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Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The

dynamics consists of a classical particle colliding between an inner circle and an external boundary

given by an oval, elliptical, or circle shapes, exploring for the first time some natural

generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong

interest for understanding marginally unstable periodic orbits and their role in the boundary

between regular and chaotic regions in both classical and quantum (including experimental)

systems. For the oval billiard, which has a mixed phase space, the presence of an obstacle is an

interesting addition. We demonstrate, with details, how to obtain the equations of the mapping, and

the changes in the phase space are discussed. We study the linear stability of some fixed points and

show both analytically and numerically the occurrence of direct and inverse parabolic bifurcations.

Lyapunov exponents and generalized bifurcation diagrams are obtained. Moreover, histograms of

the number of successive iterations for orbits that stay in a cusp are studied. These histograms are

shown to be scaling invariant when changing the radius of the scatterer, and they have a power law

slope around �3. The results here can be generalized to other kinds of external boundaries. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915474]

A billiard consists in the dynamics of a point particle

moving freely in a closed region and suffering specular

collisions with the boundaries. In this paper, a billiard

with a circular scatterer in its interior is studied, while

three shapes are considered for the outer boundary:

oval, elliptical, or circle shapes, as a generalization of

annular billiard. The equations of the mapping are con-

structed with details. Depending on the control parame-

ters, the phase space presents a mixed structure, having

periodic islands, chaotic seas, and invariant spanning

curves. The linear stability of some fixed point is studied

showing the occurrence of direct and inverse parabolic

bifurcations. Generalized bifurcation diagrams are also

studied, which utilizes an important tool to characterize

chaotic regions called Lyapunov exponents. Histograms

for the number of successive iterations for orbits that

stay in a cusp are studied. The histograms are shown to

be scaling invariant with respect to the radius of the

inner circle. These cusps can create singularities in the

billiard and they are object of study for many different

problems.

I. INTRODUCTION

Billiard problems have been widely studied in the last

years.1–5 They were introduced in the 1920s by Birkhoff6

and consist of closed domains in which a point like particle

collides and suffers specular reflections with the boundaries.

Birkhoff’s idea was to have a simple class of models, which

shows the complicated behavior of non-integrable smooth

Hamiltonian systems without the need to integrate a differen-

tial equation.6,7 By connecting the dynamics with geometry,

billiards serve as models to address numerous systems. One

example includes the foundations of the ergodic hypothe-

sis.8,9 Different applications can be found in the literature,

and both classical and quantum2 cases are observed. It is pos-

sible, for example, to study the dynamics of a dissipative,

inelastic gravitational billiard,10 the ray chaos in an architec-

tural acoustic semi-stadium system billiard,11 photon neutral-

izer as an example of an open billiard,12 and many other

applications.13–17

In this paper, we consider a generalization for the annu-

lar billiard18–21 consisting of a particle colliding between an

inner circle and an external boundary given by an oval, ellip-

tic, or circle shapes. Annular billiards have many applica-

tions in the literature, for example, they are of strong interest

for understanding MUPOs (marginally unstable periodic

orbits) and their role in the boundary between regular and

chaotic regions in both classical and quantum (including ex-

perimental) systems. These MUPOs are not structurally sta-

ble and may be destroyed if a small perturbation is applied in

the parameters of the system. It was assumed that they can

only exist for special systems, like billiard with parallel

walls, but contradicting this, in Ref. 8, it was observed that

MUPOs are prevalent in a large class of billiard systems.

Another applications involving annular billiards can be

found when studying annular microwave billiards, where the

first experimental evidence for chaos-assisted tunneling was

1054-1500/2015/25(3)/033109/9/$30.00 VC 2015 AIP Publishing LLC25, 033109-1
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found.22,23 Many billiards contain a mixed phase space,

which have periodic islands commonly surrounded by a cha-

otic sea, and invariant spanning curves, limiting the size of

the chaotic sea. Examples of integrable billiards are circular

or elliptical billiard,24 where for this last one, the integrabil-

ity comes from the conservation of product of angular

momenta with respect to the two foci.25

It is important to remember that for the billiard pre-

sented in Ref. 18, the mechanism that generated chaos is the

focusing-dispersing, but even if we do not use an internal

boundary in our billiard, the chaos can appears only chang-

ing the parameter that describe the boundary of the oval

billiard.

