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Abstract

The random geometric graph consists of a random point set with links
between points with mutual distance below a fixed threshold. Here, we use
the same geometric connection rule (“hard disk graph”) but for a determin-
istic point set, the sunflower spiral. At large distances, the local structure
is asymptotically a lattice where for each lattice vector, there is another of
length a factor

√
5 greater, and the angle between these varies log-periodically

with distance from the origin. Graph properties including node degrees,
stretch factor, clique and chromatic numbers are considered, as well as link
formation, connectivity and planarity transitions. Properties depend on a
combination of the central region and the perturbed distant lattices, in a rich
and varied manner.

Keywords: Hard disk graphs, network structure, spatial networks, sunflower
spiral
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1 Introduction

A geometric graph, or spatial network, consists of a set of points (“nodes”) located
in a metric space (typically R2), together with a set of links between pairs of nodes.
Geometric graphs are used to model, for example, social, transport, wireless and
neuronal networks, in which nodes represent respectively people, places, cellphones
and neurons [Bar11]. In each of these, links are more likely between close pairs of
nodes. One very simple class of models called hard disk graphs is to link pairs of
nodes with a mutual distance less than or equal to a fixed threshold R. We could
(without loss of generality) take R = 1 (and use the term “unit disk”) and instead
scale the point set or metric by R−1, however it is often more natural to keep the
point set fixed, and vary R, and focus attention on the combinatorial graph formed
by the nodes and links. The combinatorial properties discussed in such systems
includes degrees, connectivity, planarity and chromatic number, and are well known
and discussed below; an accessible introduction is found in Ref. [Est15]. Further,
there is a plethora of other connectivity functions (deterministic and stochastic)
that can be used to form links between nodes [Det16].

One very popular hard disk model is the random geometric graph [Wal11], in
which the nodes are randomly distributed, and links are formed according to the
hard disk rule. For example, consider a domain D ⊂ R2 of area |D| and smooth
boundary; the prototypical example in the literature is the unit square domain.
The usual meaning of “randomly distributed” is a Poisson point process [Las18] of
constant density λ in D. Then, the mean number of nodes is N̄ = λ|D| and the
mean degree (number of nodes linked to any given node) is D̄ = λπR2, ignoring
boundary effects. The graph properties are random due to the node locations,
but taking a limit in which N̄ → ∞ and R (and hence D̄) varies in a specified
manner leads to sharp transitions, that is, change of properties that have proba-
bility approaching unity in the limit. Two well studied transitions are percolation,
the existence of a connected cluster of size proportional to N̄ , when D̄ exceeds a
critical constant (known to be close to 4.51 in this model), and connectivity, all
nodes being contained in a single connected cluster, when D̄− ln N̄ → ∞ [Wal11].
There is a large literature on this and related models in probability [Pen16], sta-
tistical physics [Spe18], wireless communications [Det18] and the spatial networks
mentioned above.

It is also possible to apply the hard disk connection rule to deterministic point
sets. Lattice models used in statistical physics are an example of this, where
each node is connected to its nearest neighbours, or in addition, its next nearest
neighbours, and so on. However, in this case, the network properties (degree distri-
bution, etc) are often trivial. One example of a nontrivial deterministic hard disk
graph is that of low-discrepancy sequences considered in Ref. [Est17]. In this case,
many properties are similar to the random geometric graph, especially for larger
connection radius, but the degree distributions are more concentrated.

In this paper, we will explore properties of the hard disk graph of a single
deterministic point set, the sunflower spiral, and will unveil an extremely rich and
interesting combinatorial structure despite its very simple definition. The name of
this point set arises from its use in modelling the pattern of sunflower seeds and
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Figure 1: Sunflower graph with R = 1, for x, y ∈ [−10, 10] and the origin (k = 0)
marked with a dot. The point locations (x, y) and numbers k are defined in Eq. 1.
The points 127 and 206 are examples of the square and isosceles lattice locations
discussed in Sec. 3 and following.

similar biological systems; see Refs. [Vog79, Mac21]. It consists of a discrete set of
points located on a spiral with polar equation of the form r = c

√
ϕ with c > 0 first

studied by Fermat in 1636 [Law13]; other terms used for this and related sets in
the literature are Vogel and Fermat spirals, and spiral lattices. The discrete set is
usually chosen with equal spacing using the golden angle (3−

√
5)π = (2− g)2π ≈

137.5◦ where g = (1+
√
5)/2 ≈ 1.618 is the golden ratio. A similar pattern has also

been obtained using a physics experiment with drops of ferrofluid [Dou92]. Despite
the discrete nature of the set, it exhibits a highly uniform density and circular
symmetry which make it of interest in technological applications, for example in
reducing side lobes in a transducer array [Pri18], light confinement in quantum
photonic devices [Tro21] and for directional light emission [Gor18], situating mirrors
in concentrated solar energy generation plants [Bar16] and designing rib-reinforced
shell structures [Men23]. Even a small deviation from the golden angle leads to
very different structure [Tre12].

