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Escape of particles in a time-dependent potential well
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1Departamento de Estatı́stica, Matemática Aplicada e Computação, UNESP—Universidade Estadual Paulista,

Avenida 24A, 1515 CEP 13506-900, Rio Claro, São Paulo, Brazil
2School of Mathematics, University of Bristol, Bristol, United Kingdom

(Received 22 December 2010; revised manuscript received 27 April 2011; published 22 June 2011)

We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that
contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional
nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The
chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves.
When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we
observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at
sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is
observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due
to sticky regions observed in the phase space.
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I. INTRODUCTION

After the seminal result of Buttiker and Landauer [1] on
tunneling through a time-dependent potential barrier, interest
in the dynamics of a particle in a driven potential has
markedly increased. This dynamics can be described using
both theoretical and experimental approaches and can be
considered using either classical or quantum characterization.
Several applications have been discussed, including ballistic
conductance in a periodically modulated channel [2], mag-
netotransport through heterostructures of GaAs/AlGaAs [3],
sequential resonant tunneling in semiconductor superlattices
due to intense electrical fields [4], influence of transport
in the presence of microwaves [5], anomalous transmission
in periodic waveguides [6], trapping in driven barriers [7],
characterization of traversal time [8,9], symmetry breaking
and drift of particles in a chain of potential barriers [10],
Lyapunov characterization of chaotic dynamics and destruc-
tion of invariant tori [11], among many others [12,13].

The classical case of a time-dependent one-dimensional
potential is a 1 1

2 -degree-of-freedom problem. The most com-
mon formalism used is the so-called mapping description.
The phase space exhibits a very intricate mixed structure
typical of area-preserving dynamics, including a set of islands
surrounded by a chaotic sea that is confined by a set of invariant
tori (also called invariant spanning curves). In many cases, the
chaotic dynamics of the particle inside the driven potential
leads to very interesting phenomena, including power law
distribution for the trapping [14], scattering [15], and critical
exponents for the average properties of the chaotic sea [16].
It was also shown that an external periodic field changes the
asymptotic populations of the asymmetric energy levels [17]
and a stochastic perturbation can lead the particle to experience
unlimited energy growth [18].

The mixed form of the phase space leads to nonuniformity
[19] and sticky domains [20] that produce anomalous transport.
A sticky region traps a particle in the phase space and
the escape from this region happens at a very long time
after the entrance. This part of the orbit is relatively regular
and, since the particle spends more time in such a sticky

zone than elsewhere, important observables like recurrence
times [21] and Lyapunov exponents [22] are directly affected.
Stickiness may be quantified in terms of the distribution
of recurrence times of a typical orbit in the phase space.
For fully chaotic dynamics, the decay is exponential [23],
while for mixed phase space it is observed to be described
approximately by a power law [24]. This power law arises
from combined effects of an infinite hierarchy of islands
with a corresponding hierarchy of time scales. Recent in-
vestigations of resonance splittings and homoclinic tangles
in the vicinity of islands may provide insight into these
mechanisms [25–28].

Recurrence statistics are also intimately related to the
statistics of escape from a region containing an initial dis-
tribution of particles into a hole, where again exponential
or power law decay can be observed for fully chaotic
or mixed dynamics, respectively [29]. These statistics also
provide useful information for the control of chaotic systems
[30]. Escape properties measured as a function of a varying
hole provide a further sensitive and nondestructive probe
of the dynamics [31]. Very recently this approach has also
been successfully applied to a time-dependent Hamiltonian
system [32].