Here, some special orbits are studied as well as their lin-

ear stability obtained as an attempt to show the occurrence

of direct or inverse parabolic bifurcations. The direct para-

bolic bifurcation generically means the creation of periodic

orbits in a saddle-center bifurcation. For the inverse para-

bolic bifurcation, the periodic orbit depends continuously on

the bifurcation parameter, and this is the most important dif-

ference compared with the direct parabolic case,7 and in

such a case a period doubling bifurcation is observed. We

obtained the Lyapunov exponents and presented some con-

servative generalized bifurcation diagrams (CGBD).26 These

diagrams are important because they show the very complex,

self-similar, and generic bifurcation structure in conservative

systems with only one parameter and they are used to recog-

nize the bifurcation diagram in conservative systems in a

simple way.26 Also we study a special situation, where the

scatterer touches the external boundary and creates a cusp. In

such a situation, we note that some orbits can enter in this

region, and changes in some observables are observed. For

example, the histogram for the number of successive itera-

tions in this region has a power law with slope around �3.

These histograms are shown to be scaling invariant when the

radius of the internal circle is changed. The cusps can create

singularities in the billiard and they are object of study for

different problems.27,28 For example, it is possible to study

the decay of correlations and invariance principles for dis-

persing billiards with cusps and related planar billiard

flows.29 In the literature, it is possible to observe only cusps

with two dispersing or one dispersing and one flat

boundary.27–29

This paper is organized as follows: in Sec. II, the model,

the map, and numerical results are presented. The summary

and conclusions are shown in Sec. III.

II. THE MODEL, THE MAP, AND NUMERICAL RESULTS

In this section, we present all the necessary details to

construct the mapping that describes the dynamics of the sys-

tem. To start with, we consider the model of a classical parti-

cle confined inside and experiencing collisions with an oval,

elliptic, or circle billiard. Later, we introduce in the interior

of the billiard a circle, working as a scatterer. The dynamics

of the particle is described in terms of a two-dimensional

non-linear mapping Tðhn; anÞ ¼ ðhnþ1; anþ1Þ, where the vari-

ables denote: (h) the angular position of the particle and (a)

the angle that the trajectory of the particle forms with the

tangent line at the position of the collision. Fig. 1 illustrates

the dynamics for a particle hitting the internal circle after

colliding with the external boundary. The velocity between

collisions is constant because the boundary is static and no

forces are acting on the during the particle flight. The shape

of the oval billiard in polar coordinates is given by

Rðh; p; �Þ ¼ 1þ � cos½ph�; (1)

where � 2 ½0; 1Þ is the parameter which controls the deforma-

tion of the boundary and p is a positive integer number. If

�¼ 0, the circular billiard is recovered. For � > �c ¼ 1
1þp2,

30

some negative local curvatures as shown in Fig. 1 for p¼ 2

and � ¼ 0:3 > �c (in such a situation �c ¼ 0:2) are observed.

For the elliptical billiard, the boundary shape is given by

R h; a; bð Þ ¼ abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b cos hð Þ½ �2 þ a sin hð Þ½ �2

q ; (2)

where a and b are, respectively, one-half of the ellipse’s

major and minor axes. If a¼ b> 0, the circle billiard is

recovered.

