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4 Equilibrium molecular dynamics 154.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 The periodic Lorentz gas . . . . . . . . . . . . . . . . . . . . . . . 194.3 Green-Kubo relations . . . . . . . . . . . . . . . . . . . . . . . . 205 Nonequilibrium molecular dynamics 235.1 Introduction to thermostats . . . . . . . . . . . . . . . . . . . . . 235.2 Gaussian and Nos�e-Hoover thermostats . . . . . . . . . . . . . . 245.3 The nonequilibrium Lorentz gas . . . . . . . . . . . . . . . . . . . 265.4 Symplectic properties . . . . . . . . . . . . . . . . . . . . . . . . 305.5 Periodic orbit approaches . . . . . . . . . . . . . . . . . . . . . . 345.6 Nonlinear response . . . . . . . . . . . . . . . . . . . . . . . . . . 376 Boundary driven systems 406.1 Open boundaries: The escape rate formalism . . . . . . . . . . . 406.2 Flux boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 426.3 Boundaries with thermostats . . . . . . . . . . . . . . . . . . . . 437 Outlook 441 Why a paradigm?Equilibrium statistical mechanics has always been associated with dynamicalproperties such as ergodicity and mixing [1], although proofs of such propertieshave been made only recently, and are mostly restricted to billiard and hard ballsystems [2]. The advent of the computer has made visualisation and simulationof many kinds of systems possible, inspiring theoretical advances in nonlineardynamical systems, statistical mechanics, and the relationship between them(and maybe also detrimental e�ects, Sec. 1.1 of [3]). Dynamical systems theoryhas bene�ted from Ruelle's thermodynamic formalism [4] and Feigenbaum'srenormalisation approach to the bifurcation cascade [5], while dynamics in itsturn elucidates the foundations of statistical mechanics [6, 7].At the heart of the connection between dynamical systems and statisticalmechanics lies a paradox. Statistical mechanics is a theory of large systems,valid in the limit as the number of particles (or spins, etc) approaches in�n-ity. Statistical treatments of small systems lack the ensemble equivalence andautomatic averaging characteristic of large systems. On the other hand, dy-namical systems are most understood in up to three phase space dimensions,due to easier visualisation and topological properties. Systems of in�nite extentand number of particles are excluded from the usual de�nition of a dynamicalsystem, and in any case are di�cult to visualise and simulate.The paradox can be resolved, at least partly, in a number of ways: Realmacroscopic systems have a �nite number of degrees of freedom, even if thatnumber is large; many of the results connecting dynamic and thermodynamicproperties (see below) apply to large as well as small systems; Gallavotti and2



Cohen [8, 9] conjecture that the physically relevant properties of systems withmany degrees of freedom are those of strongly chaotic dynamics in the sense ofAnosov; a turbulent uid at the onset of chaos has e�ectively only a few degreesof freedom; numerical methods use a �nite number of particles with periodicboundary conditions to simulate an in�nite homogeneous system.Most macroscopic systems, however, have many e�ective degrees of free-dom. The chaotic properties of such systems can be di�cult to visualise, andthe building blocks of a dynamical description such as Markov partitions andperiodic orbits are all but impossible to construct. It is thus di�cult to developa useful intuition and make predictions without some intermediate example,sharing both the properties of chaotic dynamics and of the large systems of in-terest, without the complexity of many degrees of freedom. Another advantageof such an illustration is that it is possible to investigate the distinction betweenmacroscopic properties that are related to chaotic dynamics, and those that aredue to many degrees of freedom.The discussion thus far has included both equilibrium and nonequilibriumsystems. This article focuses on nonequilibrium stationary states for which anatural paradigm is the Lorentz gas. The Lorentz gas can be represented as atwo dimensional chaotic map and also exhibits transport in the form of di�usion.The main alternative, discussed in [10], is a class of models based on Baker mapswhich are exactly solvable, but have less relation to the physical processes theyare designed to mimic.Section 2 outlines the physics of nonequilibrium steady states, introducingthe central concepts of entropy production and irreversibility. Section 3 givesstatistical