Recent mathematical work includes proofs that this and related point sets sat-
isfy the Delone property [Aki20, Mar20] (discussed below), including in a non-
standard metric [Yam20] and have Voronoi cells with area converging at large dis-
tances [Yam21]. Visibility properties of spiral sets were considered in Ref. [Adi22b].

In the following sections, we consider the hard disk graph on the sunflower spiral

3



(see for example Fig. 1) and present an exploratory study of this simply defined yet
remarkably rich system. For each graph property we consider, the result depends on
either the region near the origin, or the log-periodically varying lattice far from the
origin, often switching between these in a complicated manner as a function of the
connection range R. Even for the distant lattices, the properties at the transition
points, and more non-local properties (degrees for large connection radius, and
chromatic number) depend sensitively on the nature of the small perturbations of
these lattices, that is, their deviation from exact lattices, decreasing with distance
from the origin.

The paper is structured as follows: In Sec. 2 we define the sunflower spiral
and explain why each point’s neighbours have label differing from it by Fibonacci
numbers. In Secs. 3 and 4 we consider the lattice structure far from the origin, and
show that it oscillates between the square lattice and a lattice of isosceles triangles.
In Sec. 5 we discuss Delone properties and spanning ratio. In Sec. 6 we consider
transitions in which new classes of links are formed as R is varied, mostly at the
isosceles lattices, and also connectivity and planarity. In Sec. 7 we investigate
minimum and maximum degrees, which involve either near nodes or the distant
lattices and observe a number of interesting phenomena. In Sec. 8 we consider the
harder problems of clique and chromatic numbers. Finally the conclusion in Sec. 9
outlines many possible future directions.

2 The sunflower spiral and Fibonacci numbers

Let g = 1+
√
5

2 ≈ 1.618 be the golden ratio, satisfying g2 = g + 1. We define the
sunflower spiral S ⊂ R2 using polar coordinates as [Vog79]

S = {(xk, yk) : k = 1, 2, 3, . . .}
xk = rk cosϕk, yk = rk sinϕk, (1)

rk =

√
k

π
, ϕk = 2πkg.

The number of points in a radius r of the origin is πr2, so the average density is
unity; it turns out that the points are quite uniformly distributed [Aki20, Yam21].
We will usually refer to a point by the label k rather than the Cartesian or polar
coordinates. The Euclidean distance between two points j and k will be denoted
by dj,k.

Looking at Fig. 1, we make a key observation:

Closely spaced points have values of k differing by Fibonacci
numbers.

The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . are defined by F1 = F2 =
1, Fn = Fn−1 + Fn−2. We can explain this for large k as follows, though it is true
even close to the origin. Consider a point k. A point j will be close to k, meaning
that dj,k is of order unity, if both these conditions are met:

(a) The radial distance is order unity or less.
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(b) The tangential distance is order unity or less.

For condition (a), the radial distance between nearby points k and j is

|rj − rk| =
1√
π

∣∣∣√j −
√
k
∣∣∣ = 1√

π

|j − k|
√
j +

√
k

(2)

which is order unity if |j − k| is order
√
k. Thus we need |j − k| = O(

√
k), or

equivalently that j/k = 1 +O(k−1/2).
For condition (b), the tangential distance is approximately

rk(ϕj − ϕk − 2πN) = 2
√
πk [(j − k)g −N ] (3)

where N is the nearest integer to (j − k)g. Thus, we need ∥(j − k)g∥ = O(k−1/2),
where ∥ · ∥ denotes the distance to the nearest integer.

To make progress we need to calculate ∥mg∥, where m is an arbitrary integer.
Recall that the Fibonacci numbers are known to satisfy

Fn =
1√
5

[
gn − (−g)−n

]
(4)

which is sometimes called Binet’s formula. Comparing adjacent Fibonacci numbers
we obtain

gFn = Fn+1 − (−g)−n (5)

and hence that g multiplied by a large Fibonacci number is close to the next
Fibonacci number, and also that Fn+1/Fn is a close rational approximant for g
since g−n is exponentially small for large n. Next, by repeatedly subtracting the
largest Fibonacci number less than an arbitrary positive integer m and noting the
Fibonacci recursion above, we can write m as a finite sum of non-consecutive Fn

with n ≥ 2,

m =

∞∑
n=2

anFn (6)

with an ∈ {0, 1} and anan+1 = 0. Combining this with Eq. (5) we find

mg =

∞∑
n=2

an
[
Fn+1 − (−g)−n

]
(7)

In this expression the Fn+1 terms are integers and the powers of (−g)−n sum to at
most

∞∑
n=1

g−2n = g−1 ≈ 0.618034 (8)

in magnitude. Thus

∥mg∥ =

∣∣∣∣∣
∞∑

n=2

an(−g)−n − c

∣∣∣∣∣ (9)

where c ∈ {−1, 0, 1} is the closest integer to the sum.