The Cartesian components of the boundary are given by

XðhÞ ¼ RðhÞ cosðhÞ; (3)

YðhÞ ¼ RðhÞ sinðhÞ : (4)

Starting with an initial condition ðhn; anÞ, the angle between

the tangent at the boundary and the horizontal axis at

the point XðhnÞ and YðhnÞ is given by /n ¼ arctan

½Y0ðhnÞ=X0ðhnÞ�, where

X0 hnð Þ ¼ dX=dhn ¼
dR hnð Þ

dhn
cos hnð Þ � R hnð Þsin hnð Þ (5)

and

Y0 hnð Þ ¼ dY=dhn ¼
dR hnð Þ

dhn
sin hnð Þ þ R hnð Þcos hnð Þ; (6)

where for the oval billiard we have

dR hnð Þ
dhn

¼ ��p sin phnð Þ;

FIG. 1. Sketch for the external/internal boundaries and angles, for p¼ 2,

� ¼ 0:3 (oval billiard), d� ¼ 0:5, and r� ¼ 0:3. Locally negative curvatures

in h¼p/2 and h¼ 3p/2 are observed.

033109-2 da Costa et al. Chaos 25, 033109 (2015)
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and for the elliptical billiard

dR hnð Þ
dhn

¼ 1

2

sin 2hð Þ b2 � a2ð Þ

b cos hð Þ2 þ a sin hð Þ2
h i3=2

:

Since there are no forces acting on the particle during

the flight, its trajectory is a straight line given by

Yðhnþ1Þ � YðhnÞ ¼ tanðlnÞ½Xðhnþ1Þ � XðhnÞÞ�;

where Xðhnþ1Þ and Yðhnþ1Þ are the coordinates of the colli-

sion new point and ln ¼ an þ /n. The angle anþ1 in the col-

lision is given by anþ1 ¼ /nþ1 � ðan þ /nÞ. Using basic

geometry, we end up with the mapping

T :

Fðhnþ1Þ ¼ Yðhnþ1Þ � YðhnÞ
�tanðlnÞ½Xðhnþ1Þ � XðhnÞ�

anþ1 ¼ /nþ1 � ln;

8><
>: (7)

which changes the variables hn and an to hnþ1 and anþ1, in

other words, ðhnþ1; anþ1Þ ¼ Tðhn; anÞ. hnþ1 can be obtained

numerically from the solution of Fðhnþ1Þ ¼ 0. The angle

/nþ1 is obtained as /nþ1 ¼ arctan½Y0ðhnþ1Þ=X0ðhnþ1Þ�, with

X0 and Y0 given by Eqs. (5) and (6).

Mapping (7) describes the dynamics of the particle col-

liding with the external boundary. Now we introduce a scat-

terer in the billiard, indeed a circle of radius r�, as shown in

Fig. 1. d� is the distance between the zero mark and the cen-

ter of the circle in the horizontal axis. For the oval billiard

with p¼ 2 and for the elliptic billiard that we defined, the

zero (X, Y)¼ (0, 0) is in the center of the billiard.

When an internal scatterer is taken into account only

one of two possible cases may happen: (i) a particle collides

with the inner scatterer or (ii) the particle does not collide

with the scatterer. Case (i) happens when c1� c2, where

c1 ¼ sin hn � an � /nð Þ � d�

R
sin an þ /nð Þ

and

c2 ¼ r�=RðhnÞ:

While case (ii) is observed for c1> c2.

The angle b in Fig. 1 has a sign convention. It is meas-

ured from the normal component of the inner circle to the

straight line of the leaving particle, where it assumes nega-

tive value when particle is moving counterclockwise, and

positive for clockwise and it is given by

b ¼ arcsin
R hnð Þsin hn � an � /nð Þ � d� sin an þ /nð Þ

r�

� �
:

As soon as the particle collides with the inner scatterer, the

position of the particle is ðXðhnÞ; YðhnÞÞ ¼ ðX0c; Y0cÞ, where

X0c ¼ r� cosðcnÞ � d� and Y0c ¼ r� sinðcnÞ with cn ¼ p� b
þan þ /n. At such situation, the angle ln ¼ an þ /n

þp� 2b. Finally mapping (7) is then updated.

