interested in the individ-

ual behavior of an initial condition or particle, but rather,
in the average properties of the system, particularly when
an ensemble of particles is taken into account [28]. This
is the main reason to consider statistical techniques to
evaluate the description of dynamical phenomena [29–
33]. An intuitive example is to drop some colored ink
in water, and study how the particles of ink move far
away from each other in the liquid surface when this is
also moving. When a physical system is setup, a leakage
can be considered as the introduction of a hole or even
a barrier [34, 35]. We introduce a hole in the system, a
pre-defined region, related to the dynamical variable in
study, where orbits can escape through it [11, 34, 35].
One can say the probability density of an ensemble of
initial conditions to survive this leaking is ρ(r⃗, t), where
r⃗ represents a generic dynamical variable in study, for
example the action, where ρ = 0 in the hole. Note that
this is an approximate, coarse grained description, av-
eraging over less relevant variables (the angle ϕ in our
case). Consider we can separate the “dynamical region”
in two parts: (i) particles that have escaped through the
hole and; (ii) particles that still have not escaped. Hence
we can define a current of flow for the escape. Of course
it must be proportional to the difference of concentra-
tion of particles among both regions. So we may write
j⃗(r⃗, t) = −D∇ρ(r⃗, t), where D is the diffusion coefficient.
Considering yet the continuity equation for conservation

of particles we have ∂ρ(r⃗,t)
∂t = −∇.⃗j(r⃗, t), and combining

both expressions, we obtain the diffusion equation

∂ρ(r⃗, t)

∂t
= D∇2ρ(r⃗, t) . (1)

A natural question is then raised about the decay rate
of ρ(r⃗, t). The main aspect of this analysis is that the
escape rate is extremely sensitive to the dynamics of the
system. For strongly chaotic systems, which present nor-
mal diffusion, the decay is typically exponential [11, 28],
while systems that present mixed phase space, with irreg-
ular diffusion due stickiness influence, the decay can be
slower, presenting a mix of exponential with a power law
[11, 36], or stretched exponential decay [37, 38]. Indeed,
when a non-exponential decay is observed the dynamics
would require a long range correlation, as for example a
consequence of stickiness influence [11]. An equally im-
portant aspect is that the escape rate can have a strong
dependence on the position and size of the hole [39–41].

The investigation of the transport and of the diffusion
properties of FUM is done by solving Eq. (1) consider-
ing boundary conditions for the escape in different hole
positions along the phase space, particularly on the ve-
locity axis. Considering an ensemble of particles, when a
particle reaches a hole, we consider it has escaped, and
the time evolution of other particle from the ensemble is
started. An analytical expression is obtained for the dif-
fusion coefficient as function of the expansion in Fourier
series [42]. Our theoretical findings are compared with
numerical simulations obtained via the average squared
velocity. The agreement of the theory with the simulation
for the lower region in the phase space is remarkably well
confirming the robustness of the formalism. The formal-
ism used could be extended to other systems described
by discrete mappings, particularly the billiard dynamical
systems.

The paper is organized as follows: in Sec. II we de-
scribe the Fermi-Ulam model, its dynamical and some of
its chaotic properties. Section III is devoted to discuss
the analytical procedure and to solve the partial differen-
tial equation given in Eq. (1). We also do a comparison of
the numerical results with the theory, confirming a good
agreement of the two. Finally in Sec. IV, we present our
final remarks and conclusions.

II. THE MODEL AND THE MAPPING

We start describing the model under consideration. It
consists of a particle, or equivalently of an ensemble of
non interacting particles moving constrained by two in-
finitely heavy walls with an absence of gravitational field.
Collisions are considered to be elastic, hence there is
no fractional loss of energy upon collision. One wall is
fixed at x = ℓ and works as a returning mechanism for
the particle to suffer a further collision with a moving
wall. This is described by a periodic oscillating func-
tion of the type xw(t) = ε cos (wt), where ε and w are
respectively the amplitude and the frequency of oscilla-
tion. The dissipative dynamics is not from interest in
this paper although it has been considered via inelastic
collisions where a restitution coefficient was introduced
to simulate the fraction loss of energy upon collision of
the particles with the wall [16]. Kinetic friction was also
taken into account in the literature [43] as well as in-flight
dissipation [44].

