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Abstract – A gas of non-interacting particles diffuses in a lattice of pulsating scatterers. In
the finite-horizon case with bounded distance between collisions and strongly chaotic dynamics,
the velocity growth (Fermi acceleration) is well described by a master equation, leading to an
asymptotic universal non-Maxwellian velocity distribution scaling as v ∼ t. The infinite-horizon
case has intermittent dynamics which enhances the acceleration, leading to v ∼ t ln t and a non-
universal distribution.

Copyright c© EPLA, 2013

Periodically forced thermally isolated systems exhibit
many interesting phenomena from stabilization [1] to ex-
ponential acceleration [2]. They are of great interest for
trapped atom [3] and ion [4] experiments, as well as as-
trophysical problems such as transport of comets [5]. Us-
ing a spatial coordinate as the independent variable, they
also describe transport in periodic structures [6]. Typ-
ically there is an unbounded growth of the energy, the
phenomenon of Fermi acceleration [7] (FA). Very recently,
many researchers have sought analytical descriptions of
energy distributions in such systems [8–11]. In rather
general circumstances, a Fokker-Planck (FP) equation can
be derived, incorporating the average and variance of the
work per period [8]. The first example in [8], exten-
sively investigated elsewhere [9–15], consists of a particle,
or equivalently gas of non-interacting particles, moving
freely in a container (“finite billiard”) or amongst obsta-
cles (“Lorentz gas”) with oscillating boundary but fixed
volume. Our main aim is to investigate forced systems
with oscillating volume, developing methods (applicable
to general classes of FA systems) to characterise and tame
the resulting wild oscillations in the energy distribution.
We exhibit contrasting features of chaotic and intermittent
regimes, including the paradoxical effect that, in the inter-
mittent case, fewer collisions lead to greater acceleration.

Periodically oscillating billiard(-like) models exhibiting
FA include the 1D bouncer [16] and stochastic simpli-
fied Fermi-Ulam [10] models. In the latter (and often

elsewhere), the simplifying assumption of the static-wall
approximation (SWA) was used, where the boundaries are
fixed (hence trivially having fixed volume) but the particle
changes its velocity as if they were moving. Many oscil-
lating two-dimensional billiards have also been considered
and lead to FA. It is conjectured that this includes all
chaotic geometries [14,15], as well as the ellipse [17]. The
breathing case (fixed shape) has been studied in detail [18],
leading to a slower growth of velocity than that of other
typical models. FA is normally prevented by dissipation
in the dynamics, although there are scaling laws relating
the final energy to the strength of the dissipation [19].

Jarzyński and Świa̧tecki [12], showed, using moments,
that for fixed-volume time-dependent billiards, the even-
tual distribution of velocities is exponential, in contrast
to the Gaussian distribution of an equilibrium gas; this
was confirmed numerically in ref. [20]. Jarzyński [21] then
described an FP equation approach for a slowly varying
billiard (or fast particle) giving an explicit calculation of
the rates of increase of the energy and its variance; this was
later applied, with some further approximation and diffi-
culties due to dynamical correlations, to a system with os-
cillating volume [22]. Bouchet, Cecconi and Vulpiani [23]
applied a linear Boltzmann equation in an astrophysi-
cal context to obtain an exponential velocity distribution.
More recent innovations have included a hopping-wall ap-
proximation replacing the SWA [13], and a Chapman-
Kolmogorov equation replacing an FP equation [10]. Here
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Fig. 1: (Colour on-line) The triangular Lorentz gas consists
of a particle moving freely except for reflections with a peri-
odic array of obstacles. Transport consists of three regimes:
infinite horizon (left) with unbounded free path length, finite
horizon (center) with bounded free paths but overall diffusion,
and confined (right).