Fig. 2(a) shows a phase space for the oval billiard con-

sidering r� ¼ d� ¼ 0 and using p¼ 2 and � ¼ 0:1 (only the

external boundary is present). One can see that the phase

space is mixed, containing Kolmogorov-Arnold-Moser (KAM)

islands, a large chaotic sea and invariant spanning curves.

Fig. 2(b) shows a phase space for the oval billiard con-

sidering p¼ 2, � ¼ 0:1; d� ¼ 0, and r� ¼ 0:2. One sees the

two big islands in h around p/2 and 3p/2 cannot be observed

because the inner circle destroyed them. We consider con-

stant the value of r� ¼ 0:2 and move the position of the

circle trying to observe what happens in the phase space. For

d� ¼ 0:0648, as shown in Fig. 2(c), two KAM islands appear

between the two red curves (we will explain how to obtain

these curves later). These two islands approach each other

until creating a saddle fixed point as shown in Fig. 2(d) for

d� ¼ 0:0828. After increasing d�, an elliptic fixed point

arises in the position ðh; aÞ ¼ ðp; p=2Þ of the phase space

(Fig. 2(d)). This phenomenon is called as direct parabolic

bifurcation, therefore creating a fixed point from a saddle-

center. This fixed point for d� ¼ 0 and r� ¼ 0 is unstable

(hyperbolic fixed point), but the combination of parameters

turned it an elliptic fixed point (stable). Increasing a little bit

more the value of d� to 0.8 (see Fig. 2(f)) the fixed point in

FIG. 2. Phase space for the oval billiard

considering p¼ 2 and � ¼ 0:1 and: (a)

r� ¼ d� ¼ 0. For r� ¼ 0:2, the combi-

nation is (b) d� ¼ 0; (c) d� ¼ 0:0648;

(d) d� ¼ 0:0828; (e) d� ¼ 0:2538; (f)

d� ¼ 0:8. Between the two red lines,

the particle suffers collisions with the

inner circle. The lines are plotted by the

expressions of am1 and am2 (see Eqs. (8)

and (9)).
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ðh; aÞ ¼ ðp; p=2Þ becomes unstable. Also the invariant span-

ning curves were destroyed.

To visualize the region in the phase space where a colli-

sion with the internal circle happens, we have to obtain the

angles am1 and am2 which define the limits of this region.

These angles are

am1 ¼ ðh� a0m1 � /Þ modðpÞ; (8)

am2 ¼ ðh� a0m2 � /Þ modðpÞ; (9)

where a0m1 ¼ ðA2 þ A3Þ=A4; a0m2 ¼ ð�A2 þ A3Þ=A4 and the

auxiliary variables are given by

A1 ¼
d� cos hð Þ

R hð Þ
;

A2 ¼ r�ð1þ A1Þ;

A3 ¼ d� sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d�ð Þ2 � r�ð Þ2

R hð Þ½ �2
þ 2A1

vuut ;

A4 ¼ R hð Þ þ d� 2 cos hð Þ þ d�

R hð Þ

� �
:

The angles am1 and am2 as a function of h are shown as

the red curves in Figs. 2(b), 2(c), 2(e), and 2(f). The region

between the two curves represents the conditions in which

collisions with the inner circle happen.

Now we obtain the phase space for the elliptic billiard.

To start with, we consider the radius of the inner circle equal

to zero ðr� ¼ 0Þ, and the results are shown in Fig. 3(a). The

phase space is regular, containing only periodic and quasi-

periodic orbits. After introducing a scatterer with r� ¼ 0:2
and d� ¼ 0:002, the phase space changes and as shown in

Fig. 3(b), a chaotic sea appears near a ¼ p=2. Increasing the

value of d� to 0.152 (Fig. 3(c)), we can see the beginning of

the direct parabolic bifurcation that ends with the creation of

the elliptical fixed point in h ¼ p, as shown in Fig. 3(d) for

d� ¼ 0:316. When setting d� ¼ 0:548 (Fig. 3(e)), an inverse

parabolic bifurcation occurred, and the fixed point in h¼p

now became unstable. Finally, for d� ¼ 0:998 (Fig. 3(f)), the

invariant spanning curves were destroyed. As conclusion, we

observed that the direct and inverse parabolic bifurcations

happen for both elliptical and oval billiards.