5



Returning to condition (b) above, we must have only terms with g−n = O(k−1/2).
But from Eq. (4) we have that Fn ∼ gn/

√
5. So, m = |j − k| can be written as a

sum of non-consecutive Fibonacci numbers at least as large as order
√
k.

Condition (a) requires that |j− k| be at most of order
√
k, whilst condition (b)

requires that |j − k| be written as a sum of non-consecutive Fibonacci numbers
at least of order

√
k. Combining these, we find that in order to have the distance

dj,k of order unity, we need |j − k| to be written as a sum of non-consecutive

Fibonacci numbers, all of order
√
k. Finally, to reduce distance in both directions,

the closest point must be only a single Fibonacci number Fn, of order
√
k. This last

statement is only an intuitive argument, but we provide more precise calculations
of the distance in Sec. 4. Also, numerically, the closest point being a Fibonacci
difference |j − k| holds for all k, not just large k.

We remark that if g were replaced by another irrational number α, a similar
calculation could be made, in which the Fibonacci numbers are replaced by the
denominators of its sequence of best rational approximants (“convergents”) of α
as detailed in Ref. [Roc92], and in terms of which the equation Eq. (6) above is
the Ostrowski expansion with respect to α [Ost22, Lek51, Roc92]. There are some
recent results for spirals from more general irrationals in Ref. [Aki20].

3 Local structure at large k

As shown in the previous section, the radial and angular displacement of a nearby
point j from k depends only on the magnitude of k, to leading order, and on the
difference k− j constructed from a few Fibonacci numbers of order

√
k. Also, since

the point j is roughly the same order of magnitude as k, it must have a similar
neighbourhood given the same differences. Thus, the local structure of the set in
the vicinity of k is that of a lattice. To see this, we choose as a basis the two
displacement vectors k → j = k + Fn and k → l = k + Fn+1, with n chosen so
that Fn is roughly of magnitude

√
k and gives the closest point to k in the outward

direction (this value is given in Eq. (21) below). Other lattice vectors are linear
combinations of these, for example, Fn−1 = Fn+1 − Fn.

We can identify some examples of these local lattices by looking again at Fig. 1.
Observe that k = 127 (left of centre) is surrounded by an almost square lattice
with steps of 21 and 34 in k in orthogonal directions. Close to k = 206 (near the
top, left of centre), the arrangement is close to an anisotropic triangular lattice
with steps of 21, 34 and 55 (all of which are Fibonacci) in the three directions, and
the 34 distance slightly smaller. We will later show that the local lattice structure
at k oscillates between these two.

Next, we shall make these observations quantitative and establish the local
geometry of the lattice as a function of k. Let k be large, and (ξ, η) be the lo-
cal coordinate system centred at point k and defined by the radial and angular
displacements from k respectively. Specifically, we have notation as in Eq. (1),(

ξ
η

)
=

(
cosϕk sinϕk

− sinϕk cosϕk

)(
x− xk

y − yk

)
(10)
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such that the local coordinate system (ξ, η) has been rotated by ϕk and its origin
has been translated by (xk, yk). Then, for j = k + Fn with Fn of order

√
k, we

have that

rj =

√
k + Fn

π
= rk +

Fn

2
√
πk

+O(k−1/2) (11)

ϕj = ϕk − 2π(−g)−n + 2πFn+1 (12)

using Eq. (5). The final term in Eq. (12) may be neglected since Fn+1 is an integer.
Combining these equations together with Eqs. (4,10) leads to the first basis vector
of the local lattice geometry

ξj =
gn

2
√
5πk

+O(k−1/2) (13)

ηj = −2
√
πk(−g)−n +O(k−1/2) (14)

with gn also of order
√
k. The second basis vector can be obtained through a

similar calculation for the point l = k + Fn+1. Finally, we can find the area of the
parallelogram defined by k, j, l, and k + Fn + Fn+1 through

A =

∣∣∣∣det [ξj ηj
ξl ηl

]∣∣∣∣ = 1 +O(k−1/2) (15)

which is independent of k as k → ∞, showing that these define a covolume one
lattice as expected. That the area approaches unity in the large k limit has been
rigorously proven in Ref. [Yam21].

4 Lattices at large k

Assuming that k is large, in this section we shall neglect the O(k−1/2) terms. We
then have that a lattice vector from k to a nearby point k+aFn+bFn+1 for integers
a and b (i.e., a linear combination of the two basis vectors) has, from Eqs. (13) and
(14), displacement

ξ =
gn

2
√
5πk

(a+ gb) (16)

η = −2
√
πk(−g)−n (a− b/g) (17)

Notice that replacing k by k′ = g2k leads to the same form of equations with ξ′ = ξ,
η′ = −η, a′ = b− a and b′ = a where the latter transformation is invertible. Thus,
we can conclude the lattice repeats log-periodically (modulo a trivial reflection)
when k is multiplied by g2 and hence r is multiplied by g. Likewise, it is log-
reflection symmetric in that replacing k by k′ = g2m/(80π2k) leads to the same
lattice with suitable transformations, now interchanging ξ and η.