de�nitions of entropy, and how the random Lorentz gas appears nat-urally as a model of dilute uids. Section 4 explores computational techniquesfor systems of many particles, from which the periodic Lorentz gas appears asthe simplest example. Section 5 discusses thermostatted models of nonequilib-rium stationary states and how results for the Lorentz gas can be applied tosuch models and hence to systems with many degrees of freedom. Section 6discusses open models of nonequilibrium stationary states, and their connectionto thermostatted models. Finally, section 7 covers the limitations of the Lorentzgas paradigm and outlook for the future.2 Thermodynamics2.1 The second law and nonequilibrium stationary statesAn empirical observation is that it is impossible to convert thermal energyof a system into work without a�ecting the environment, the second law ofthermodynamics. Conversely, there are many processes that convert work intothermal energy without a�ecting the environment, so these are irreversible. It ispossible to extract work from a warmer and a cooler subsystem (this is frequentlyachieved in electricity generation). Thus it is not possible to separate a uniformsystem into warmer and cooler parts without the addition of work, as this would3



permit the extraction of work from the thermal energy of the original system.Conversely, the spontaneous ow of thermal energy from a warmer to a coolersubsystem without the extraction of work is also an irreversible process.Many irreversible processes, including mutual di�usion of di�erent particlespecies, electric current owing through a resistor, shear ow of a viscous uidand heat conduction can occur in such a way that macroscopic variables includ-ing the various forces and uxes are independent of time in a region of interest.Such a system is said to be in a nonequilibrium stationary state. Two propertiesshould be noted immediately:1. Due to the irreversible processes, the region is necessarily in contact withan environment which is not truly stationary. For example, a resistorcontinually depletes its voltage source as well as heating its environment.Conceptual di�culties can arise when the environment is either ignoredor assumed to be in�nite and hence una�ected by contact with the regionof interest.2. The stationarity is of a statistical kind, as is usual when dealing withsystems with many degrees of freedom. The individual particles are notstationary, leading to statistical uctuations in macroscopic quantities,although these are often small when very many particles are involved.Statistical stationarity is quanti�ed in terms of ensembles, or probabilitydistributions on phase space, that may be stationary as determined by thedynamics and boundary conditions. This distinction between the prop-erties of individual realisations and ensembles is particularly striking insystems with few degrees of freedom, such as the Lorentz gas, where theuctuations are very large.When the driving forces (concentration gradient, electric �eld, shear stress ortemperature gradient) in the above examples are set to zero, there are no longerany irreversible processes, and the steady state of the system is an equilibriumstate similar to that of an isolated system. The only di�erence would be dueto the interaction with the environment, which appears in the ensembles ofequilibrium statistical mechanics. The microcanonical ensemble of an isolatedsystem is equivalent (in the limit of many particles) to the canonical ensembleof a system in thermal contact with its environment. An equilibrium state maynot be unique, for example a substance that is a crystalline solid at a certaintemperature may have its axes in many possible orientations.When the driving forces are very small compared to relevant physical scalesso that, for example, the relative variation of all quantities is much less thanunity over a distance equal to the mean free path, the steady state is said to beclose to equilibrium. Linear response theory may be applied, leading to uxes(particle current, electric current, strain rate or heat ux) proportional to theforces. The constants of proportionality (di�usion coe�cient, electrical conduc-tivity, shear viscosity or thermal conductivity) are known as linear transportcoe�cients. They appear in macroscopic descriptions such as the Navier-Stokes4



