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The distribution of primes
Prior to Riemann the following results were known:

• Euclid: There are infinitely many primes.

• Euler (1737): Product form of the zeta function

ζ(s) =
∞∑
n=1

1

ns
=

∏
p

(1− p−s)−1

showing that the sum of reciprocals of primes diverges.

• Legendre (c 1800) conjecture that the primes have density 1/(A lnx+B)

• Chebyshev (c 1850) number of primes up to x, π(x) satisfies for suffi-
ciently large x

0.89Li(x) < π(x) < 1.11Li(x)

using the Logarithmic Integral

Li(x) =

∫ x

0

dx

lnx



The 1859 paper
Georg Friedrich Bernhard Riemann (1826-1866) published an 8-page paper
“On the number of primes less than a given magnitude” in German, revolu-
tionising analytic number theory. New approaches included

• The study of ζ(s) for complex argument and continuation to <s < 1,

• The study of the zeros of ζ(s),

• The use of the Fourier transform,

• The use of Möbius inversion formula,

• Series and integral representations of π(x) and related functions,

and of course the Riemann Hypothesis. A translation and discussion of the
paper can be found in H. M. Edwards “Riemann’s zeta function” 1974 (re-
published 2001).



Properties of ζ(s)
Using the definition of the Gamma function

Γ(s)

ns
=

∫ ∞

0
e−nxxs−1dx

and summing over n, Riemann represented the zeta function in the entire
complex plane apart from a pole at s = 1 as

2 sinπsΓ(s)ζ(s) = i

∫ ∞

∞

(−x)s−1dx

ex − 1

where the contour surrounds the positive real axis in an anticlockwise di-
rection. He then used properties of the Gamma function to show that the
combination

Γ(s/2)π−s/2ζ(s)

is invariant under the transformation s to 1 − s. Thus there are zeros at
negative even integers and possibly with real parts between zero and one.
Euler knew exact values for positive even integers; this formula extends these
to negative odd integers and zero.



Riemann’s result
Riemann introduced a function f(x) counting integers of the form pk < x with
weight 1/k. He then gave a formula in terms of the zeros of the zeta function
with real parts between zero and one ρ:

f(x) = Li(x)−
∑
ρ

Li(xρ)− ln 2−
∫ ∞

x

dt

t(t2 − 1) ln t

where the sum is ordered by the magnitude of the imaginary part of ρ. Thus
the primes are distributed with an average density of 1/x corrected by terms
depending on the location of the zeta zeros. In particular:

• The prime number theorem (1896): There are no zeta zeros with real
part 1, and hence π(x) satisfies

π(x) ∼ Li(x)

• The Riemann hypothesis, that all nontrivial zeros have real part 1/2, is
equivalent to the statement

π(x)− Li(x) = O(x1/2+ε)



Multiplicative number theory
We can replace the “1” in the numerator of ζ(s) by a multiplicative function,
ie satisfying

f(mn) = f(m)f(n) gcd(m,n) = 1

and the Euler product and often functional equations will follow. The function
needs only to be defined at powers of primes. For example, the Möbius
function, used in the Möbius transform:

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
, µ(pk) =

{
−1 k = 1
0 k > 1

The Euler totient function, giving the number of coprime integers up to n.

ζ(s− 1)

ζ(s)
=

∞∑
n=1

φ(n)

ns
, φ(pk) = (p− 1)pk−1

Dirichlet characters (periodic, supported on integers coprime to the period,
and completely multiplicative)

L(s, χ) =
∞∑
n=1

χ(n)

ns



Subsequent progress

• Numerics: The first few billion zeros lie on the critical line

• 40% of zeros lie on line, and 99% of ρ = β+ iγ satisfy |β−1/2| ≤ 8/ ln |γ|.

• Values of ζ(1/2 + t): RH implies the Lindelöf hypothesis, that this is
O(tε); best result so far is O(t1/6+ε).

• Connections/restatements using Fourier transforms, Probability, Func-
tional Analysis, spectral theory including of random matrices, other num-
ber theoretic functions.

• Study of wider classes of L-functions, including the above questions.



Billiards
A billiard is a dynamical system, arising naturally in mechanics and optics,
in which a point particle moves with constant velocity except for specular
collisions with the boundary. The behaviour depends on the shape of the
boundary:

Integrable Circle, ellipse, rectangle, three triangles.

Pseudo-integrable Polygons with rational angles.

Parabolic Polygons with irrational angles.

Mixed Mushroom, generic curved.

Hyperbolic Stadium, Sinai, Cardioid.