The squared distance of the lattice vector in Eqs. (16,17) is δ2a,b = ξ2 + η2.
So, the squared lengths of the basis vectors k to k + Fn and k to k + Fn+1 are

7



respectively

δ21,0 =
1√
5

(
κn + κ−1

n

)
(18)

δ20,1 =
1√
5

(
κng

−2 + κ−1
n g2

)
(19)

where

κn =
4π

√
5

g2n
k (20)

Fig. 2 plots all the node distances (vertical axis) as a function of k (horizonal
axis, logarithmic scale). The upper panel does this for 1 ≤ k ≤ 106, using the
actual node distances, and illustrates the convergence as k increases to the log-
periodic and log-reflection symmetric pattern as derived above. The lower panel
shows a single fundamental domain of this pattern in the limit, using the large k
approximations implicit in Eqs. (16), (17).

The lines of reflection symmetry, the left and right extremes of the lower panel of

Fig. 2 are of particular importance. Namely, at the right extreme, where k = g2n+1

4π
√
5

and κn = g, we have the unit square lattice, at which the two basis vectors are of
equal length and orthogonal; beyond this k+Fn+1 is now closer to k than k+Fn.

Thus we expect k ± Fn to be the closest point to k when g2n−1

4π
√
5
< k < g2n+1

4π
√
5
, that

is, g−1 < κn < g, under the large k approximation. Inverting this to write n in
terms of k we find

nmin(k) = ⌊ ln(4π
√
5gk)

2 ln g
⌋ (21)

Numerically, the closest point always differs by a Fibonacci number, even for very
small k. In some cases (small k, and near the square lattice) the value of n for the
closest point can differ by 1 from the prediction in the above equation.

At the left extreme of the lower panel of Fig. 2, k = g2n

4π
√
5
and κn = 1, the

distance δ1,0 is minimised, and the distances k to k + Fn−1 and k to k + Fn+1,
that is, δ−1,1 and δ0,1 respectively, are equal. In this case the lattice consists of

isosceles triangles with side lengths
√

2√
5
,
√

3√
5
,
√

3√
5
. We denote this the isosceles

(triangle) lattice. It can also be described as a centred rectangular lattice, that is,

a rectangular lattice with side lengths
√

2√
5
,
√
2
√
5 together with a point at the

centre of each rectangle. Both these lattices are visible in Fig. 1, for example near

k = 127 ≈ g17

4π
√
5
and k = 206 ≈ g18

4π
√
5
respectively, as noted in the previous section.

Note that a general two dimensional lattice has two parameters, up to scale
and orientation, namely the angle and ratio of lengths of the two basis vectors. In
the case of the sunflower spiral point set S however, we have a family of lattices
with only a single parameter determined by k. Thus, there must be an additional
condition yet to be satisfied in order to describe the lattice structure of S. It is not
difficult to check that for any k and any (a, b), we have

δ2−a+2b,2a+b = 5δ2a,b (22)
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Figure 2: The top panel shows node k plotted against its distances to neighbouring
points. As k increases this limits to a log-periodic repetition and reflection of
the lower panel, which shows lattice distances for the general lattice between the
isosceles (left) and square (right). Other special lattices and distances discussed
throughout this paper are indicated by the coloured dots. The lower scale uses κn

as in Eq. (20). The upper scale uses angle θ as in Eq. (24).
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In other words, for any lattice vector defined by the integers (a, b), there is another
vector (−a + 2b, 2a + b) of magnitude exactly a factor

√
5 greater, and a further

lattice vector (b, a+b) at the midpoint of these. The set of such lattices (up to scale
and orientation) forms a one parameter family, determined by the angle between
one basis vector, say (1, 0), and the vector of magnitude

√
5 greater, (−1, 2). The

midpoint (0, 1) is the other basis vector. The angle θ between the vectors (1, 0)
and (−1, 2), using Eqs. (16,17), satisfies

cos θ =
g4n − 80π2k2

g4n + 80π2k2
(23)

which can be rearranged to give

k =
g2n

4π
√
5
tan

θ

2
(24)

from which we find that all such lattices appear in the sunflower spiral. In terms
of κn defined above, we have κn = tan(θ/2). The square lattice corresponds to
θ = arccos(−1/

√
5) = 2 arctan(g) and the isosceles lattice to θ = π/2.

5 Delone properties and stretch factor

Numerically, the smallest separation distance between two points is found to be
d1,4 ≈ 0.90380. To prove this, one could note that the shortest distance of any

lattice is
√

2√
5

≈ 0.945742 (above), and then put quantitative bounds on the

neglected O(1/
√
k) terms, and test numerically as far as required for the bounds.