equations. Mathematical proofs of their existence have been given for somesmall systems [11].A steady state need not be close to equilibrium, and such states show a richrange of phenomena, as we will see in the Lorentz gas. There may be non-linear relationships between the uxes and forces, but the concepts themselveschange as properties no longer resemble those of an equilibrium system. A vis-cous system shearing su�ciently so that nonlinear terms become important willalso be generating enough heat for thermal conduction e�ects to contribute.Higher shear rates correspond to an increasing Reynolds number, leading toturbulence. There is in general no guarantee of uniqueness or even existence ofa nonequilibrium steady state.Another problematic aspect of far from equilibrium steady states is the di�-culty in de�ning a thermodynamic limit, where the number of particles, volume,and other extensive variables go to in�nity such that their ratios are �nite. Thepresence of strong gradients rapidly causes huge variations in temperature, den-sity, and so on, leading to physically unrealistic scenarios. This di�culty issolved in the linear regime by demanding that the variations in such quantitiesremain �xed, so that their gradients approach zero in the thermodynamic limit.There are a number of equivalent statements of the second law, and as manyapproaches to the related issues of irreversibility and entropy as there are textson thermodynamics. Some of the more important ideas are sketched below withtheir relation to the Lorentz gas and nonequilibrium stationary states.2.2 The Clausius entropyJust as the notion of temperature can be understood in a qualitative mannerfrom the direction of the ow of thermal energy, it is clear that the existenceof irreversible processes implies that there is a property of the system, namelythe entropy, that remains constant in reversible processes and increases in ir-reversible processes. A unique state of maximum entropy then corresponds toequilibrium, because there are no more states to which the system can go. Wewill usually assume (quite reasonably for uids, at least) that there is only oneequilibrium state for given constants of the motion (energy, number of particles,volume) corresponding to maximal entropy.Historically the �rst quantitative statement in this direction, due to Clau-sius, de�nes the change in entropy as a system moves quasistatically from oneequilibrium state to another. Speci�cally,�SC = Z dqT (1)where SC is the entropy (de�ned up to an additive constant), T is the tem-perature, and q is the thermal energy injected into the system from a thermalreservoir at the same temperature as the system. \Quasistatically" means alimit in which all time derivatives approach zero. It disallows processes suchas the free expansion of a gas when a partition is removed; such processes areinherently irreversible. The temperature can be de�ned from the equation of5



state of an ideal (in practice, dilute) gas, that is, proportional to the pressuretimes the volume. Alternatively, if we equate SC with one of the statistical me-chanical entropies discussed below, the temperature is then de�ned from Eq. (1)or its equivalent.Note that the thermodynamic de�nition of entropy only makes sense for asystem at or very close to equilibrium. Once we know the entropy of a particularsubstance as a function of temperature (or energy density) and pressure (or massdensity) at equilibrium, the de�nition can be extended to systems in \localequilibrium", including stationary states close to equilibrium, by assuming theextensive property, that is, the total entropy of a system is equal to the sumof the entropies of its subsystems, and that the subsystems can be consideredclose to an equilibrium state.Extensivity is expected classically when interactions between the particlesare short ranged, which is usually the case. In the large system limit, theinteractions reduce to boundary terms which are much smaller than the bulke�ects. Notable exceptions to extensivity include some quantum systems (forexample Bose-Einstein condensation) and gravitational systems (for exampleblack holes). When there are strong interactions between subsystems it doesnot make sense to consider the Clausius entropy of the subsystems.2.3 Entropy productionIt is possible to apply the above prescription to nonequilibrium stationary statesthat are close to equilibrium. The entropy of the region under consideration doesnot vary with time, due to stationarity. However, the irreversible processes causean overall increase, or production of entropy, so that thermal energy releasedinto the environment increases its total entropy. Thus we have0 = _Sness = _Sirr + _Sin (2)where _Sness corresponds to the nonequilibrium steady state, _Sirr is the irre-versible entropy production, and _Sin is the (negative) ow of entropy in from theenvironment. Such entropy balance equations �gure prominently in the Bakermap approaches [10] in various notations. The irreversible entropy productionand entropy ux are also independent of time from stationarity,�Sirr = 0 = �Sin : (3)The origins of the entropy ux _Sin depends on the nature of the system. Anelectric current density J is driven by an electric �eld E that does work butdoes not a�ect the entropy. This work is converted into an equivalent amountof thermal energy that then leaves the system, taking with it an entropy uxgiven by (1). Thus we have _Sirr = � _Sin = J � EVT (4)where V is the volume. Similar considerations hold for shear ow. In the case ofheat conduction, _Sin contains contributions from heat (and hence entropy) ow6



in from a higher temperature and out to a lower temperature. The amounts ofheat are equal since energy is balanced, but more entropy ows out owing to thedi�erent temperatures in the denominator. Entropy is also produced when twosubstances mutually di�use; see the discussion on the Gibbs mixing paradox inSec. 3.4 below. The connection between mutual di�usion and heat ow is moredi�cult to understand, but it is clear that work or a temperature di�erential isrequired to separate a mixture. Whatever the situation, the entropy productionis always the product of a force and a ux. The second law, which requirespositive entropy production, thus determines that transport coe�cients (thequotient of a ux and force) are positive.For steady states far from equilibrium, it is not clear how to calculate theentropy from (1) since there is no equilibrium state with which to compare thesystem. However, if it is possible to couple the system reversibly to a thermalreservoir close to equilibrium, all of the above arguments remain valid so theentropy production can be calculated from the forces and uxes as above. Thereare some possible pitfalls to this approach, for example some steady states farfrom equilibrium have di�erent e�ective temperatures for particles moving indi�erent directions. This makes it di�cult to imagine how to construct therequired thermal reservoir in principle, let alone in practice. Typically suchdetails are ignored, the above equations are applied, and an additional postulateis added to the theory.3 Statistical mechanics3.1 The Boltzmann entropyNow we turn to the statistical viewpoints of Boltzmann and Gibbs. The macro-scopic thermodynamic variables uctuate due to microscopic movement of themolecules, with the exception of exactly conserved quantities such as the energyof an isolated system. This means that, for example, the second law of ther-modynamics is not always valid. The local temperature (as measured by theaverage kinetic energy over a small region) of an equilibrium system uctuates,leading to a transition from a state with uniform temperature to a state withslight variations in temperature. However, large uctuations as measured by alarge decrease in entropy are very rarely observed.In order to quantify the frequency of certain uctuations, and because we donot have precise information about the positions and momenta of macroscopicnumbers of particles (and also for reasons related to quantum mechanics, whichwe shall ignore here), it makes sense to describe a system in terms of probabil-ities. Probabilistic assumptions about the initial conditions of the microscopicparticles can also explain the paradox of irreversibility, how the second law ofthermodynamics is compatible with perfectly reversible Newtonian microscopicequations of motion. The time reverse of a dissipative process shows large vio-lations of the second law, but is not observed because the initial conditions arenot very probable for some reason, depending on the physical or philosophical7