The dynamics of the system we are investigating is
described by a two-dimensional, nonlinear, measure pre-
serving discrete mapping for the variables velocity of the
particle v and time t immediately after the nth collision
of the particle with the moving wall. There are two dis-
tinct versions of the dynamics known in the literature: (i)
the complete version and; (ii) static wall approximation.
The case (i), i.e., the complete version, takes into account
the full motion of the moving wall, leading the instant of
each collision to be obtained via solution of transcenden-
tal equations. The static wall approximation, marked by
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FIG. 1: Phase space for the Fermi-Ulam model described by mapping (2). The control parameters used were: (a) ϵ = 10−2; (b)
ϵ = 10−3 and; (c) ϵ = 10−4. The gray (red) curve marks the position of the first invariant spanning curve (FISC) in the phase
space.

case (ii) assumes both walls are fixed, however, after the
impact with the one on the left, the particle experiences
an exchange of energy and momentum as if the wall was
moving. With such an approximation, the transcenden-
tal equations no longer need to be solved and, at the
same time, the nonlinearity of the problem is kept. Such
a version was very useful long time ago when computers
were far slow. It also gives the huge advantage of mak-
ing the analytical discussions easier as compared to the
complete model. The scaling properties observed in the
simplified model [27] are also present in the complete ver-
sion. In this paper and from this point and beyond, we
consider only the complete version of the model. All of
our analytical results were obtained using the complete
model.

To construct the mapping, let us suppose the initial
condition for a moving particle is v0 and t0. We also
assume that at t = t0, the position of the particle is at
ε cos(wt0). There are three control parameters, ε, ℓ and
w, and that not all of them are relevant for the dynamics.
It is then convenient to define dimensionless and hence a
more convenient set of variables. We define Vn = vn/wℓ,
ϵ = ε/ℓ and finally measure the time in terms of the num-
ber of oscillations of the moving wall ϕn = wtn. Starting
with an initial condition (Vn, ϕn) with initial position of
the particle given by xp(ϕn) = ϵ cos(ϕn), the dynamics is

evolved by a map T̃ which gives the pair (Vn+1, ϕn+1) in
the (n+1)th collision with the moving wall. Taking these

into account, we end up with the following mapping

T̃ :

{
Vn+1 = V ∗

n − 2ϵ sin(ϕn+1)
ϕn+1 = [ϕn +∆Tn] mod(2π)

. (2)

The expressions for V ∗
n and ∆Tn depend on what kind

of collision happens: (i) multiple collisions and; (ii) sin-
gle collisions. The multiple collisions are such that, af-
ter the particle enters in the collision zone, x ∈ [−ϵ,+ϵ]
and hits the moving wall, before it leaves the collision
zone, the particle suffers a second and hence multiple
collision. Further collisions can also be observed. They
indeed are less probably to be observed. This imply that
the probability of observing a second successive collision
is smaller than observing one. Observing three succes-
sive is smaller than observing two and so on. In fact,
such probability has the form P (nsr) ∝ n−3.76

sr , where
nsr denotes the number of successive reflections. For a
further discussion, see Ref. [45], which discusses such re-
flections in a periodically corrugated waveguide, a model
who has topological similarities with the complete Fermi-
Ulam model. The expressions for both V ∗

n and ∆Tn are
given by V ∗

n = −Vn and ∆Tn = ϕc. The numerical value
of ϕc is obtained as the smallest solution of the equation
G(ϕc) = 0 with ϕc ∈ (0, 2π], where the function G(ϕc) is
written as

G(ϕc) = ϵ cos(ϕn + ϕc)− ϵ cos(ϕn)− V ∗
n ϕc . (3)

Let us now discuss the origin of the function G(ϕc)
and its physical implications. Between two collisions of
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the particle with the moving wall, the particle travels
with a constant velocity, thanks to the absence of any
potential gradient along the way the particle goes. Thus,
the position of the particle is given by a linear equation
in time. Besides, the vibrating motion of the moving wall
turns out impossible to find an analytical expression of
the instant of the impact. Therefore, the function G(ϕc)
is obtained as an attempt to account the condition that
the position of the particle is the same as the position of
the moving wall at the instant of the impact.
If the function G(ϕc) does not have a root in the in-

terval ϕc ∈ (0, 2π], we concluded the particle left the col-
lision zone and a multiple collision no longer happened.
Let us move on and consider now the case of single col-

lisions. In this case, after a collision, the particle leaves
the collision zone without a further collision. It returns
back due to the fixed wall, which rebound it back to
the moving wall. The corresponding expressions used in
mapping (2) are V ∗

n = Vn and ∆Tn = ϕr+ϕl+ϕc, where
the auxiliary terms are given by ϕr = (1− ϵ cos(ϕn))/Vn

and ϕl = (1 − ϵ)/Vn. The expression of ϕr denotes the
time that the particle spends travelling to the right-hand
side until it hits the fixed wall. The particle thus suffers
an elastic collision and is reflected backwards with veloc-
ity −Vn. The term ϕl denotes the time that the particle
spends to enter the collision zone. Finally, ϕc is numer-
ically obtained as the smallest solution of the equation
F (ϕc) = 0 with F (ϕc) given by