The fact there is a shortest distance means that the point set S is s-uniformly
discrete, that is, each ball of radius s contains at most one point, for s < d1,4/2. The
set is also r-relatively dense, that is, each ball of radius r is non-empty, for r > rrd ≈
0.843859, where this value corresponds to the (numerical) point (0.48728, 0.06150)
furthest from any point in the set and a distance rrd from each of the points
k = 2, 3, 5. Having both s-uniform discreteness and r-relative density, the set S
is called a Delone set. It is also an ϵ-net, that is, ϵ/2-uniformly discrete and ϵ-
relatively dense [Cla06], for rrd < ϵ < d1,4. See Ref. [Aki20] for proofs of the
Delone property in the present model, for a general rotation number that is badly
approximable by rationals (such as g).

The ϵ-net property relies on the above inequality and it is interesting to briefly
consider the rotation numbers α for which this holds. Numerically, it is found to
be true for α = (g + a)−1 for a ∈ {1, 2, 3}, where a = 1 gives α = g−2 which is
equivalent to g studied here, since g−2 = 2 − g, adding 2 adds 4πk to ϕk and the
minus sign gives a reflection across the x-axis. There are likely no other values of
α with the ϵ-net property, but it is delicate since both r and 2s vary wildly with α,
and can approach each other quite closely for many other values of α. We return
to the main case studied here, of α = g.

A general exposition of the above properties and application to generating tri-
angulations on general curved spaces is given in Ref. [Cla06]. The relevant trian-
gulation on R2, usually called the Delaunay triangulation (same mathematician as
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Figure 3: The Delaunay triangulation of S.

Delone, but spelt differently), can be defined as the union of triangles whose circum-
circles contain no other points of S. See Fig. 3 here and Fig. 13b of Ref. [Mac21].
The Delaunay triangulation can be considered as a graph, however is not a hard
disk graph, since it contains the link between k = 3, 5 of length 1.52674, but for a
link formation distance R >

√
2 both diagonals exist at the square lattice, so the

graph is not a triangulation.
Every Delaunay triangulation is known to have a stretch factor (also called span-

ning ratio), defined as the maximum ratio of the distances between two nodes along
graph links and the Euclidean separation [Bos13], that is at most 1.998 [Xia11].
Numerically, the spanning ratio of the Delaunay triangulation of S is found to be√
2, occurring at the square lattice. That is, each square has a single diagonal

filled, but not both as it would violate planarity. Then, for the corners that at
not linked, the ratio between the Euclidean separation (

√
2) and distance following

graph links (2) is
√
2. Also, there are no other locations, even close to the origin,

that have a greater stretch factor.
There are results for the spanning ratio of hard disk graphs as well [Bos13].

These depend on R, for example at R =
√
2 the diagonals of the square lattice

appear, reducing the stretch factor there to
√
4− 2

√
2 ≈ 1.08239. For

√
3/
√
5 ≤

R <
√
7/
√
5 the stretch factor of the isosceles lattice is

√
2(6−

√
6)/5 ≈ 1.19172.

In general, the stretch factor of a lattice is shown to be sec(ϑ/2) where ϑ is the
maximum angle between adjacent vectors defined by the links.

The stretch factor of the hard disk graph of S is plotted in Fig. 4. It is difficult
to obtain analytically, since it is dominated by nodes at small k for most R. Some
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Figure 4: Stretch factor as a function of R, labelled by the location of the deter-
mining links, and isosceles and blue lattices as in Fig. 2. The left and right panels
give different regions with different scales on the axes. The inset shows a region
where there are many distant points, where the graph is close to adding the short
diagonal of approximate parallelograms, together with a curve giving a lower bound
from the lattices at infinity. The numerical simulation uses data for k ≤ 10000.

exceptions are as follows: For 1 < R <
√

3/
√
5 ≈ 1.15829 the graph is connected

but near the isosceles lattice is composed of parallel lines, leading to infinite stretch
factor. There are some values near R ≈ 1.33 where the stretch factor is controlled
by the location where the short diagonal of a parallelogram first appears; see the
inset in Fig. 4. Finally, for 1.96066 ≈ d2,8 < R ≲ 2.16729 there are some lattices
(different from but close to the square lattice) which have a stretch factor greater
than 1.09248 which is the stretch factor associated with the link 1, 13 for slightly
larger R. The limiting such lattice is shown by the blue dot in Fig. 2.

6 Forming links, connectivity and planarity

Let us now consider the transitions of the hard disk graph on S as a function of
the connection range R. As with the previous sections, we first consider the large
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(a, b)
∣∣∣ a+gb
a−b/g

∣∣∣ a2 + ab− b2 δ∗a,b
(1,0) 1 1 0.94574
(2,0) 1 4 1.89148
(2,1) g2 5 2.11474
(3,0) 1 9 2.83722

(3,1) 10+7g
11 11 3.13667

(4,0) 1 16 3.78297

(4,1) 17+9g
19 19 4.12239

(4,2) g2 20 4.22949
(5,0) 1 25 4.72871

Table 1: Link formation transitions. See Eq. (25) and following.

k behaviour, that is, the properties of the graph far from the origin. The general
lattice vector corresponding to the displacement from k to k+aFn+bFn+1 is given
in Eqs. (16) and (17) above.