justi�cation of the probabilistic assumptions of the theory.For Hamiltonian systems with, say, N particles moving in d dimensions, themost natural probability measure on the 2Nd�1 dimensional surface of constantenergy � is the (restricted) Lesbesgue measure d� = �(H � E)dxNddpNd=hNd,the postulate of equal a priori probability. In the nineteenth century the onlyreal justi�cation for this was the theorem of Liouville that this measure is pre-served by Hamiltonian dynamics (see Sec. 3.4). Ergodicity implies that thismeasure does indeed give the correct time averages, but the time required for asystem to closely approach all points in the phase space with even very coarseprecision is astronomical for systems with many degrees of freedom. See [1] fora more detailed discussion of ergodicity. Many of the current models of nonequi-librium stationary states do not preserve Lebesgue measure, so other invariantmeasures are more appropriate, and will be discussed later. The above measureis normalised by powers of Planck's constant h for dimensional reasons. Thisparticular normalisation can be justi�ed in quantum mechanics, but here wenote that it sets the (classically) arbitrary additive constant associated with theentropy.The Boltzmann de�nition of entropy considers that for each con�guration ofmacroscopic system variables X , there is a region in microscopic phase space ofvolume RX d�. Then the entropy corresponding to the con�guration isSB(X) = kB ln ZX d� (5)where kB is Boltzmann's constant and has dimensions of an energy dividedby a temperature, see (1). The idea is that a system will be most likely tomove to one of the very large regions of phase space corresponding to greaterentropy. The probability of �nding the system in a given state is thus propor-tional to exp[�(S0 � SB)=kB ] which is virtually zero for a large system not inits maximum entropy state S0 since the entropy is proportional to the numberof particles. The Boltzmann entropy of a unique equilibrium state is thus thelogarithm of the volume of the whole surface of constant energy, and agreeswith the Clausius de�nition in the cases where they can be compared, that is,equilibrium systems with many particles. Boltzmann's entropy and its relationto irreversible processes is discussed in Ref. [12].In order to apply this to nonequilibrium steady states, decisions must bemade about the most natural phase space for a system in contact with its envi-ronment (discussed extensively below) as well as the correct measure to use. Inthis context it should be noted that recent papers of Rugh using the Boltzmannentropy to de�ne a dynamical temperature for Hamiltonian systems [13, 14]have been applied to nonequilibrium systems [15] by means of the Hamiltonianformulation of the isokinetic thermostat (Ref. [16], see Sec. 5.4 below), and alsoto identify the heat ow in systems with inhomogeneous shear [17]. Apart fromthis, most application of entropy to nonequilibrium steady states seems to becloser in spirit to the Gibbs approach, Sec. 3.4.8



3.2 The Boltzmann transport equationAnother type of statistical assumption appears in the Boltzmann equation whichdescribes dilute gases at or away from equilibrium. The quantity of interest isthe single particle distribution function f(x;v; t) which gives the probabilitydensity of �nding a particle with the given position and velocity at a certaintime. A straightforward derivation based on the equations of motion gives@f@t + v � rxf + 1mFe � rvf = �coll (6)where m is the mass, Fe is the external force on each particle, and the term onthe right hand side denotes the e�ect of the collisions between particles.For a dilute gas without long range interactions between the particles, onlytwo-body collisions contribute, however an exact treatment requires the two-particle distribution function f2(x1;x2;v1;v2; t) which gives the joint probabil-ity of two particles entering a collision. The assumption made by Boltzmann,called the stosszahlansatz, consists of replacing the two-particle distribution bythe product of two one-particle distribution functions, thus assuming that theparticles entering the collision are uncorrelated.Boltzmann showed in his celebrated H-theorem that a certain quantity,H(t) = Z dxdvf(x;v; t) ln f(x;v; t) (7)never increases as f evolves under (6) with the stosszahlansatz. In fact, �kBHcan be identi�ed with the entropy (up to an additive constant), and Boltzmannargued that this was a derivation of the second law.The Boltzmann equation describes a dilute gas approaching equilibrium well,but the addition of this statistical assumption has the e�ect of ignoring theuctuations that are known to occur. The solution of the Boltzmann equationcan never return to a state of smaller entropy, despite the fact that this isknown to happen occasionally. For this reason, the statistical assumptions goinginto the Boltzmann equation, although useful for calculating the properties ofnonequilibrium gases, are not viewed as a fundamental explanation of the secondlaw. See Ref. [18] for further discussion.3.3 The random Lorentz gasThe Boltzmann equation is a nonlinear integro-di�erential equation, and as suchit cannot be solved in most cases without making restrictive and sometimesphysically obscure approximations. One case that illustrates the properties ofthe Boltzmann equation well, while remaining simple enough to solve is therandom Lorentz gas [19, 20].The random Lorentz gas can be motivated on physical grounds as follows:Suppose we have a dilute gas in equilibrium, consisting of a mixture of twospecies. Both are spheres (or in two dimensions, disks) that are rigid (so anyinternal degrees of freedom are ignored), and hard (so the range of interaction is9