F (ϕc) = ϵ cos(ϕn + ϕr + ϕl + ϕc)− ϵ+ V ∗
n ϕc . (4)

The same discussion used for the function G(ϕc) also
holds here for the function F (ϕc). Thus Eq. (4) comes
from the condition that the position of the particle is the
same as that of the moving wall at the instant of the
impact.
Figure 1 shows the phase space for three different val-

ues of ϵ and considering 50 different initial conditions.
One sees the phase space presents a mixed structure for
all values of ϵ. In evidence, there is an existence of the
chaotic sea in the low energy regime (below the invariant
spanning curve), and then a chain of islands appear as the
velocity is increased. After that, the presence of a first
invariant spanning curve (FISC), limiting the growth of
the chaotic sea. The position of the FISC varies with
ϵ, and an analytical estimation for its position, by using
a connection with well known standard mapping [2] can
be found in Refs. [46]. Considering the results obtained
in the above mentioned papers, the position of FISC is
estimated as

VFISC = 2

√
ϵ

Kc
≈ 2

√
ϵ , (5)

where ϵ is the control parameter and Kc ≈ 0.9716 . . .
is the critical value for the parameter in the standard
map [47], where the system suffers a transition from local
chaos to globally chaotic dynamics.
Analyzing the mixed phase space of the model we can

see that, depending of the initial condition, distinct kinds

of dynamics may be observed. If a particle has an initial
velocity above VFISC , it can not cross the curve down-
wards and stays forever confined to a region of local
chaos. The dynamics can then be periodic or chaotic.
On the other hand, if the particle has initial velocity be-
low VFISC , the particle has access to more regions in the
phase space. This last scenario, shows itself more inter-
esting to study, since the dynamical trapping producing
the stickiness phenomenon is observed and affects the
dynamics and hence the diffusion. Still, we can set that
in this dynamical regime, there is a limited region for
the particle to have access. The upper barrier is near
VFISC and lower limit is chosen to be 0, although there
are few observations of velocities reaching Vn < 0, mostly
dominated by successive collisions. Therefore in practi-
cal terms, we consider the two limits Vu = VFISC and
Vd = 0.

In this limited phase space, the period-one fixed points,
(V ∗ϕ∗), are given by

ϕ∗ =

{
0
π

}
, V ∗ =

1− ϵ cos(ϕ∗)

mπ
, (6)

The elliptical fixed points (stability islands) are charac-
terized by ϕ∗ = π, and V ∗ = (1 + ϵ)/mπ, where m is an
integer m = 1, 2, 3, . . .. They are elliptic as soon as the
condition

m ≥ 1

π

√
1 + ϵ

ϵ
, (7)

is matched.

III. RESULTS AND DISCUSSION

In this section, we proceed with a statistical analysis
for the dynamics of the model. Because of the sine func-
tion present in the mapping (2), a direct average over
an ensemble of different ϕ is not convenient. Instead, we
look at the squared velocity, hence allowing us to estimate
the behavior of average squared velocity as function of n.
We also discuss the decay rates for the survival probabil-
ity and, using a solution of the diffusion equation, we find
out an expression for the diffusion coefficient. Our nu-
merical results confirm well the robustness of the theory
giving a good agreement of the two.

A. Root mean square velocity (VRMS)

To start with, let us investigate the behavior of the
averaged square velocity over the dynamical evolution in
the number of collisions. From the first equation of map-
ping (2), and after applying square from both sides we

have (Vn+1)2 = (Vn)2 − 4Vnϵ sin(ϕn+1) + 4ϵ2 sin2(ϕn+1).