A. Linear stability of some fixed points

In this subsection, we study the linear stability of some fixed

points trying to better understand the dynamics of the billiard.

The control parameters where a direct parabolic bifurca-

tion and hence a creation of fixed point from a saddle center

happens are shown in Figs. 4(a) and 4(b) for p¼ 2. This kind

of bifurcation can be observed, for example, in Figs.

2(c)–2(e), where an elliptical fixed point arose. For Fig. 4(a),

it is shown d� vs r� for different values of �. Figure 4(b)

shows d� as function of � for three different values of r�.
Observing Figs. 2(e) and 2(f), we see the fixed point in h ¼ p
is no longer elliptic when d� is increased. This happens

because the occurrence of an inverse parabolic bifurcation

and the fixed point becomes unstable. Figure 4(c) shows the

value of the control parameters in which such bifurcations

occur. As one can see, apparently, it does not depend on the

control parameter r�.
We show the numerical results for the elliptic billiard

considering b¼ 1. Figure 4(d) shows a plot of d� vs r� for

three different values of the control parameter a where a direct

parabolic bifurcation happens. Figure 4(e) shows a plot of

d� vs a now considering three values of r�. Finally, Fig. 4(f)

shows the results for the inverse parabolic bifurcation, where

the value of d� does not depend on the values of r�.
A method to explore analytically the results found here

is to study the linear stability of the fixed points. To compute

this, it is convenient to introduce Greene’s residue R and its

complement �R, which are defined by7

�R ¼ 1� R ¼ ð2þ tr2
j Þ=4; (10)

where tr
ð2Þ
j ¼ tr

Qj
i¼1 M

ð2Þ
i K

ð2Þ
i . Kð2Þ is the linearised reflec-

tion matrix. The stability is split up into contributions from

FIG. 3. Phase space for the elliptic bil-

liard considering a¼ 1.2 and b¼ 1 and

(a) r� ¼ d� ¼ 0. For r� ¼ 0:2, the com-

bination is (b) d� ¼0:002; (c) d� ¼0:152;

(d) d� ¼0:316; (e) d� ¼0:548; and (f)

d� ¼0:998. Between the two red lines,

the particle suffers collisions with the

inner circle. The lines are plotted by the

expressions of am1 and am2 (see Eqs. (8)

and (9)).
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the reflection Kð2Þ and from the free motion Mð4Þ. j is the pe-

riod of the orbit.7

For an orbit starting from h ¼ p, one shows that tr
ð2Þ
j¼2

(period two orbit) can be written as

:::
1 s

0 1

� � �1 0

2j1=g1 �1

� �
1 s

0 1

� � �1 0

2j2=g2 �1

� �
:::;

(11)

where g1 and g2 are, respectively, the normal component of

the velocity in the collision points A and B (see Fig. 1). For

the static boundary case, we know that the velocity is constant

and we consider g1 ¼ g2 ¼ 1. j1 is the curvature in the colli-

sion point A, and j2 ¼ �1=r� is the curvature in the point B

of the inner circle. s in our simulation represents the time to

travel the distance AB. Multiplying the matrices in Eq. (11),

we obtain that tr
ð2Þ
j¼2 ¼ �2ð�r� þ 2sj1r� � 2sþ 2s2j1Þ=r�,

where after combining with Eq. (10) we obtained that

R ¼ s j1 r� þ sð Þ � 1½ �
r�

: (12)

For billiards, the curvature j2 can be obtained using the fol-

lowing expression:30

j hð Þ ¼ X0 hð ÞY00 hð Þ � X00Y0 hð Þ
X02 hð Þ þ Y02 hð Þ½ �3=2

;

where X00 ¼ dðX0Þ=dh and Y00 ¼ dðY0Þ=dh. X0 and Y0 were

previously defined in Eqs. (5) and (6).

