Periodic orbits
Periodic orbits are states that exactly repeat themselves after a certain
time. They are often dense, so any state of the system is very close to
many periodic orbits, even if the probability of exact periodicity is zero.
This means they can still be used to approximate the dynamics.
For chaotic systems, the periodic orbit
theory gives systematic expansions of desires statistical properties such
as averages, correlation functions, Lyapunov exponents and dimensions in
terms of the unstable periodic orbits. I have worked to generalise the
theory to intermittent dynamics,
stochastically perturbed dynamics and
spatiotemporal dynamics. Periodic orbits play
a different, but equally vital role in
integrable systems.
- Stability ordering of cycle expansions C. P. Dettmann and G. P. Morriss, Phys. Rev. Lett. 78, 4201-4204 (1997) pdf ps arxiv
- Irreversibility, diffusion and multifractal measures in thermostatted systems, C. P. Dettmann, G. P. Morriss, and L. Rondoni, Chaos, Solitons and Fractals 8, 783-792 (1997)
- Recent results for the thermostatted Lorentz gas, G. P. Morriss, C. P. Dettmann and L. Rondoni, Physica A 240, 84-95 (1997)
- Cycle expansions for intermittent diffusion C. P. Dettmann and P. Cvitanovic', Phys. Rev. E 56, 6687-6692 (1997) pdf ps arxiv
- Computing the diffusion coefficient for intermittent maps: Resummation of stability ordered cycle expansions C. P. Dettmann and P. Dahlqvist, Phys. Rev. E 57, 5303-5310 (1998) pdf ps.gz arxiv
- Trace formulas for stochastic evolution operators: Weak noise perturbation theory P. Cvitanovic', C. P. Dettmann, R. Mainieri, and G. Vattay, J. Stat. Phys. 93, 981-999 (1998) ps.gz (1.2M when uncompressed) arxiv
- Traces and determinants of strongly stochastic operators C. P. Dettmann, Phys. Rev. E 59, 5231-5234 (1999) pdf ps html arxiv
- Trace formulas for stochastic evolution operators: Smooth conjugation method P. Cvitanovic', C. P. Dettmann, R. Mainieri, and G. Vattay, Nonlinearity 12, 939-953 (1999) ps arxiv
- Spectrum of stochastic evolution operators: Local matrix representation approach P. Cvitanovic', N. Sondergaard, G. Palla, G. Vattay, and C. P. Dettmann, Phys. Rev. E 60, 3936-3941 (1999) pdf ps Two distinct arxiv versions:arxiv arxiv
- Microscopic chaos and diffusion C. P. Dettmann and E. G. D. Cohen, J. Stat. Phys. 101, 775-817 (2000) ps.gz (28 pages; 2.1M when uncompressed) arxiv
- Noise corrections to stochastic trace formulas G. Palla, G. Vattay, A. Voros, N. Sondergaard, C. P. Dettmann, Found. Phys. 31, 641-657 (2001). arxiv
- Stable synchronised states of coupled Tchebyscheff maps, C. P. Dettmann, Physica D 172 88-102 (2002). ps.gz(1.3M when uncompressed) animation (0.3M) arxiv
- Lyapunov spectra of periodic orbits for a many-particle system, T. Taniguchi, C. P. Dettmann and G. P. Morriss, J. Stat. Phys. 109 747-764 (2002). pdf ps.gz(1.0M when uncompressed). arxiv
- Fractal asymptotics, C. P. Dettmann, Physica D 187, 214-222 (2004). ps arxiv
- Periodic orbit theory of two coupled Tchebyscheff maps, C. P. Dettmann and D. Lippolis, Chaos, Solitons and Fractals 23 43-54 (2005). ps pdf arxiv
- Asymptotic expansions for the escape rate of stochastically perturbed unimodal maps, C. P. Dettmann and T. B. Howard, Physica D, 238, 2404-2408 (2009). pdf arxiv early poster
- Open mushrooms: Stickiness revisited, C. P. Dettmann and O. Georgiou, J. Phys. A.: Math. Theor. 44 195102 (2011). [Highlighted in a JPA Insights article.] pdf arxiv poster
- Dependence of chaotic diffusion on the size and position of holes, G. Knight, O. Georgiou, C. P. Dettmann, R. Klages, Chaos 22 023132 (2012). pdf arxiv
- Faster than expected escape for a class of fully chaotic maps, O. Georgiou, C. P. Dettmann, E. G. Altmann, Chaos 22 043115 (2012). arxiv pdf
- Open circle maps: Small hole asymptotics, C. P. Dettmann, Nonlinearity 26 307-317 (2013). pdf arxiv
- Book chapter: The Lorentz gas as a paradigm for nonequilibrium stationary states, C. P. Dettmann, pp 315-365 in Hard ball systems and the Lorentz gas (edited by D. Szasz), Encyclopaedia of Mathematical Sciences Vol 101 (Springer, 2000). Full size version, 50 pages ps. Environmental microscopic version, 25 pages ps.
- Web book contribution: "Stability ordering of cycle expansions" (currently section 20.5) in Classical and Quantum Chaos webbook, P. Cvitanovic' et al html
- Poster: Recent developments in periodic orbit theory C. P. Dettmann April 2002. ps
- Poster: Averaging quasiperiodic systems, C. P. Dettmann and T. B. Howard, August 2008 pdf
These publications are copyright.
For allowed usage, please check the publisher's website by clicking on the journal name.
Return to Publications page;
Home page.