Defining (∆V )2 = (Vn+1)2 − (Vn)2, and considering the
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average in the interval ϕ ∈ [0, 2π] for the terms depend-
ing of the phase, which is zero for sin(ϕn+1), and 1/2 for
sin2(ϕn+1), we end up with

(∆V )2 = 2ϵ2 . (8)

Note that we here neglect correlations between ϕn+1 and
Vn, since V changes very little from one collision to the
next.
In our dynamical analysis, we check the velocity prop-

erties between collisions. So, taking the expression of
(∆V )2 in the interval between collisions, we may inter-
pret this interval as an integration variable [48, 49], where
one may set that

(Vn+1)2 − (Vn)2

(n+ 1)− n
≈ ∂V 2

∂n
. (9)

Integrating both sides, we obtain∫ Vn

V0

dV 2 =

∫ n

0

2ϵ2dn → (Vn)2 = (V0)
2 + 2ϵ2n . (10)

For a better statistics, we set VRMS =
√
V 2. Then,

an analytical expression for the velocity as a function of
n is

VRMS =
√

(V0)2 + 2ϵ2n , (11)

where V0 is the initial velocity. Of course this expression
is not valid for any n, particularly the larger ones. Equa-
tion (11) is valid only for small n. Once the phase space
is limited by invariant curves, an orbit in the low velocity
regime can not reach regions above the invariant curve
for long time dynamics. If we literally take Eq. (11), as n
is increased, VRMS should also grows infinitely, and that
is not what happens.
We can estimate the window of validity of Eq. (11)

by using Eq. (5). Indeed, when VFISC = VRMS , we can
estimate the number of collisions, nx critical to where the
Eq. (11) is valid. If we choose V0 → 0, we obtain nx

∼=
2/ϵ. The relevant scaling for this crossover is given by
nx ∝ ϵ−1, obtained here by simplest way and which is in
well agreement with the result known from the literature
[27].
Let us move ahead and discuss the numerical behavior

for VRMS and hence, compare with Eq. (11). First we
evaluated numerically the following expression

V 2 =
1

M

M∑
i=1

1

n

n∑
j=1

Vi,j
2 , (12)

where M is the ensemble of initial conditions, and n is
the number of collisions. In a statistical point of view,
we take the average of the velocity Vi,j along the orbit
running j and also along the ensemble of initial condi-
tions running i. Initial conditions were always chosen in
the chaotic sea with a low initial velocity V0 ≈ ϵ. This

FIG. 2: Plot of the curves for VRMS as a function of n for
different values of ϵ. We notice the curves start to grow for
short n according to the correct scaling exponent β = 1/2
and then suffer a changeover after a crossover nx and bend
towards a stationary state VSS for long times.

was made to warrant a maximum diffusion for a chaotic
particle.

Figure 2 shows the behavior for the curves of VRMS as
function of n evaluated over an ensemble of 2.000 initial
conditions. Each one of them was evolved up to 107

collisions with the moving wall. For large enough n, all
curves approach to the stationary state marked by VSS .
Our result obtained in Eq. (11) shows that when n is
small and, considering a negligible initial velocity, i.e.
V0

∼= 0, all curves must diffuse with a
√
n. Hence VRMS ∝

nβ , where β ≈ 1/2. For large enough n, the curves must
converge to the stationary state, which scales as VSS ∝
ϵ1/2, as dictated by the position of the lowest invariant
spanning curve. The crossing of VSS with VRMS gives a
crossover nx ∝ ϵ−1, as we mentioned above.

B. Transport and Diffusion

To discuss the diffusion, let us introduce properly a
hole in the system. Indeed we set up a velocity Vhole <
VFISC that is used to terminate the dynamics. Starting
an initial condition with V0

∼= 0, the dynamics evolves
and the orbit starts its diffusion along the phase space.
When it reaches and hence crosses Vhole, the dynamics
is terminated, the number of collisions until that point
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is annotated and a new initial condition, with the same
velocity and different initial phase is started. The pro-
cedure repeats until all the ensemble is exhausted. The
diffusion equation, written specifically to investigate the
dynamics of the system described by Eq. (2) is written
from Eq. (1), is given by

∂ρ(V, n)

∂n
= D∇2ρ(V, n) , (13)

where the generic action variable is now set as the parti-
cle’s velocity V , and the time is measured as the number
of collisions n. The diffusion equation setup in (13), only
holds for n >> 1, since diffusive process occurs in the
chaotic sea for long times. To solve Eq. (13), we use the
method of separation variables for a partial differential
equation, yielding to ρ(V, n) = U(V )T (n). So, applying
this to Eq. (13), we obtain as solution for the n variable