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Figure 1: The random Lorentz gas. In the Lorentz Boltzmann equation (10)below, the particle arrives in direction � from direction � + � + 2�.much smaller than other length scales) with one much larger and heavier thanthe other, and with number densities (number per unit volume) such that thereare many more smaller particles, but almost all collisions are between smallerand larger particles, rather than among the smaller particles. Thus for massesmS and mL, radii rS and rL, number densities nS and nL and dimension dwe require mS � mL, rS � rL, nS � nL and nSrd�1S � nLrd�1L . Theequipartition of energy implies that at equilibrium, the average kinetic energy ofeach particle is equal, hence the larger particles have much smaller velocities. Inthis limit we have a large number of noninteracting pointlike particles collidingwith �xed, randomly placed spherical (or circular) obstacles. The magnitude ofthe velocity is a constant of the motion, and changing the velocity is equivalentto scaling the time, so we can restrict ourselves to the case of unit velocity,averaging over the velocity distribution later if necessary. Similarly, scaling thedistance permits us to set the radius of the scatterer equal to unity (there areother conventions possible, such as setting the mean free path to unity). Wethus have a model with one free parameter, the number density of scatterers n,called the random Lorentz gas. See Fig. 1.The designation \random" comes from the placement of the scatterers; aperiodic placement appears naturally from the methods of molecular dynamics,and is discussed in Sec. 4.2. From a mathematical point of view, it can beassumed that a random placement ensures that there is no exact relation be-tween the positions of the scatterers. It is possible to consider an average over10



all such random con�gurations, however this is generally unnecessary since anygiven �nite arrangement of scatterers appears to arbitrary precision somewherein an in�nite arrangement. A random con�guration drawn from the correctdistribution can be obtained on a computer by a variant of the Metropolis al-gorithm [21], in which any initial arrangement (perhaps periodic) is modi�edby a large �xed number of attempted random shifts of randomly chosen scat-terers; any illegal shift resulting in overlapping scatterers is rejected, and thecon�guration is unchanged. Note that the number of attempted random shiftsis �xed, not the number of successful shifts. As a model in its own right (but notfor Boltzmann equation approaches), the dilute condition (not included above,nLrdL � 1) may be relaxed. It is also possible to consider a model where thescatterers are permitted to overlap.Before returning to the Boltzmann equation, and hence the low density limit,we note an exact result that holds for all densities, that is, the mean free timebetween collisions (or distance, since the velocity is one). The mean free timecan be computed exactly for all billiard systems [22], and this calculation canbe applied to the (in�nite) Lorentz gas by carefully taking a large system limit.Briey, the argument is that the total volume of phase space can be computedin two ways, one by subtracting the volume of the scatterers from the totalvolume, and the other by considering the mean path length over each point onthe boundary. The result in two dimensions is�� = �jQjj@Qj = 12n � �2 (8)and in three dimensions is �� = 4jQjj@Qj = 1�n � 43 (9)where jQj is the volume of the billiard and j@Qj its boundary. The last equality ineach case corresponds to the non-overlapping Lorentz gas with n scatterers perunit volume. It is always positive; n can never be larger than the close-packedvalues. These formulas are valid regardless of the locations of the scatterers,so they apply to both the random and the periodic Lorentz gas as long as thescatterers do not overlap.The Boltzmann equation for the Lorentz gas in the low density limit is linear,because the probability distribution of one of the objects involved in a collision(the �xed scatterer) is constant. For example, in two dimensions we have forthe single particle distribution function f(x; y; �; t) where � 2 R=2�Z is thedirection of the velocity:� @@t + cos � @@x + sin � @@y� f(x; y; �; t) (10)= Z �=2��=2 f(x; y; � + � + 2�)n cos� d�� 2nf(x; y; �; t)11