we retain the simpler FP approach, but treat the wall col-
lisions exactly. Many of these techniques are also relevant
to stochastically moving boundaries [11,24].
Our model is a two-dimensional Lorentz gas, a collec-

tion of circular scatterers in an extended domain. Fixed
random [25] and periodic [26] scatterer arrangements have
been widely studied for the last century. In the periodic
case, the transport regimes are infinite horizon (IH), finite
horizon (FH) and confined (C) as illustrated in fig. 1. In
the IH and FH cases a particle can diffuse to arbitrarily
great distances; Green-Kubo formulae [27] express the dif-
fusion coefficient as the infinite time integral of the velocity
autocorrelation function 〈v(t)v(0)〉. In the FH case this is
believed to decay as exp(−Ct), while in the IH case as C/t.
Thus, for IH the integral diverges, leading to logarithmic
superdiffusion [26]. In both cases the collision dynamics
is strongly chaotic, and the anomalous IH diffusion is due
to long flights.
We place the scatterers on a triangular lattice, with each

unit cell having unit area, so the distance between the cen-
tres of neighbouring scatterers is (4/3)1/4. The triangu-
lar Lorentz gas is IH for r < rH = (3/64)1/4 ≈ 0.465,
FH for rH < r < rI = (1/12)1/4 ≈ 0.537, at which
the scatterers start to intersect, and confined (C) for
rI < r < rB = (4/27)1/4 ≈ 0.620 at which point the
dynamics is blocked as there is no space outside the scat-
terers. The area available to a billiard particle A(r) is

⎧

⎪

⎨

⎪

⎩

1− πr2, r ≤ rI ,

1− r2

(

π − 6 arccos
rI
r

+ 6

√

r2I
r2

− r4I
r4

)

, r ≥ rI .
(1)

Here we consider time-dependent scatterers, with radius
r(t) = R + A sin t and boundary velocity u(t) = r′(t) =
A cos t. There are several scenarios depending on R± =
R±A. Our {I, F, C} notation indicates what regimes exist
as time passes, so IFC indicates that between infinite and
confined times there is a finite horizon:

– I infinite (horizon) R+ < rH ;

– IF infinite, finite R− < rH < R+ < rI ;

– IFC infinite, finite, confined R− < rH < rI < R+;

– F finite rH < R− < R+ < rI ;

– FC finite, confined rH < R− < rI < R+;

– C confined rI < R−.

Reference [9] presents some discussion of a IF model
(with fixed volume), denoting it as “dynamically infi-
nite horizon”. For the numerical simulations we choose
A = 0.03, which allows all the above cases except IFC. A
Lorentz gas on a square lattice has no finite horizon, and
so exhibits regimes I, IC and C.
We first discuss FA for the finite or confined geometries.

The billiard particles move freely, colliding with the scat-
terers according to [18]

v+ = v− + 2n(u− n · v−), (2)

where v+ (v−) is the velocity immediately after (before)
the collision, n is an outward unit normal at the point
of collision, and we use v± = |v±|. The incoming angle θ
with respect to the normal satisfies −n·v− = v− cos θ. If a
particle with v− < u is overtaken by the scatterer then θ >
π/2. We define θ ≥ 0 so there is a 1 : 1 relation between
θ and the outgoing speed v+, thus each θ > 0 corresponds
to two incoming directions. Equation (2) gives

v2+ = v+ · v+ = v2− + 4uv− cos θ + 4u2. (3)

Thus, the change in speed has the same sign as u and is
of magnitude up to 2|u|.
This system exhibits FA, and almost all initial condi-

tions to lead to unbounded speed; after sufficient time, v
exceeds all velocity scales set by the problem, including
|u| and the lattice spacing times the oscillation frequency.
Thus, the particles are effectively in a Lorentz gas with
slowly varying radius, and as in the static case, having
exponential decay of time correlation functions. The only
quantity not randomised by the dynamics at short times
is v, a constant of motion for the static case.
Thus, we may describe the system by a spatially homo-

geneous distribution function f(v, t)δv giving the proba-
bility of observing a particle with speed in the interval
[v, v + δv] at time t, hence normalised so

∫ ∞

0

f(v, t)dv = 1 (4)

for all t. The probability of finding the particle in a re-
gion of the full phase space is, under this assumption,
f(v, t)δv δψ

2π
δxδy
A

, where ψ denotes the direction of the ve-
locity, including the relevant normalisation factors. Here,
and often later, the time dependence of r (and hence A)
has been suppressed for simplicity.
The distribution f(v, t) evolves due to collisions with

the scatterers, which make small changes of order u to the
speed. The collisions depend on one distribution function
and the known position and velocity of the scatterers, so
the treatment here is a continuous state master equation,
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Fig. 2: A particle moves in the negative x-direction. The (al-
most) parallelogram ABDC denotes the initial positions that
will collide in time [0, δt], at location [θ, θ + δθ], taking the
moving boundary into account.

similar to the linear Boltzmann equations of refs. [11,23]
(but spatially homogeneous). Correlations between colli-
sions are neglected (but can be included using results of
ref. [21]; see the appendix), but due to the mixing (hence
also ergodicity) property of the dynamics, a long sequence
of collisions has the same effect as a Markov chain with
the correct probability distribution.