T (n) = C1e
−ζn , (14)

where C1 is a constant. Also, considering the equation
related with the velocity, one may find

U ′′(V )

U(V )
= − ζ

D
= −η2 . (15)

Equation (15) is an ordinary second order differential
equation with constant coefficients. Solutions are given
in terms of sines and cosines. The boundary conditions

are ∂ρ(V,n)
∂V = 0 where, when V = 0 we have U ′(0) = 0;

and ρ(V, n) = 0, when V = Vhole. This condition sets
that U(Vhole) = 0, where Vhole is the pre-defined escape
velocity.
Physically, we can interpret the boundary conditions

as being the conservation of particles of the initial en-
semble since no particle escaped yet; and the division of
the phase space, in orbits that escaped and orbits that
did not escaped yet.
Incorporating these into Eq.(15) and considering only

odd solutions, we end up with the condition ηVl = lπ/2,
where l = 1, 3, 5, . . . is sum index of the Fourier se-
ries expansion. Since η2l = ζl/D, we obtain D =
(4V 2

holeζl)/(l
2π2). Considering yet Vhole = h and a

change in the notation of the sum index from the Fourier
series expansion, from l/2 to (k + 1/2), where odd and
even terms are considered, one can obtain [42]

ρ(V, n) =

∞∑
k=0

Ak cos

[
Vkπ

h

(
k +

1

2

)]
×

× exp

[
−π2Dn

h2

(
k +

1

2

)2
]

, (16)

where the diffusion coefficient is defined as

D =
4h2ζk

π2 (k + 1/2)
2 . (17)

The expression given by Eq. (16) furnishes an analyt-
ical approximation for the survival probability, when a

hole is introduced in the chaotic sea [42]. This expres-
sion holds for any value of k, it just depends on how many
terms one would consider in the Fourier series expansion.
And for k = 0, one could obtain the slowest decay. Also,
it is important to clarify, that the expression given in Eq.
(16) describes well the behavior for the curves of Psurv

only for an exponential decay. For the case, where it goes
through a mixed phase space, the solution of the diffusion
equations is more complicated, and is still considered an
open problem.

C. Numerical Treatment

Let us now discuss our numerical results. When we
consider transport properties and diffusion for chaotic
dynamics [28–33], one can obtain the following expression

⟨[r(n)− r(0)]2⟩ =
∫

r(n)2ρ(r⃗, n)dr⃗ = 2Dn , (18)

where r is the generic action variable of the system, D
is the diffusion coefficient, n is the iteration number and
ρ(r⃗, n) is the probability distribution of a system.

FIG. 3: (a) Plot of the diffusion coefficient D, Eq. (20) as a
function of n for different values of ϵ, as labeled in the figure.
(b) Plot of D vs ϵ2, where a power law fitting furnishes a slope
δ ≈ 1, thus confirming the relation obtained in Eqs. (8) and
(20).

For the FUM case, we can use in the expression given
by Eq. (18), the previously result obtained in the last
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FIG. 4: (a) Plot of the curves of ρ as function of n for 10 distinct position for the holes considering ϵ = 0.0005. (b) shows the
behavior of the diffusion coefficient given by Eq. (17), as function of the position of the holes h. In (c) a rescale considering
D → D/ϵ2 to the curves shown in (b), overlap all curves around 1 for small values of the scaled variable h/ϵ.

subsection, which is ⟨(∆V )2⟩ = 2ϵ2. This procedure is
made in order to obtain a numerical approximation for
the diffusion coefficient. Thus, at each collision of the
particle with the moving wall, we calculate the value of
the root mean square velocity, or second moment of the
dispersion, as

⟨∆V 2⟩ = lim
NP→∞

1

NP

NP∑
i=1

(Vn
i − V0

i)2 , (19)

where NP is the number of particles, the index i denotes
the NP particles and Vn is the velocity after n iteration
of the ith particle. So, the diffusion coefficient, should be
given as

D = lim
n→∞

1

2n
⟨∆V 2⟩ . (20)

Figure 3(a) shows a plot of the diffusion coefficient ob-
tained from Eq. (20) as a function of n for NP = 106.
When we compare the relation between the diffusion coef-
ficient and ⟨(∆V )2⟩, i. e., D = ϵ2 as displayed in Fig.3(b)
in a log-log plot, we found that a power law fitting, fur-

nishes D = 0.974(ϵ2)δ, where δ ≈ 1. This result remark-
ably corroborates the linear dependence between D and
ϵ2, as predicted by Eqs. (8) and (20).