In this paper we consider the dynamics of a classical particle
confined inside an infinite potential box which contains an
oscillating square well, with the aim of understanding the
escape of particles to a defined hole in the energy coordinate.
The Hamiltonian that describes the model is H (x,p,t) =
p2/(2m) + V (x,t), where V (x,t) = V0(x) + V1(x,t), and
x, p, and t correspond to the position and momentum
coordinates and the time, respectively. The potential V0(x)
denotes the integrable part of the Hamiltonian while V1(x,t)
leads to the nonintegrable part. As we will see in the next
section, the potential V1(x,t) is controlled by three relevant
control parameters. If the amplitude of oscillation of the
moving well is fixed to zero, the system is integrable and
the phase space exhibits only regular dynamics. On the other
hand, if V1(x,t) �= 0, the phase space becomes mixed thus
exhibiting islands, chaotic seas, and invariant spanning curves.
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FIG. 1. Sketch of the potential.

Depending on the region of the phase space considered, one
can observe fully chaotic dynamics leading to an exponential
distribution of the recurrence time. However, when islands are
present, they produce an approximately power law decay due
to the stickiness.

This paper is organized as follows: In Sec. II we describe
the model and the map. The numerical results and discussions
are also presented in this section. Final conclusions are drawn
in Sec. III.

II. THE MODEL, THE MAP, AND NUMERICAL RESULTS

We have considered the dynamics of a classical particle
confined inside a box of infinite potential which contains a
periodically oscillating square well in the middle. A typical
sketch of the potential is shown in Fig. 1.

The potential V (x,t) is given by

V (x,t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if x � 0 or x � (a + b),

V0 if 0 < x < b
2 or (a + b

2 ) < x

< (a + b),

V1 cos(ωt) if b
2 � x � (a + b

2 ),

(1)

where the control parameters a, b, V0, V1, and ω are constants.
Given the symmetry of the problem, we update the variables of
the two-dimensional mapping at each entrance of the particle
into the oscillating square well. A step by step derivation of
the equations of the mapping can be obtained in Ref. [16]. It
is appropriate to define dimensionless variables δ = V1/V0,

FIG. 2. Phase space for the map (2). The control parameters used
were r = 1, δ = 0.5, and Nc = 33.18.

r = b/a, en = En/V0, and Nc = ω/(2π )(a/
√

2V0/m) and
measure the time in terms of the number of oscillations
of the moving well, φ = ωt . Here Nc corresponds to the
number of oscillations that the square well completes in a time
t = a/

√
2V0/m. Given that Nc is proportional to ω, changing

Nc implies changing the driving frequency ω. The mapping is
written as

T :

{
en+1 = en + δ( cos(φn + i�φa) − cos φn),

φn+1 = [φn + i�φa + �φb]mod2π,
(2)

where the auxiliary variables are given by

�φa = 2πNc√
en − δ cos(φn)

, �φb = 2πNcr√
en+1 − 1

,

where i is the smallest integer number which makes the relation
[en + δ( cos(φn + i�φa) − cos(φn))] > 1 true.

The determinant of the Jacobian matrix is equal to unity
and the mapping (2) is area preserving. The phase space
is mixed and contains periodic islands, a large chaotic sea,
and a set of invariant spanning curves that prevent the
particle from gaining unlimited energy from the moving well.
Figure 2 shows a typical plot of the phase space for the
control parameters r = 1, δ = 0.5, and Nc = 33.18, which
corresponds to a moderate frequency of oscillation (see Ref.
[15] for specific details). We must emphasize that an initial
condition in the chaotic sea cannot penetrate the island nor
cross the invariant spanning curve.
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FIG. 3. (Color online) (a) Position of the lowest-energy invariant
spanning curves for the driving frequency parameter Nc values 9, 10,
and 20, using r = 1 and δ = 0.5. (b) Plot of emin vs Nc for r = 1 and
δ = 0.5. (c) Plot of emin vs r for Nc = 99.54 and δ = 0.5. (d) Plot of
emin vs r for Nc = 99.54 and r = 1.