First, we discuss link formation transitions. The squared distance δ2a,b = ξ2+η2

is minimised at

k∗a,b =
g2n

4π
√
5

∣∣∣∣ a+ gb

a− b/g

∣∣∣∣ (25)

and is given by

δ∗a,b =

√
2√
5
|a2 + ab− b2| (26)

which is independent of n. Therefore, as R increases above δ∗a,b these vectors that
connect k and k+aFn+bFn+1 form links and are added to the hard disk graph. As
seen in Fig. 5, these links appear at concentric circles in the lattice corresponding
to different values of n, which then expand into annuli.

The link formation transitions are given in Tab. 1 and are visible in Fig. 2 as the
lowest points of the distance curves. Many lattice vectors (a, b) are equivalent under
translation by n, and so are not given separately in the table. For example the first
transition is at (1, 0) corresponding to Fn. The transition (0, 1) is Fn+1, so it is the
same transition, obtained by shifting n by one. Likewise (1, 1) is Fn+Fn+1 = Fn+2

is the same transition shifting n by two. Many of the transitions that are distinct
are however located at the isosceles lattice, where a+gb

a−b/g is an even power of g, so

k∗a,b is of the form g2n

4π
√
5
.

The first non-isosceles transition at R = δ∗3,1 = 3.13667 is indicated by the
brown dot in Fig. 2, corresponding to the lowest point of the relevant curve. It is
the lattice where (2,−3) and (1, 4) have the same length. The lattice generated by
these vectors is however a scaled isosceles lattice.

At finite k, numerical investigations indicate that the initial transition (1, 0)
is well described by Eqs. (25,26), with the shortest link at each isosceles lattice

between values of k equal to or within one of g2n

4π
√
5
± gn

2
√
5
with the second term

giving the Fibonacci number. Due to the distortion of the lattice, this shortest
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Figure 5: The first link formation transition at R =
√

2/
√
5 ≈ 0.94574. The

plotted hard disk graphs are 0.944 (upper left), 0.9456 (upper right), 0.946 (middle
left) and 0.96 (middle right). As R increases further, the lines of links extend
further and cross. The lower plots are for 1.08 (lower left) and 1.3 (lower right).14



Figure 6: Planarity transition at R =
√
2 ≈ 1.41421. The plotted hard disk graphs

are 1.35 (left) and 1.45 (right).

link is shorter than the limiting value of δ∗1,0 =
√

2/
√
5, thus the transitions move

outwards to larger n as this value is approached from below. This is visible in
Fig. 5.

There are (at least) two transitions of a different kind, that occur at the square
lattice. Inspection of Figs. 2 and 5 shows that the links formed at the initial (1, 0)
link formation transition move inward and outward, and touch around R = 1 at
the square lattice, before continuing smoothly to form the equivalent links ((0, 1)
and (−1, 1)) in neighbouring annuli. As soon as R > 1, the whole network connects
(for large k, and numerically all nodes are connected to large k). Similarly, when
R >

√
2 they have reached the square lattice again, forming the diagonals of the

squares, and hence making the graph nonplanar. See Fig. 6. Numerically, R = 1
does not connect (see Fig. 1), and R =

√
2 is planar. Note that here, percolation

(defined as the existence of an infinite cluster) and connectivity occur at the same
value R = 1, though exactly at the transition point there appear to be multiple
infinite clusters.

7 Node degrees

The graph is infinite and care is needed in defining the degree distribution. Ar-
guably the most natural, given the log-periodicity in k of the lattices, uses loga-
rithmic averaging, which gives the probability mass function

pD = lim
K→∞

1

lnK

K∑
k=1

1

k
1dk=D (27)
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Figure 7: Minimum and maximum degrees, and clique and chromatic numbers, as
presented in Sections 7 and 8.

where pD is the probability (in this sense) of a node having degree D, and 1dk=D is
the characteristic function equal to one if node k has degree D and zero otherwise.
Then, the mean degree is D̄ =

∑∞
D=0 DpD, a finite sum. It is possible in principle

to calculate pD for a fixed R, by determining which large k lead to lattices where
nodes have each degree, but we have not done this. Small k effects are not relevant
since they are are finite, and divided by lnK.

It is however simpler to consider the minimum degree δ and maximum degree
∆, which are defined and monotonically increasing as a function of R; see Fig. 7.
Practically all the claims in this section are numerical, though there are some
related rigorous results in [Aki20], including for rotation numbers other than g.