To better visualize the findings, first we show the results

for the oval billiard, and after that the results for the elliptic

billiard are presented.

1. Results for the oval billiard

As mentioned before, s indirectly is the measure of the

distance AB when h ¼ p, and its value for the oval billiard is

equal to

s ¼ Ra � ðd� þ r�Þ; (13)

where in this case Ra ¼ Rðh ¼ pÞ ¼ 1þ � cosðppÞ. For the

same angle h ¼ p, the curvature is equal to

j1 ¼
2 �p sin ppð Þ
	 
2 � Ra �p2 cos ppð Þ þ Ra

h i

�p sin ppð Þ
	 
2 þ Ra

n o3=2
: (14)

Solving Eq. (12) for R¼ 1, the control parameter d� is equal to

d� ¼ �
5r��� 3�� � cos ppð Þ þ �2 � 5�2 cos ppð Þ þ r�

5�þ 1
;

(15)

where this equation gives the parameter where a direct para-

bolic bifurcation happens.

Now solving Eq. (12) for R¼ 0, we have that

d� ¼
� 5� cos ppð Þ þ cos ppð Þ þ 3� �	 


5�þ 1
; (16)

where an inverse parabolic transition happens, i.e., the ellip-

tical fixed point becomes unstable. As one can see, the value

of d� in this case does not depend on r�, and it is only a func-

tion of �.
For a particular case, when p¼ 2 (convex oval billiard)

the curvature for h ¼ p is given by

j1 ¼
5�þ 1

1þ �ð Þ2
: (17)

The direct parabolic bifurcation (R¼ 1) happens at

d� ¼ � 5r��þ r� � 4�� 4�2

5�þ 1
; (18)

and the inverse parabolic bifurcation (R¼ 0) is obtained for

d� ¼ 4� 1þ �ð Þ
5�þ 1

: (19)

We notice that Eqs. (19) and (18) have the same expression

for r� ¼ 0.

FIG. 4. For the oval billiard with

p¼ 2, we have in (a) and (b) the value

of the control parameters in which we

have a direct parabolic bifurcation,

where (a) shows d� vs r� considering

three different values of � and (b)

exhibits d� vs � for three different val-

ues of r�. In (c), we have the control

parameters in which we have an

inverse parabolic transition. In (d)–(f),

we have the results for the elliptic bil-

liard, where (d) and (e) show the

results for the direct parabolic bifurca-

tion and the item (f) shows the inverse

parabolic bifurcation. The red lines

represent the analytic results obtained.
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The analytical results presented above are plotted in

Figs. 4(a)–4(c) as the red continuous line. As one can see,

the numerical and analytical results are in good agreement.

For the circle billiard with �¼ 0, the direct and inverse

parabolic bifurcation occurs, respectively, for d� ¼ �r� and

d� ¼ 0.

2. Results for the elliptic billiard

For the elliptic billiard, the distance AB and conse-

quently the time s for h ¼ p is given by

s ¼ a� ðd� þ r�Þ: (20)

The curvature in the collision point A is given by

j1 ¼
a

b2
: (21)

Solving Eq. (12) for R¼ 1, we have

d� ¼ a2 � b2 � ar�

a
; (22)

which characterizes the parameter of direct parabolic bifurca-

tion. For R¼ 0, Eq. (12) assumes the following expression:

d� ¼ a2 � b2

a
; (23)

giving an inverse parabolic transition. The expression for d�

does not depend on the control parameter r�.
Now for the circle billiard with a¼ b¼ 1, the direct and

inverse parabolic perturbations occur, respectively, for d� ¼
�r� and d� ¼ 0, which confirms the results obtained for the

oval billiard with �¼ 0. The analytical results obtained here

are shown in Figs. 4(d)–4(f) as the red lines, confirming a

good agreement between theory and simulation.