The general form of a master equation is

ft(v, t) =

∫

[ p(v, v′)f(v′, t)− p(v′, v)f(v, t)] dv′, (5)

where subscript t (later v) is the partial derivative and
p(v, v′, t) is the collision rate for a collision taking v′ to v; it
has explicit time dependence from the moving boundaries
which is again suppressed. We need to find the probability
of a collision taking v− ∈ [v′, v′ + δv′] to v+ ∈ [v, v + δv]
at a time in [t, t+ δt] by integrating the distribution over
the set of trajectories with the appropriate collision.

For r < rI the cross-section is independent of ψ,
so we take ψ = π; larger radii or different chaotic
maps would need to take the ψ-dependence into account.
The trajectory hits the scatterer at time t at a point
A(r(t) cos θ, r(t) sin θ); see fig. 2. A trajectory hitting
the scatterer at angle θ + δθ reaches it at B(r(t) cos(θ +
δθ), r(t) sin(θ + δθ). To reach the scatterer at t + δt,
the particle at time t will be at C(r(t + δt) cos θ +
v−δt, r(t+δt) sin θ) orD(r(t+δt) cos(θ+δθ)+v−δt, r(t+δt)
sin(θ + δθ)).

We need only the leading order in the perturbations, so
ABDC is a parallelogram, with area r(t)(u+v− cos θ)δθδt.
We integrate over ψ to get

p(v+, v−) = −2r

A (v− cos θ + u)

(

∂θ

∂v+

)

v
−

, (6)

where the final derivative comes because we used θ to de-
note the collision variable rather than v+; they are related
by eq. (3). The factor of two comes from considering both
directions for each angle (see above), and the minus sign
from the sign of the partial derivative. Substituting for θ,

we find

p(v+, v−) =
rv+(v

2
+ − v2−)

Au
√

8u2(v2+ + v2−)− (v2+ − v2−)
2 − 16u4

.

(7)
Anticipating the expansion in powers of u, we now write
v+ = v− + 2su so that s ranges in the fixed interval [0, 1],
and use this in the master equation

ft(v, t) =
r

A

∫ 1

0

[ p(v, v − 2su)f(v − 2su, t)

− p(v + 2su, v)f(v, t)] 2uds. (8)

For very small velocities (v < 2|u|) we should modify the
limits of integration to ensure that the arguments of p are
both positive; however, in practice, this is not important
as we are interested in long times after which the distri-
bution is almost all at large velocities.
We now consider times of order unity, that is, the period

of the oscillations. The master equation as it stands is not
tractable, being explicitly time dependent. Noting again
that for typical particle velocities v ≫ |u|, we expand the
right-hand side of the master equation in a power series
in u, a Kramers-Moyal expansion [28] as used in ref. [11].
The functions f and p are expanded in powers of u, which
then allows the integral to be performed, leading to

ft =
r

A

[

−πu(f + vfv) +
8u2vfvv

3
+O(u3)

]

. (9)

This is now used to determine f(v, t) at long times. We
note that when r < rI , i.e. in the IH, IF and FH cases,
Ȧ/2 = −πru is the term that appears in front of the first
two terms on the right-hand side. Presumably this term
is also Ȧ/2 for r > rI , as in ref. [21], which gives a com-
parable equation; a detailed comparison is given in the
appendix. Note that terms involving u3 and higher are
significant only for velocities of order

√
t or less, thus they

do not contribute to the main scaling, which is of order t.
We now come to the main issue with the oscillating vol-

ume. During each period, the particles make O(v) colli-
sions with the scatterer during each of the expanding and
contracting phases, thus increasing and decreasing their
speeds by O(v) (with standard deviation O(