The transitions R = R∗ at which δ and ∆ increase are broadly of two kinds.
The first kind occurs at finite k, in which case we have some j, k so that dj,k = R∗
and one of these nodes (say, j) has the minimum degree for R∗ − ϵ < R < R∗ or
the maximum degree for R∗ ≤ R < R∗ + ϵ. The parameter δ or ∆ changes by
one, since all distances in the sunflower spiral are distinct (presumably, but hard
to prove). The second kind occurs at infinity, in which case there is an increasing
sequence of j with minimum degree for R∗ − ϵ < R < R∗ or maximum degree
for R∗ < R < R∗ + ϵ (note the different inequality). The sequences are located
at particular (square or isosceles or other) lattices, and the transition point R∗ is
related to a lattice with two distances nontrivially equal to R∗, and so it is an
algebraic number. In this case δ or ∆ may change by more than one, at least
numerically; examples are given below.

These transitions are plotted in Fig. 8, with k limited to 106. There are many
finite transitions, including some observable patterns, which we will not attempt
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Figure 8: Transitions in minimum degree δ (purple plusses) and maximum degree
∆ (green stars), occurring when R is varied. The vertical axis gives the value of k
at which the relevant link occurs, for k ≤ 106. The upper panel has a log scale and
the lower panel is linear.
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δ ∆
Degree k R∗ Numerical k R∗ Numerical

1 □ 1 1.00000 1,4 d1,4 0.90380
2 3 d3,11 1.01052 8 d8,16 0.93485

3 △
√
3/

√
5 1.15829 4 d4,12 0.97466

4 2 d2,1 1.27232 □ 1 1.00000

5 □
√
2 1.41421 24 d24,32 1.11953

6 1 d1,14 1.56467 △
√
3/
√
5 1.15829

7 △
√
7/

√
5 1.76932 39 d39,73 1.34104

8 38 d38,12 1.89065 □
√
2 1.41421

9 □ 2 2.00000 65 d65,120 1.65407

10 6 d6,8 2.01761 △
√
7/
√
5 1.76932

Table 2: Transitions in minimum and maximum degree. The □ and △ refer to
transitions at infinity at the square and isosceles lattices respectively.

to explain in detail except to note that in the lower panel of Fig. 8 the lines of
alternating δ and ∆ transitions are approximately affinely related, scaled by a
factor g in the horizontal direction and g2 in the vertical direction. For the infinite

transitions, we can see many at the square lattice at k = g35

4π
√
5
≈ 734298 and the

isosceles lattice at k = g34

4π
√
5
≈ 453821.

The first few degree transitions are also presented in Tab. 2. Note that at
distances found in the square and isosceles lattices, there are often transitions oc-
curring simultaneously in both minimum and maximum degree. There are clusters
of values where k ≈ ∆, for example k ∈ [∆−1,∆+1] for ∆ = 12, 13, 14, 15 and for
eleven values in ∆ ∈ [277, 290]; here the connection range is sensing the non-lattice
region near the origin.

The first degree that is skipped is ∆ = 19; for R =
√
5 we have ∆ = 18 (at

least to k = 106), whilst just above this value the square lattice at infinity gives
∆ = 20. Similarly δ = 33 is apparently skipped at the isosceles lattice length√

27/
√
5 ≈ 3.47488. In both instances, these are the smallest lengths at which

eight points in the lattice are equidistant from the origin.
The first lattice at infinity that is not square or isosceles is at δ = 23. This

corresponds to a unit covolume lattice for which the vectors (2, 2) and (3, 0) have the

same length, equal to R∗ = (11664/155)1/4 ≈ 2.94530 and found at k = 6
√
5−5√
31

g2n

4π .

It is shown as the red dot in Fig. 2.
We note that it is possible to consider asymptotic minimum and maximum

degrees δ∞ and ∆∞, which consider only the lattices at infinity and ignore a finite
number of links near the origin. For almost all R, the asymptotic degree for each
lattice may be read off the lower panel of Fig 2 noting that each curve corresponds

to a degree of two due to symmetry. So, for example, when
√
3/
√
5 < R <

√
2

18



we consider a horizontal line at that height and its intersection with the curve.
Lattices on the left, near the isosceles lattice, have degree six, whilst lattices on
the right, near the square lattice, have degree four. Values of R corresponding to
exact distances of the isosceles or square lattices, or for larger values, where the
curves intersect, correspond to transitions in the asymptotic degrees. Exactly at
the transition a more careful analysis is needed. For example, at R = 1, the square
lattice goes from degree zero to degree four. Inspection of Fig. 1 shows that most
nodes have degree two, but there are nodes of degree one and three far from the
origin.

It can also be seen from Fig 2 that all lattices, except the one at the tran-

sition, have the same degree, for the values R ∈ {1,
√

3/
√
5 ≈ 1.15829,

√
2 ≈

1.41421,
√
7/
√
5 ≈ 1.76932, 8/2201/4 ≈ 2.07723} where the last is shown by the

green dot in Fig. 2 and is not in either isosceles or square lattices. It is near the
square lattice, but with vectors (−2, 1) and (0, 2) of equal length.