B. Conservative generalized bifurcation diagram

Now we study the Lyapunov exponents in order to

obtain the conservative generalized bifurcation diagrams.

One can use the Lyapunov exponents to characterize the cha-

otic sea. They show great applicability as a practical tool that

can quantify the average expansion or contraction rate for a

small volume of initial conditions. As discussed in Ref. 31,

the Lyapunov exponents are defined as

kj ¼ lim
n!1

1

n
lnjKjj; j ¼ 1; 2; (24)

FIG. 5. Conservative generalized

bifurcation diagrams considering h as a

function of d�. In (a)–(c), an oval bil-

liard is considered with p¼ 2 and

� ¼ 0:1, where the radius of the inner

circle equal to r� ¼ 0:2. In (d), the

same oval billiard is considering

but now for r� ¼ 0:7. In (e) and (f),

the results for an elliptical billiard con-

sidering a¼ 1.2 and b¼ 1 are shown

for r� ¼ 0:2. Here, d�1¼0:4827; d�2
¼0:4947;d�3¼0:5005; d�4¼0:5083, d�5
¼0:5121, and d�6¼0:5161.
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where Kj are the eigenvalues of M ¼
Qn

i¼1 Jiðhi; aiÞ and Ji is

the Jacobian matrix evaluated over the orbit ðhi; aiÞ. If at

least one of the kj is positive, then the orbit is classified as

chaotic. Therefore, we define k as the larger value of the kj.

Given how to obtain the Lyapunov exponents, we now

obtain the CGBD. We know that the Lyapunov exponents

are defined in the limit of n!1. However, here in the

CGBD simulations, it is necessary to consider the finite

Lyapunov exponents, i.e., the maximum n needs to be a finite

value. We consider in our simulations n¼ 104. To do so, we

start different orbits with a¼p/2 and h 2 ½0; 2pÞ, see Fig. 2.

For such a situation, we plot h as function of the control pa-

rameters and the color represents the finite Lyapunov expo-

nents. In Figs. 5(a)–5(c), we have a plot of h vs d�

considering an oval billiard with p¼ 2, � ¼ 0:1, and

r� ¼ 0:2. For Fig. 5, we considered as colors a customized

pallet that considers for k< 0.0001 the color black, and a

continuous black to blue scheme color in the interval

0.0001 to 0.0003, blue to green between 0.0003 until

0.0006, green to red in the interval 0.0006 to 0.001, and

finally red to white in the interval 0.001 to 0.005. For

k> 0.001, the color white is used. In Fig. 5(a), the periodic

orbits are characterized as the low values of k, which

correspond to the black (blue) regions. The results for an

enlargement in the region A is shown in Fig. 5(b), where

the two dotted lines represent the analytical results obtained

in Eqs. (18) and (19). The values obtained are d� ffi 0:09333

for R¼ 1 and d� ffi 0:29333 for R¼ 0. As confirmed in Fig.

5(b), for d� less than 0.09333, a period 2 elliptical fixed

point becomes a period 1 after a direct parabolic bifurca-

tion. The inverse parabolic bifurcation is also highlighted

in Fig. 5(b), where a period 1 fixed point vanishes for

d� > 0:09333. Figure 5(c) shows an enlargement in region

C of Fig. 5(a).

FIG. 6. Phase space for fixed values of

r� ¼ 0:2, p¼ 2, � ¼ 0:1, and e¼ 0 and

the values of d� are equal to (a) d�1
¼ 0:4827; (b) d�2 ¼ 0:4947; (c) d�3
¼ 0:5005; (d) d�4 ¼ 0:5083; (e)

d�5 ¼ 0:5121; and (f) d�6 ¼ 0:5161.
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Figure 5(d) shows the results of CGBD for the oval bil-

liard, but now considering the radius of the inner circle equals

to r� ¼ 0:7. The analytical result is shown as the dashed line.