Here, the external force in (6) is zero, and the right hand side contains two termsgiving the rate of particles entering and leaving a given velocity direction, seeFig. 1. Without explicitly solving the equation, it can be seen that the e�ect ofthe collision operator is to redistribute the 2nf to the other velocity directions,making the distribution atter and smoother. We can immediately write downa solution in the formf(x; y; �; t) = 1Xm=�1 fm exp(ikxx+ ikyy + im� � t) (11)which is substituted to obtain(m � )fm + ikx + ky2 fm�1 + ikx � ky2 fm+1 = 0 (12)with m = 8nm24m2 � 1 (13)the decay rates of the modes in the homogeneous case (kx = ky = 0). Perturbingthe homogeneous zero mode with small kx and ky we obtain a \dispersion"relation 0(k) = D2k2 +O(k4) (14)with the di�usion coe�cient in two dimensions given byD2 = 316n : (15)In three dimensions the di�usion coe�cient isD3 = 13�n : (16)For general dilute gases, in which the Boltzmann equation cannot be solvedexactly, the di�usion coe�cient is obtained by the Chapman-Enskog methodsof standard kinetic theory [23], for which the random Lorentz gas providesa useful pedagogical example. More calculations and relations involving thedi�usion coe�cient of the Lorentz gas are given in later sections. A Boltzmann-like equation for the Lorentz gas has also been applied to a dynamical problem,that of computing the Lyapunov exponents and the Kolmogorov-Sinai entropy,see [24] for a detailed discussion.At higher densities the Boltzmann equation is no longer a good approxima-tion, and the physics changes due to the appearance of power law decay in thecorrelation functions, the \long time tails", both for the random Lorentz gasand more general gases [20, 25]. The Lorentz gas has a velocity autocorrelationfunction decaying as t�d=2+1, su�cient to lead to nonanalytic higher terms inEq. (14), see Secs. 4.3, 5.6 and Refs. [20, 26].We leave the random Lorentz gas at this point to continue our discussions ofentropy in nonequilibrium stationary states, but it is worth noting that manyof the results obtained in connection with molecular dynamics and the periodicLorentz gas in later sections also apply to the random case.12



3.4 The Gibbs entropyThe other statistical formulation of the entropy we will consider is due to Gibbs.Given an arbitrary smooth probability density �(�) on phase space the Gibbsentropy is de�ned as SG = �kB Z �(�) ln �(�)d� : (17)This is similar to the Boltzmann H function of Eq. (7) except that � is de-�ned on the whole of accessible phase space compared with the single particledistribution function f . The accessible phase space � could be the constantenergy surface of an isolated system, but will be generalised below when otherensembles are discussed.The Gibbs entropy is also extensive (Sec. 2.2) if it is noted that when thereare N identical particles, the phase space is a subset of R2Nd=SN where SNis the permutation group of order N . In terms of the standard \unreduced"phase space (which is easier to compute with) this means multiplying � by afactor N ! when the particles are indistinguishable. The di�erence between theentropy of identical and distinguishable particles is called the entropy of mixing.It solves the Gibbs paradox which notes that mixing of identical substances hasno e�ect, while mixing of di�erent substances (without extraction of work) isan irreversible process. In other words, self di�usion is not associated with anincrease in entropy, and is not observable without arti�cial means such as a\tagged particle", whereas mutual di�usion is a true irreversible process, asso-ciated with an increase in entropy and directly observable.This is relevant to the Lorentz gas in that when the Lorentz gas is consideredto be a mixture of two di�erent species (as in Sec. 3.3) there is an entropy pro-duction associated with the di�usion coe�cient, and when it is considered to bea model of one species (as in Sec. 4.2) there is no entropy production involved.The physics of entropy production is thus connected to the interpretation of themodel rather than anything in the model itself, such as