√
v)). If we

average eq. (9) by neglecting the u terms (which are full
time derivatives if the time dependence of f + vfv can be
ignored) we find f̄t = 8Cvf̄vv/3, where C is the average of
u2/A, leading to f̄(v, t) = 9ve−3v/(8Ct)/(64C2t2). How-
ever, this cannot capture the oscillations in f . Thus, we
propose a more general ansatz, allowing v to scale with
a bounded, but otherwise arbitrary 2π-periodic function
a(t):

f(v, t) = a(t)2
v

t
e−a(t)v/t, (10)

where the prefactor a(t)2 is required for normalisation,
eq. (4). Substituting into eq. (9) gives an ODE involving
the oscillatory r and u:

da

dt
=

(

t−1 − πur

A
)

a− 8

3t

u2r

A a2. (11)
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Fig. 3: (Colour on-line) Convergence to the distribution,
eq. (14), for R = 0.5 (finite horizon). Inset: time dependence
of the velocity for a single trajectory for R = 0.3 (infinite hori-
zon). This step function is approximately sinusoidal except for
jumps due to occasional long flights.

This is a Bernoulli equation, with solution

a(t) = t

√

A(t)

i(t)
, i(t) =

8

3

∫ t u2r√
A
dt′. (12)

Long-time behaviour is characterized by

I ≡ lim
t→∞

i(t)

t
=

4

3π

∫ 2π

0

u2r√
A
dt, (13)

an elliptic integral depending on R and A that is easy to
evaluate numerically [29]. Thus, our final expression for
the velocity distribution function is

F (V, t) =
V

I2t2
e−V/(It), (14)

where V = v
√
A and F (V, t)dV = f(v, t)dv. In contrast to

this exponential form observed in similar systems [11,23],
the relevant quantity V oscillates rapidly with respect to
the velocities. More generally, in an adiabatic compres-
sion we expect the entropy to vary only slowly. Indeed
for a two-dimensional ideal gas with only translational de-
grees of freedom, the entropy per particle is given by [30]
R ln(mTa) + C, where R and C are constants, m is the
mass, T is the temperature and a the area per particle.
Identifying T as proportional to v2 we find that the en-
tropy is just the logarithm of V with some constants. The
importance of the entropy in forced systems was noted in
ref. [31]; see also ref. [22].
This distribution is confirmed numerically in fig. 3 for

R = 0.5 and A = 0.03, and so the FH regime. For this case
the numerical integration gives I ≈ 0.001327658. We sim-
ulate the full (not SWA) time-periodic Lorentz gas. De-
termining the time until the next collision thus involves
the solution of a transcendental equation, using the ro-
bust quadratically convergent method proposed in [16].
A million initial conditions of particles are chosen using a

Maxwell-Boltzmann distribution at a temperature of 10−4

consistent with |u| < A = 0.03. Particles which are very
slow may not collide during the simulation time, and so
delay the convergence to the limiting distribution. Note
that A leads to a significant variation in v every cycle; this
is clear in the inset, and would be visible in the distribu-
tions for different t if not incorporated correctly.
Next, we consider infinite horizon. Here, there is no sep-

aration between the collision and oscillation time scales,
and the master equation cannot be applied; in general the
velocity distribution is non-universal. We will however de-
termine the scaling of velocity with time. There are two
cases, I (pure infinite horizon) and IF (infinite-finite, also
called dynamically infinite). For IF the time of free flights
is bounded by the period, but since the velocity can be
arbitrarily large, the distance is unbounded.
For both I and IF we will argue that the FA is of the

form v ∼ t ln t. Physically, the more rapid acceleration is
due to the particles making long flights while the scatterers
are contracting, and so they miss the cooling phase of the
cycle; see the inset of fig. 3. Some will do the opposite and
miss the heating phase, but, as with a random walk, the
overall effect of larger steps in energy per cycle is a higher
rate of growth of the average energy.
In detail: The probability of a long flight of duration

between τ and τ + dτ is (neglecting multiplicative con-
stants) of order (vτ)−3d(vτ) = v−2τ−3dτ for τ ≫ v−1,
the typical flight time. See ref. [26] for an exact constant
in the static case.
Collisions normally occur with a rate ≈ v, so a long

flight avoids a change of velocity≈ vτ to the particle, since
u is at most of order unity. Thus, the perturbation δ ln v =
δv/v is of order τ . The effects are however effectively
uncorrelated, so we add variances in proportion to their
probability,

∑

(δ ln v)2 ≈
∫ 1

v−1

v−2τ−3τ2dτ. (15)