Exotic External field, Riemannian metric, global topology, thin barrier, un-
bounded domain, alternative reflection laws, moving boundary.

Open Trajectories absorbed at hole(s), subset of boundary, incidence angles,
or the interior.



Basic facts/notation for 2D billiards
The most convenient approach is usually the collision map Φ(x) where x
denotes arc length l and angle ψ at the boundary. There is a function T (x)
giving the continuous time from x to Φ(x), from which continuous time
properties may be calculated.

The equilibrium measure and mean collision time for a billiard with domain
D ⊂ R2 are

dµ0 =
cosψdldψ

2|∂D|

∫
T (x)dµ0 =

π|D|
|∂D|

〈〉 will indicate an average with respect to µ0, so that correlation functions
are written 〈fg ◦Φn〉 − 〈f〉〈g〉 for functions f, g : M → R.



Some history of circular billiards
An ancient geometry problem, called “Alhazen’s problem” (probably due to
Ptolemy) consists of finding the angle to aim a billiard particle to collide once
with a circular boundary and hit another specified point; there are related
internal and external problems and they require solution of a quartic equation.

A billiards game on a circular table, with no pockets, was proposed in 1890 by
Charles Dodgson (aka Lewis Carroll), whose mathematics focused on Euclid-
ean geometry and logic. Circular and elliptical billiard tables have occasionally
been constructed and patented.



Present work: summary

• Idea: Experiments can measure escape of particles from a cavity; what
can this tell us about the dynamics?

• Start with simplest case: long time survival probability of a circular billiard
with holes in the boundary.

• Leading order behaviour: survival probability inversely proportional to
total hole size in small hole limit.

• Next order, for example subtracting one and two hole probabilities with
equal total size: The Riemann Hypothesis.

• Published: Phys. Rev. Lett. 94 100201 (2005)

• Further work on open billiards: EPL 2007, Physica D 2009, ongoing.



Open dynamics
Define a “hole” as a subset of phase space, at which trajectories escape. Then
measure the survival probability P(t) given an initially specified distribution
of particles (often µ0). This has many applications:

• Illuminating structures and Poincare recurrence in the corresponding closed
system, for example fractal measures in a Hamiltonian phase space for
which the invariant measure is uniform.

• Describing metastability and rare events, for example chemical reaction
rates, migration of asteroids.

• Relating dynamics to thermodynamics via the escape rate formalism of
Gaspard et al

• Physical escape or scattering problems, eg microlasers, room acoustics

• Nondestructive investigation of internal dynamics by measurements of
escaping particles.



Open billiards
Open billiards provide:

• Examples of open dynamical systems covering many cases from integrable
to strongly hyperbolic.

• Connections with number theory.

• A description of many physical systems and experiments involving a par-
ticle or small(ish) wavelength wave in a cavity.

• Models for statistical mechanics and molecular dynamics.



Application: Microlasers

Microlasers are cavities containing an active (lasing) medium that trap light
due to total internal reflection. Thus the “hole” is the entire boundary, but
only trajectories sufficiently close to the normal direction can escape. Placing
a small scatterer (right) breaks the symmetry and allows strong directivity in
conjunction with low losses. Here we have an internal wavelength about 1/6
the radius, ie not too small, yet geometric optics is still useful in determining
the optimal position of the scatterer. [CD, Morozov, Sieber, Waalkens, 2008-
9; numerous theoretical and experimental papers in the physics literature]



Decay of the survival probability
Most mathematics for open dynamical systems is restricted to the uniform
hyperbolic case, and gives an exponential escape rate. More generally the
survival probability could have

• P (n) = 0 for finite n, eg if the hole is large, or some models with square
scatterers.

• P (n) decays superexponentially, eg the map Φ(x) =
√
x+ x on a finite

interval containing zero.

• P (n) ∼ 1/n, eg a marginal family of orbits in a 2D billiard such as the
circle or stadium.

• P (n) → C, a constant, eg an elliptical billiard with a small hole at one
end; no orbits passing between the foci escape.

A variety of methods is needed.



The open circle
Dynamics (ϕ,ψ) → (ϕ + π − 2ψ,ψ) is just rotation on a circle, periodic for
ψ/π = 1/2−m/n, dense and uniform for irrational ψ/π. For the open problem,
put holes at ϕ ∈ [0, ε]∪ [θ, θ+ ε] and find time to escape t = 2cosψ0N(ϕ0, ψ0)
where N counts collisions. Starting from the equilibrium measure at time
zero, consider the probability P (t) of remaining until time t, specifically

P∞ = lim
t→∞

tP (t)

�

��

�

�



Long lived orbits are nearly periodic

• The N + 1 values ϕ0, ϕ1, . . . ϕN contain two at a distance less than ε if
N + 1 > 2π/ε.