Figures 5(e) and 5(f) show the results for an elliptical

billiard, with a¼ 1.2 and b¼ 1. The parameter r� ¼ 0:2 is

chosen and again d is varied. Figure 5(f) is an enlargement

of region C of Fig. 5(e). As one can see, the numerical and

analytical results are in good agreement.

Here, we obtained analytically the first duplication of pe-

riod; however, the CGBD can show other bifurcations. As we

observed in Fig. 5(c), apparently, we have different behaviors

when varying d. Figs. 6(a)–6(f) show some phase space for the

values of d, respectively, equal to d�1 ¼ 0:4827; d�2 ¼ 0:4947,

d�3 ¼ 0:5005; d�4 ¼ 0:5083; d�5 ¼ 0:5121, and d�6 ¼ 0:5161. In

Fig. 6(a), we have apparently only one KAM islands. When

increasing the value of d, different bifurcations occur, and for

d! d�6 again we have only one KAM island. Our intention

here is just to show that the CGBD can be used as a tool to

observe different kinds of bifurcation.26

C. Number of successive iterations for a cusp
(considering the oval billiard)

Here, the results when considering the number of suc-

cessive iterations (ns) for X < �d� are shown. Basically,

X < �d� is the region in the left of the center of the inner

circle shown in Fig. 1. Only the oval circle is considered in

the simulations. It is just a start to understand the complex

behavior that occurs when a cusp is present. A cusp is

observed, when the inner circle touches the external bound-

ary, leading the distance AB to be zero. Indeed, it happens

when d� ¼ 1þ �� r�.
Figure 7(a) shows a histogram H for the number of suc-

cessive iterations for X < �d� in a time n and for different

values of r�. In these simulations, we considered p¼ 2,

� ¼ 0:01, a0¼ 2, and h0¼ 0.1. In a cusp, the histogram H is

described by a power law with slope �3. Following the

dashed straight line at H¼ 104, one can see that the higher

value of r� the higher is the value of ns. ns vs r� was com-

puted and as result ns / rv was found. Simulations for differ-

ent values of � were performed and the results are shown in

Table I. As observed, the average slope v obtained is about

0.391 and apparently does not depend on �. We propose a

rescale in the horizontal axis of Fig. 7(a) (ns! ns/r
0.391), and

the result is shown in Fig. 7(b). The histogram H seems to be

scaling invariant.

III. SUMMARY AND CONCLUSIONS

We studied some dynamical properties for classical par-

ticles in a billiard, where the external boundary is an elliptic,

oval, or circle billiard and an inner circle was introduced.

The billiard here proposed is a generalization (explored for

the first time) of the annular billiard; this one is interesting

for understanding MUPOs and their role in the boundary

between regular and chaotic regions in both classical, quan-

tum, and experimental systems. Considering the outer

boundary as an oval billiard is worth because an obstacle is

introduced in a mixed boundary. The model was carefully

obtained and the conditions leading to collisions with the

scatterer were obtained. We showed that the billiard presents

direct and inverse parabolic bifurcations for some special

combinations of control parameters when h¼p, and the

results were confirmed analytically and numerically. We

show some examples of conservative generalized bifurcation

diagrams, particularly a link with the direct and inverse para-

bolic bifurcations. We also observed that it is possible to use

the conservative generalized bifurcation diagrams as a tool

to find some more complex bifurcations as made in Ref. 26.

In the last part of the paper, histograms for the number of

successive iterations in a cusp are studied. These histograms

have a power law behavior with slope of �3, and they are

scaling invariant when changing the radius of the scatterer. It

is important to mention that the cusps here presented are

completely new, because only two dispersing or one dispers-

ing and one flat boundary can be observed in the litera-

ture.27–29 The results here presented are a first step trying to

understand the complicated dynamic of the billiard here pro-

posed. More studies are necessary to understand some phe-

nomena, including the role of MUPOs and stickiness both

classically and quantum mechanically.
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