Finally, another asymptotic limit is that of R → ∞. Since there is unit density,
we have δ ∼ ∆ ∼ πR2. It would be interesting, but is beyond the scope of this work,
to analyse the range of degrees ∆− δ, derived from the family of lattices appearing
here, in comparison with a single lattice (where ∆ − δ = 0), low discrepancy
graphs [Est17] and RGG on a torus (where the degree distribution is Poisson).
This seems related to the (very difficult) Gauss circle problem [Hux02].

8 Clique and chromatic numbers

The clique number ω and chromatic number χ of a graph are bounded as follows:

ω ≤ χ ≤ ∆ (28)

except where the graph has a connected component that is complete or an odd
cycle where we can have χ = ∆ + 1. The latter happens here only when R <
d8,16 ≈ 0.93485; above this the node k = 8 has degree 2, but there are no K3 or
larger complete graphs or odd cycles formed before R > 1 when the whole graph
is connected.

Finding the largest cliques and chromatic number is in general a hard problem,
even taking into account some simplifications that come from the geometry. The
structure of the transitions is likely to be similar to that of the minimum and
maximum degrees.

Results for the clique number about which we have good numerical evidence
are:

ω =


1 R < d1,4 ≈ 0.90380
2 d1,4 ≤ R < d2,10 ≈ 1.07024

3 d2,10 ≤ R ≤
√
2 ≈ 1.41421

≥ 4
√
2 < R

(29)

Here, the first link is k = {1, 4}, the first triangle is k = {2, 5, 10} and the first
tetrahedron K4 is where both diagonals are formed in the square lattice at large
distances.
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Figure 9: 3-colourings of the sunflower graph. Left: k ≤ 200 and R = 1.247 ≲

d89,102. Right: k ≤ 1000 and R = 1.158 ≲
√
3/
√
5.

Similarly, we are reasonably confident about the following results for the chro-
matic number:

χ =



1 R < d1,4 ≈ 0.90380
2 d1,4 ≤ R ≤ 1

3 1 < R ≤
√
3/
√
5 ≈ 1.15829

4
√
3/
√
5 < R ≤

√
2 ≈ 1.41421

≥ 5
√
2 < R

(30)

Here, χ ≥ 3 where the cycles (including odd cycles) appear. While the graph
remains planar, we must have χ ≤ 4 due to the four colour map theorem. A square
lattice with diagonals has χ = 4, but when this is formed for R >

√
2, there are

perturbations, in particular forming it in annuli at large distance, almost certainly
requiring χ ≥ 5.

The above does not show where the transition between χ = 3 and χ = 4 occurs.
We have done numerical simulations which either find a 3-colouring, prove that one
does not exist, or (for k ≳ 200) take an exponentially long time to decide. Fig. 9
shows a 3-colouring for k ≤ 200 and R = 1.247 ≲ d89,102, which is the limit for
this k. But it is clear that this colouring cannot be continued to larger k. The true

boundary appears to be R =
√
3/
√
5 ≈ 1.15829 at which triangles appear in the

isosceles lattice at large distances. At this value, the colouring easily continues to
at least k = 105. These values of ω and χ, together with δ and ∆ from the previous
section, are plotted in Fig. 7.

At large R we expect that all degrees are of order the area of the disk of radius
R, so δ,∆ ∼ πR2 ≈ 3.142R2. In contrast, cliques are of order the area of the disk
of diameter R, so ω ∼ πR2/4 ≈ 0.785R2. For chromatic numbers, we expect that
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the result is as given by a tiling of the plane with hexagons of lattice vector R, and
the nodes within each hexagon having distinct colours. This is similar to the dense
regime of the random geometric graph [McD03], and gives χ ∼

√
3R2/2 ≈ 0.866R2

which is close to, but above, the ω value.

9 Conclusion

Here we considered the sunflower spiral, its Delone properties and its hard disk
graph of the sunflower spiral as a function of the link range R, finding a rich and
varied structure, much of which is accessible analytically. Some properties, such as
stretch factor, are mostly determined by local structure near the origin, however
even here there is a region near R = 1.33 where there is intricate detail from distant
regions (see Fig. 4). The link formation, connectivity and planarity transitions
are accessible analytically (see Sec. 6) but minimum and maximum degrees are
controlled either by local or distant regions. Even where the transitions are related
to distant lattices, properties exactly at the relevant R value, and for the chromatic
number, depend sensitively on the small perturbations of these lattices at large
distances.

There is a huge variety of open problems and possible future directions, in-
cluding a more detailed study of the above graphs and properties, more global
properties such as shortest paths and graph spectra, other deterministic graphs on
the sunflower spiral (for example annulus rather than disk, k-nearest neighbour,
beta-skeleton), random graphs on the sunflower spiral (for example percolation,
soft random geometric graph [Det16]). Then, there are similar point sets derived
from other irrational numbers, whose Diophantine properties are likewise described
using their continued fraction expansions. Finally, we can consider higher dimen-
sional generalisations, for example as discussed in Ref. [Adi22a].
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