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Examples of wavefunctions

circle n=400

cardioid n=400
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Examples of wavefunctions

n=100 n=400 n=1000 n=2000

n=100 n=400 n=1000 n=2000
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Quantum ergodicity

Typical wavefunctions of chaotic billiard systems seem to be uniformly

distributed over the area of the billiard. In ergodic systems a typical

trajectory explores the energy shell uniformly. A natural analogy for

wavefunctions would be that the quantum eigenstates ψn of an ergodic

system are uniformly distributed over the energy shell. That is

∫
d2q |ψ(q)|2 g(q) ∼

1

Ω

∫
d2q d2p g(q) δ(E −H(q,p))

as n→ ∞, where g(q) is a bounded continuous function.

This is indeed correct for almost all eigenstates. This is the content of the

quantum ergodicity theorem
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Quantum ergodicity theorem

Quantum ergodicity theorem (Shnirelman, Zelditch, Colin de Verdière): The

relation on the previous page holds for subsequences of the eigenstates of

density one, i.e. sequences {ψjn |n = 1, 2, . . .} such that

lim
N→∞

#{n ∈ N|jn ≤ N}

N
= 1

The theorem allows for exceptional subsequences of eigenstates which do

not approach the uniform distribution in the semiclassical limit. Candidates

for such exceptional states are, for example, states that are concentrated on

the families of neutral orbits in the stadium or Sinai billiard, the “bouncing

ball states”.
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Eigenfunctions of the stadium billiard
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The states 1816 and 1817
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Scars

An issue that is controversially discussed are “scars”, the concentration of

wavefunctions along unstable periodic orbits (Heller 1984). Numerical

calculations show scarring for low-lying states, but it is debated whether

scars appear for arbitrarily high quantum numbers.

If there are no exceptional states then quantum unique ergodicity holds.

This means that the sequence of all eigenstates approaches the uniform

distribution on the energy shell in the semiclassical limit.

Rudnick and Sarnak conjectured that quantum unique ergodicity holds for

general Riemann surfaces of constant negative curvature, but proofs exist

only for certain surfaces with arithmetic properties (Lindenstrauss).
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The semiclassical eigenfunction hypothesis

Berry and Voros conjectured that eigenstates concentrate in the

semiclassical limit on regions in phase space that are explored by a typical

classical trajectory

• In chaotic systems this agrees with quantum ergodicity

• In integrable systems wavefunctions concentrate on tori

• In mixed systems it is expected that wavefunctions appear in two types,

those that concentrate on chaotic regions and those that concentrate on

invariant tori.

Berry conjectured further, that eigenfunctions of chaotic systems can be

represented as a random superposition of plane waves (de Brogly waves) in

the semiclassical limit.
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Quantum spectra

k

Regular dynamics (circle billiard)

k

Chaotic dynamics (cardioid billiard)

Sample of spectra of a regular (above) and a chaotic system (below). In

order to compare different spectra one has to scale them so that the mean

spacing between neighbouring levels is one.
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The spacings distribution

The distribution of spacings between adjacent energy levels (nearest

neighbour spacings distribution) of an integrable and a chaotic system, in

comparison with a Poison distribution e−s and the GOE distribution from

Random Matrix Theory (RMT).
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Conjectures on spectra

Random Matrix Hypothesis (Bohigas, Gianonni, Schmit 1984): The energy

eigenvalues of quantum systems with a chaotic classical limit are distributed

in the semiclassical limit like eigenvalues of random matrices.

The conjecture applies to systems without discrete symmetries like rotation

symmetries or reflection symmetries. Alternatively, it applies to subsets of

eigenstates that share the same eigenvalues of these symmetry operators.

The random matrix ensemble depends on the remaining symmetries

• Gaussian Orthogonal Ensemble (GOE): real symmetric matrices.

Relevant to systems with time-reversal symmetry

• Gaussian Unitary Ensemble (GUE): hermitian matrices. Relevant to

systems without time-reversal symmetry

• Gaussian Symplectic Ensemble (GSE): real quaternion matrices.

Relevant to systems with time-reversal symmetry and half-integer spin
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Further conjectures

Integrable systems (Berry, Tabor): The energy eigenvalues of quantum

systems with an integrable classical limit are distributed in the semiclassical

limit like independent random numbers (Poison distribution)

As in the case of chaotic systems there are exceptions. An example is the

isotropic harmonic oscillator. The conjecture was proved for some integrable

systems (relation to the value distribution of quadratic forms)

Mixed systems (Berry, Robnik): The quantum spectra of mixed systems

have a chaotic component (with random matrix distribution) and a regular

component (with Poison distribution) in the semiclassical limit. Both

components are superposed and their relative weights depend on the size of

the chaotic and the regular regions in phase space.

Numerical investigations suggest that this can be seen only for very large

level numbers.

13



Fourier transform

The Fourier transform of the density of states has peaks at the periods of the

periodic orbits
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Numerical results for the hyperbola billiard

The hyperbola billiard is an unbounded billiard system with boundaries y = 0,

y = x, and y = 1/x. The dashed line shows the quantum result, and the full line

the semiclassical result
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