Our numerical results will be obtained as a function of the
three control parameters Nc, δ, and r as well as the number of
iterations, n. Let us start with the parameter Nc. As it increases,
the auxiliary variables �φa and �φb, which depend linearly
on Nc, increase too. Such a growth reduces the correlation
between φn+1 and φn, causing the phase space location of the
lowest-energy invariant spanning curve to rise. For example,
the curves for the control parameters Nc = 9, 10, and 20 for
fixed r = 1 and δ = 0.5 are shown in Fig. 3(a). A plot of
the minimum energy along the invariant spanning curve as a
function of Nc is shown in Fig. 3(b). A power law fitting gives
emin ∝ Nα1

c , where α1 = 0.654(2). We stress that α1 is closely
related to the critical exponent obtained in [33]. Extensions
for the other control parameters can also be made as shown
in Fig. 3(c) for r , leading to emin ∝ rα2 with α2

∼= 0.321(7)
and Fig. 3(d) for δ yielding emin ∝ δα3 with α3

∼= 0.66(1).
Grouping the three control parameters in a single expression,
we obtain emin ∝ Nα1

c rα2δα3 .
Let us now introduce a energy window through which the

particle can escape. Specifically, the particle escapes from the
potential when its energy increases beyond a given critical
value. We define this critical energy as a fraction of the lowest
energy among the invariant spanning curves, as for example
h = 0.7emin (other values were also used). Then, we start an
ensemble of 107 particles with low energy, say e0 = 1.01, and
107 different initial phases φ0 ∈ [0,2π ), and let them evolve in
time (as we discuss below, other values of initial energy were
used too). If, along the orbit, the particle reaches the critical
level, we determine that the particle escapes from the potential
and a new initial condition is chosen. A histogram of the
distribution of escape times (rescaled to 1 for visual purposes)
is shown in Fig. 4(a). We see that very few particles escape
at very short times. The escape rate increases rapidly and
reaches a peak, marking a preferred iteration number, which
we denote as np, and then decreases again, approaching zero
asymptotically. When the initial energy is raised, say e0 = 2,
e0 = 3, and so on, the number of iterations needed for the

FIG. 4. (Color online) (a) Histogram of the frequency of escape as
a function of the number of iterations for different control parameters.
(b) Overlap of different histograms obtained for fixed r and δ and
varying Nc. (c) Overlap of different histograms obtained for fixed Nc

and δ and varying r .

particle to reach the escape hole decreases as long as the initial
energy increases. To illustrate this behavior, Fig. 5 shows three
plots of np vs e0. One sees that, as the initial energy increases,
the particle needs fewer iterations to reach the hole, therefore
leading to a decrease in np. Our simulations, however, were
inconclusive regarding the variation of the parameter δ, as

FIG. 5. (Color online) Plot of np vs e0. One sees clearly that as
long as the energy increases, np decreases. The control parameters
used were r = 1 and δ = 0.5 while Nc is labeled in the figure.
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FIG. 6. (Color online) (a) Plot of np vs δ. (b) Plot of np vs Nc.
A power law fitting gives that z1 = 1.26(3). The control parameters
used were r = 1 and δ = 0.5. (c) Plot of np vs r for the parameters
Nc = 33.18 and δ = 0.5. A power law fitting gives that z2 = 0.57(2).

shown in Fig. 6(a). By considering the two parameters Nc and
r , we can suppose that

np ∝ Nz1
c rz2 , (3)

where z1 and z2 are exponents. Plots of np for a large range
of Nc and r are shown in Figs. 6(b) and 6(c), where a power
law gives that z1 = 1.26(3) and z2 = 0.57(2). The plots shown
in Figs. 6(b) and 6(c) make us to suppose that np is scaling
invariant with respect to Nc and r . This means that a proper
rescaling to the n axis, i.e., n → n/Nz1

c for fixed r and δ,
will collapse all the curves into a single curve, as shown in
Fig. 4(b). A similar procedure for n → n/rz2 , considering
fixed Nc and δ, collapses all the curves into a single one as
shown in Fig. 4(c).