The lower limit of integration is the typical time v−1 and
the upper can be taken as the largest time found in the
trajectory; however, there is no extra velocity perturba-
tion for free paths of time greater than the period (of
order 1). Thus, we find that per collision the variance
scales as ln v/v2. The number of collisions required to
reach paths of order unity is about v2/ ln v, which is less
than the simulation time, noting that in the finite-horizon
case FA is of order v ∼ t.
Each particle thus undergoes a random walk in ln v,

taking a number of collisions v2/ ln v, hence a time v/ ln v
to take each step. The total time for the trajectory is
dominated by the largest value of v in the path, so that
the velocity is typically of order t ln t. This argument fol-
lows through for both infinite (I) and infinite/finite (IF)
cases, although it is more pronounced (larger coefficient)
in the former. Note the paradoxical effect in which the
intermittency leads to long times without collisions, but
is responsible for increasing the (collision-driven) FA.
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Fig. 4: (Colour on-line) Velocity growth for different values
of R. The curves start horizontally (v ∼ t), and those with
R < 0.45, where the infinite horizon is noticeable, then increase
linearly (v ∼ t ln t). The lowest curve, R = 0.58, is a billiard
completely confined for the whole time, exhibiting the weakest
Fermi acceleration.

We remark that the transport in velocity in both finite-
and infinite-horizon cases is purely diffusive, i.e. free of a
drift term, which would markedly alter the exponent of t,
in contrast to the numerical results presented here. This
means that the dynamics is almost certainly recurrent,
eventually returning near its starting point on very long
time scales.

The dependence of the FA on the radius (and hence
the finite-/infinite-horizon status) is shown in fig. 4. The
time regimes are (a) dominated by the initial Maxwell-
Boltzmann distribution, (b) linear growth of v, (c) for I,
increase as the logarithmic equation (15) starts to domi-
nate the normal linear acceleration when there start to be
several collisions per oscillation cycle. The linear growth
in v is proportional to the cross-section (roughly R), thus
the collision rate is roughly R2t and the transition to sev-
eral collisions per cycle occurs at roughly t ∼ R−2 for
small R, as can be seen from the minima in fig. 4.

To summarise, we have demonstrated several new meth-
ods and effects for systems with periodic volume oscil-
lations. The master equation approach can be applied
to any time-dependent container for which the static dy-
namics is chaotic, specifically with integrable decay of
correlations. The intermittent case, for example with non-
integrable decay of correlations, does not appear to exhibit
a universal velocity distribution and so it needs further
study.

The FC parameter range, in which the particles are al-
ternately confined and unconfined, is also unexplored. In
particular, it would be interesting to investigate the many
rapid collisions undertaken by a particle near where the
two scatterers touch, a new “dynamical cusp” mode of in-
termittency. The possibility of an unbounded number of
collisions suggests that since in each (approximately per-
pendicular) collision, a fixed quantity u is added to the

velocity, the velocity itself can become unbounded in finite
time for a small set of initial conditions, a further example
of intermittency-enhanced acceleration.
Finally, physical experiments involve many other

features —soft potentials, external fields, interparticle in-
teractions and quantum effects. Our results suggest a ther-
modynamic approach, characterising particle distributions
in terms of entropy.
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Appendix

Here we compare eq. (9) with the previous result of
ref. [21]. The fvv term in eq. (9) is of the same form as the
diffusive term in ref. [21] (substituting energy E = mv2/2
and mass m = 1), but has a different coefficient, for
two reasons: ref. [21] neglects the effect of motion of the
boundary on the collision rate (“aberration,” fig. 2). In
addition we assume the independence of collisions, good
for the Lorentz gas except very close to rI . In detail,
eqs. (3.12), (3.16a), (3.22a) of ref. [21] give the same form
as in eq. (9) but with 8u2/3 replaced by 4

∑∞
j=−∞ cj ,

where cj is the autocorrelation of the function u cos θ −
〈u cos θ〉 in our notation, and here u is independent of the
position. The main term is 4c0 = (8/3 − π2/4)u2, given
(correctly) in eq. (A7) of ref. [21]. The other correlations
are small, for example, the largest term for r = 0.53, just
smaller than rI , is 4c3 ≈ 0.008. Numerical simulations
(fig. 3) are consistent with 8/3 plus undetectable correla-
tion corrections, but not with 8/3 − π2/4. If desired, we
can incorporate the other cj into our approach directly, by
increasing the coefficient to 8/3 + 4

∑

j �=0 cj .
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