• Define the period n to be the smallest positive integer so that |ϕn−ϕ0| < ε.
Thus n < 2π/ε.

• In units of n collisions, the orbit precesses slowly enough to be captured
by the holes.

• All very long living orbits have small precession and are close to a periodic
orbit.

Precisely: Let t > 4[2π/ε], then every connected component of the set of
(ϕ,ψ) that survive to time t contains a unique interval of never escaping
periodic orbits.



Counting long lived orbits

ψ = ψm,n + η, η � ε

Orbit will survive for at least time t, t/2cosψm,n collisions if

ϕ′0 =

(
ε+

ηt

cosψm,n
, θ′

)
∪

(
θ′ + ε+

ηt

cosψm,n
,
2π

n

)
if η > 0. Adding up these contributions:

tP (t) ∼
1

4π

∑
m,n

n[g

(
2π

n
− θ′ − ε

)
+ g(θ′ − ε)] sin2 πm

n

where

g(x) =

{
x2 x > 0
0 x ≤ 0

and the sum is over 1 ≤ m < n < 2π/ε, gcd(m,n) = 1. The symbol ∼ means
take t→∞, in which limit upper and lower bounds converge.



Finite time scaling
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Summation over m
Use Ramanujan

n−1∑
m=1

exp(2πim/n) = µ(n)

where the sum is over gcd(m,n) = 1, µ is the Möbius function

µ(n) =


1 n = 1
−1 n prime

µ(a)µ(b) n = ab, gcd(a, b) = 1
0 a2|n, a > 1

and we find

P∞ =
1

8π

∞∑
n=1

n[φ(n)− µ(n)][g

(
2π

n
− θ′ − ε

)
+ g(θ′ − ε)]

where

φ(n) = n
∏
p|n

(1− p−1)

is the Euler totient function, the number of positive integers ≤ n which are
coprime to n. Note φ(1) = 1, so the n = 1 term vanishes.



Small hole limit
Mellin transforms:

P̃ (s) =

∫ ∞

0
P∞ε

s−1dε

P∞ =
1

2πi

∫ c+i∞

c−i∞
ε−sP̃ (s)ds

leads to

P∞ =
1

2πi

∫ c+i∞

c−i∞

ds ε−s(2π)s+1

2s(s+ 1)(s+ 2)

∞∑
n=1

φ(n)− µ(n)

ns+1

×

{[
1− f

(
nθ

2π

)]s+2

+ f

(
nθ

2π

)s+2
}

where f denotes fractional part. The small ε expansion is obtained by sum-
ming residues.



Dirichlet characters
The φ(q) conjugacy classes modulo q which are coprime to q form a group
under multiplication. The group is Abelian, so it has φ(q) one dimensional
representations, called Dirichlet characters χ(a). They are extended to all
conjugacy classes by χ(a) = 0 if gcd(a, q) > 1. Thus by definition

χ(ab) = χ(a)χ(b)

and from representation theory we have the orthogonality relation

1

φ(q)

∑
χ

χ̄(a)χ(n) = δa,n

where the bar is complex conjugation and the δ is modulo q. A character is
called even (odd) if χ(−1) = 1 (respectively −1).



Rational θ
Write θ = 2πr/q. Then we need∑

n≡a (mod q)

φ(n)− µ(n)

ns+1

First remove common factors, primes indicate division by b = gcd(a, q). This
leaves ∑

n′≡a′ (mod q′)

φ(bn′)− µ(bn′)

(bn′)s+1

Then insert the orthogonality relation of Dirichlet characters to give

1

φ(q′)

∑
χ

χ̄(a′)
∞∑

n′=1

χ(n′)
φ(bn′)− µ(bn′)

(bn′)s+1

Then expand n′ in prime factors and use the multiplicative properties of χ, φ
and µ to give

1

bs+1φ(q′)

∑
χ

χ̄(a′)[φ(b)L(s, χ)− µ(b)]

L(s+ 1, χ)
∏
p|b[1− χ(p)p−s−1]



Dirichlet L-functions

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∏
p

[
1−

χ(p)

ps

]−1

L(s,1) = ζ(s)
∏
p|q′

(1− p−s)

Poles: The zeta function has a pole at s = 1. Nontrivial L-functions have
no poles.