In order to give a more robust result, let us compare
with the diffusion expression given in Eq. (17). We con-
sidered ten distinct holes equally distributed along the
velocity axis, from 2ϵ and the value of VSS , i. e., the value
of stationary state for VRMS . Here we considered the evo-
lution of 106 different initial conditions distributed along
the phase ∈ [0, 2π] and with V0 = 1.1ϵ. The behavior of
ρ as a function of n is shown in Fig. 4(a).

One can see that as we increase the position of the hole
in the velocity axis, which means, that we are increasing
the possibility of the particle to visit a larger region along
the chaotic sea and that the particle has availability to
diffuse before escape, the exponential decay ζ is slower.
This is a clear confirmation that the orbits experience
the dynamical trapping yielding in a stickiness, hence
producing a slower decay. Indeed, any slower decay than
a regular exponential, could be addressed to stickiness
influence in the dynamics. One could fit an stretched
exponential or a power law fit, according to the decay
rate of the survival probability. It is still an open problem
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if a system will present decay rate as a power law or as
a stretched exponential as stickiness influence. For the
FUM system, we observed a power law decay.
In Figure 4(b) we show a plot of the diffusion coefficient

as a function of the position of the hole for 10 different
holes located along the phase space and considering dif-
ferent values of ϵ. This was made using the analytical
expression given by Eq. (17), for k = 1. Here we used
the exponent ζ obtained from every exponential fit in the
curves of ρ shown in Fig. 4(a). One could notice that
there is a remarkably good agreement between the val-
ues of the diffusion coefficient, for the same values of ϵ,
between Figs.3(a) and 4(b), which gives support to the
connection of the theory and the numerical data.
Finally, in Fig. 4(c), we rescale the vertical axis by

the transformation D → D/ϵ2 and the horizontal axis by
h → h/ϵ. After this, we obtain an overlap all curves of
the diffusion independent of the analyzed hole. We can
see that the rescale in the average for D/ϵ2 relation is
near by 1 (dashed line). Which is also in agreement with
Eqs.(8) and (20).
The fluctuations around 1 observed in Fig.4(c) are due

to the direct influence of the periodic islands in the phase
space, producing then a stickiness near periodic regions
in the dynamics. Once the holes were set between 2ϵ and
the VSS , for higher holes, there are some stability islands
near VSS , so the dynamical trapping becomes inherent in
the system. Also, these orbits cause anomalous diffusion
influencing also the transport [3, 4] along the chaotic sea.
A more complete analytical analysis of the influence of
stickiness in the dynamics, particularly near the periodic
islands is still lacking.

IV. FINAL REMARKS AND CONCLUSIONS

In this paper we studied the dynamics of a particle,
or an ensemble of non interacting particles, confined be-
tween two walls, where one is fixed and the other one is
periodically perturbed. The dynamics was described by
a two-dimensional, nonlinear, transcendental and mea-
sure preserving mapping. The phase space is composed
by chaotic seas, KAM islands and invariant tori, which

separates different regions in the phase space. Analyz-
ing the expression for the root mean square velocity as
function of n we estimated analytically the behavior of
VRMS .

Considering the transport properties and an analyti-
cal analysis of the survival probability ρ, we found an
expression for the diffusion coefficient D. From a Fourier
series expansion, we shown that D depends on the expo-
nential rate decay of ρ and also from the hole position
in the phase space. A numerical simulation was made
and show to agree well with this expression, confirming
the relation between the diffusion coefficient and ϵ2, as
predicted by Eqs.(8) and (20). Also, we rescaled the be-
havior of the diffusion coefficient for 10 different holes,
and found a normalization around 1 for D/ϵ2, which also
agrees with the theory.

Both analytical and numerical results in this paper,
give robustness to the theory of diffusion analysis, con-
cerning the survival probability curves, as shown also in
[42]. In the future, it would be interesting to try to ex-
pand this formalism to other more complex dynamical
systems, like billiards for instance. Also, to investigate
some possible higher order effects in the Fourier series
expansion for the analytical expression of diffusion coef-
ficient in Eq.(16), as for example k > 1, and its effects
to Eq.(17), would be an extension of the formalism here
presented. Besides, we could try to estimate numerically
Eq.(16) behavior and possible stickiness influence to this
analysis.
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