Let us now discuss the behavior of the survival probability,
which we define as

P = 1

N

N∑
j=1

Nsurv(n), (4)

where the summation is taken along the ensemble of N

different initial conditions and Nsurv(n) is the number of
initial conditions that do not have enough energy to escape
through the hole until a time n. When Eq. (4) is evaluated in
a fully chaotic dynamics its behavior is an exponential [31],

FIG. 7. (Color online) (a) Plot of P vs n for different positions
of the hole, namely, h = 4, 6, 10, and 12. The control parameters
used were Nc = 33.18, r = 1, and δ = 0.5. The dashed lines were
obtained via an exponential fit. (b) Merger, for small n, of all curves
shown in (a) after a rescaling n → n/h2.5.

while for a mixed phase space where periodic orbits exist, the
exponential decay turns into a power law [29].

We obtain the behavior of P as a function of n for different
positions of the hole, as shown in Figs. 7(a) and 7(b). We
see that the initial behavior, as shown in Fig. 7(a), is clearly
an exponential decay P ∝ exp(γ n), until the curve reaches
a crossover nx and changes to a slower decay, indicating
the existence of sticky regions in the phase space. The
slope of the exponential decay is plotted as function of the
position of the hole, as shown in Fig. 8. Figure 7(b) shows
a merger, for small n, of all curves plotted in Fig. 7(a) after
a rescaling n → n/h2.5, confirming scaling invariance of the
survival probability for small n. Similar overlap was observed
for different combinations of control parameters as well as
different initial energies.

The decay of the survival probability in Fig. 8 is almost
independent of the parameter Nc. This indicates that for the
range of (fixed) h shown, which is in the strongly chaotic
region corresponding to e � 0.7emin (see Fig. 2), the transport
of energy with n is apparently almost independent of Nc.

If we assume that this transport is similar to normal
Brownian diffusion, we predict that the number of collisions
required to diffuse on average to an energy h is proportional
to h2. For h = 0.7emin as in Figs. 4 and 6, this means
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FIG. 8. (Color online) Slope of the exponential decay γ as
function of h for three different values Nc = 33.18, 66.36, and 99.54
for r = 1 and δ = 0.5. The straight lines are the best fits for each Nc.

we expect that np is proportional to e2
min, which in turn is

proportional to N2α1
c (Fig. 3). However, due to the existence

of sticky regions including mainly the islands, the transport
is not exactly normal Brownian diffusion. Hence, we can
expect that z1 � 2α1 and z2 � 2α2. Such diffusive laws also
predict that the distribution of escape times follows a single
curve when scaled appropriately with Nc and r as shown in
Fig. 4.

At longer times and when the particle reaches higher
positions in the phase space where islands exist, diffusion is
not Brownian. The stickiness surrounding the elliptic islands
leads to slower decay as observed at the longest times in
Fig. 7. Interestingly, even in the intermediate time regime,
where decay is approximately exponential, there is a subtle
deviation from a normal diffusive law: the exponents in
Fig. 8 are significantly different from −2. Thus the stickiness

corresponding to very small elliptic islands, many of which
are invisible in Fig. 2, has the effect of enhancing long time
correlations, even in an apparently strongly chaotic regime.

III. SUMMARY AND CONCLUSIONS

We studied the problem of a classical particle confined
inside a box of infinite potential containing a periodically
oscillating square well. The transport of energy was found to
be independent of the driving frequency in the low-energy,
strongly chaotic regime. A histogram of escape frequency
at short times was measured and characterized as invariant
under a scaling consistent with normal diffusion of energy
as a function of the number of collisions n. The survival
probability plotted as a function of n was exponential initially
and, after a crossover, followed a slower decay at late times.
Both the exponential and the slower decay showed evidence
of the stickiness arising from islands in the mixed phase space.

For this model we have used the escape properties with
a variable hole to elucidate the dynamics at a level not
visible in a phase space plot such as Fig. 2. The escape rate,
which focuses on unusual trajectories at long times, exhibits
features not accessible to average properties of trajectories.
The anomalous dependence of an exponential escape rate with
the hole parameter is of particular interest and deserves further
study in more general contexts: theoretical and experimental,
classical and quantum mechanical.
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