Trivial zeroes: Occur at nonpositive integers of the same parity as χ, except
that ζ(0) = −1/2.

Critical zeroes: Other zeroes exist only with real part 1/2 according to
the (generalised) Riemann hypothesis. This is equivalent to statements
about the distribution of prime numbers (in specific conjugacy classes).



Final expression
For two holes separated by angle θ = 2πr/q, we find

P∞ =
∑
j

Ress=sjP̃ (s)ε−s

P̃ (s) =
(2π)s+1

2s(s+ 1)(s+ 2)

×
q∑

a=1

[1− f(ap
q
)]s+2 + f(ap

q
)s+2

bs+1φ(q′)

×
∑
χ

χ̄(a′)[φ(b)L(s, χ)− µ(b)]

L(s+ 1, χ)
∏
p|b[1− χ(p)p−s−1]

with b = gcd(a, q), a′ = a/b, q′ = q/b, characters χ modulo q′, f is the fractional
part, L is a Dirichlet L-function.



Special cases
Odd characters cancel, so when q = 1,2,3,4,6 only Riemann zeta functions
appear. The one and symmetric two hole cases are

P̃1(s) =
(2π)s+1[ζ(s)− 1]

2s(s+ 1)(s+ 2)ζ(s+ 1)

P̃2(s) =
(π)s+1ζ(s)

s(s+ 1)(s+ 2)ζ(s+ 1)

with poles at odd s ≤ 1 and at Re s = −1/2 assuming the Riemann Hypothesis,
and for q = 1 also s = −2.



The contour
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Steps as sums over zeta zeros
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Riemann reformulated
The Riemann hypothesis is thus

lim
ε→0

lim
t→∞

εδ(tP1(t)− 2/ε) = 0

for every δ > −1/2 where P1(t) is the probability of remaining after time t
from an initial equilibrium distribution in the one hole problem.

An equivalent formulation is

lim
ε→0

lim
t→∞

εδt[P1(t)− 2P2(t)] = 0

with P2(t) the symmetric 2-hole probability.

The generalised Riemann hypothesis implies that the statement is also true
for two holes with rational θ, but the converse statement is open, as is the
case of irrational θ.



Irrational θ in 2-hole
The fractional parts are uniformly distributed, so make a “mean field” ap-
proximation, replacing the sum by an integral:

〈g
(

2π

n
− θ′ − ε

)
+ g(θ′ − ε)〉 =

n

3π

(
2π

n
− ε

)3

〈φ(n)〉 =
6n

π2

〈µ(n)〉 = 0

so that

tP (t) ≈
1

24π2

∫ 2π/ε

0
n26n

π2

(
2π

n
− ε

)3

dn =
1

ε

which is the same as all tested values of rational θ 6= 0. Taking an irrational
θ as a limit of rational θ suggests that P̃ (s) cannot be continued past a line
of singularities at Re s = −1/2.



Comparison with other open billiards
• Circle:

P∞ = lim
t→∞

tP (t)

=
1

8π

∞∑
n=1

n[φ(n)− µ(n)][g

(
2π

n
− θ′ − ε

)
+ g(θ′ − ε)]

=
2

ε
+ o(ε1/2−δ) 1 hole; assumes RH

• Diamond (dispersing billiard with corners):

γ = − lim
t→∞

1

t
lnP (t) =

ε

〈T 〉
+O(ε2)

γAB = γA + γB −
1

〈T 〉


∞∑

j=−∞
〈u0

Au
j
B〉+

∞∑
n=3

[QnAB(0)−QnA(0)−QnB(0)]


• Stadium (defocusing billiard with intermittency):

P∞ =
(3 ln 3 + 4)

[
(a+ h1)2 + (a− h2)2

]
(16a+ 8πr)



Other remarks
The combination εt appears in P (t) for

• All billiards, sufficiently small t.

• The circle, small ε and all t (numerically).

• The diamond, small ε and large t (at least).

• The stadium, not for large t.

Periodic orbits play an important role for

• The diamond, correlations increase when the hole covers short periodic
orbits

• The circle, is completely determined by periodic orbits at long times

• The stadium, is dominated by its marginal family of periodic orbits plus
the neighbourhood.

• Fixed squares: No periodic orbits, no long time survival probability!



The future

• The ellipse, a more generic integrable model.

• εt scaling and dynamical effects.

• Other dynamical behaviour, eg mixed systems.

• Higher dimensions.

• Exotic billiards.

• Quantum connections.

• Applications: microlasers, room acoustics, . . ..

Thank you for your attention!