the equations of mo-tion. This illustrates the need for caution whenever establishing an equivalencebetween features of the model and physical reality.The Gibbs entropy can be used to derive the ensembles of equilibrium sta-tistical mechanics as follows: The maximum entropy (subject to normalisationof the probability) corresponding to the equilibrium state of an isolated systemis attained when � is a constant, consistent with the postulate of equal a prioriprobability, Sec. 3.1. If the system can exchange energy with the environment,the constant energy constraint on phase space is replaced by an average energyconstraint on �, hEi = Z E(�)�(�)d� (18)in addition to conservation of probability. The extra constraint when maximis-ing the Gibbs entropy gives a Lagrange multiplier which turns out to be related13



to the temperature. In this manner the canonical ensemble�(�) = exp� �EkBT � (19)is derived. Similarly, when the system can exchange particles with the environ-ment, the constraint of �xed N is replaced by a Lagrange multiplier which isrelated to the chemical potential �, and the phase space is expanded to includeall numbers of particles. For more details see for example Ref. [27]. In general,for each constant of the motion (in a general sense) E, N and volume V thereis a thermodynamic conjugate variable T , � and the pressure p respectively.Given its success in equilibrium statistical mechanics, the possibility of ex-tending the phase space to allow for interactions with the environment, and theappearance of conjugate variables analogous to the conjugate forces and uxesof irreversible thermodynamics (Sec. 2.3), it would seem that the Gibbs entropyis the natural candidate for extension to nonequilibrium systems. Unfortunatelythere is one major obstacle, which we now discuss.Suppose an isolated system with phase point � has equations of motiond�dt = F (�) (20)then the Liouville equation for a probability density �(�) is@�@t +r � (F�) = 0 (21)and hence (after two partial integrations)dSGdt = kB Z (r � F )�d� : (22)For a Hamiltonian systemr � F = rq � _q +rp � _p = rq � rpH �rp � rqH = 0 (23)so both the phase space volume and the Gibbs entropy are constants of themotion: d�dt = @�@t + F � r� = 0 (24)dSGdt = 0 (25)The Gibbs entropy as it stands cannot explain the second law of thermodynam-ics.The reason behind this becomes clear as we realise that a Hamiltonian system(or any system with phase space volume conservation) moves probability densityaround, but does not alter its initial values. If the system has chaotic dynamics(say, mixing), an initially smooth distribution will be stretched and folded to14



become rapidly varying in the stable directions, but remains continuous for alltimes. The Gibbs entropy gives minus the amount of information (in the sense ofinformation theory) we have about the state of the system, and this informationdoes not change under incompressible time reversible deterministic dynamics.It is clear that any observation of a real system is uncertain to some degree,so that from the point of view of measuring the system, a rapidly varying prob-ability distribution may be replaced by its average over the scale of resolution.This procedure is called coarse graining, and the smoother distributions gener-ated by such a procedure have a higher entropy than the initial distributions.Like the Boltzmann entropy, for which the de�nition of the state X is some-what arbitrary, the coarse grained Gibbs entropy depends on the observer. Theparadox is that the second law of thermodynamics is valid however (and indeedwhether) the system is being observed. Quantum mechanics is not obviouslyhelpful in explaining this dilemma, since the second law is observed in classicalcomputer simulations. A critical review of this issue as applied to recent workalong the lines of the thermostatted and open models discussed below (see alsoSec. 5.3) concludes:The above discussion on the coarse grained approach to a completedynamical theory of irreversible thermodynamics pointed out di�-culties which we found in the current formulations. Therefore itseems that a coarse grained entropy approach based on SG does notprovide a satisfactory connection with irreversible thermodynamics,. . . further study of the connection of the dynamics of particle sys-tems in nonequilibrium states and irreversible thermodynamics isstill required. [28]4 Equilibrium molecular dynamics4.1 Numerical methodsAt this point we move from statistical to dynamical descriptions of many parti-cle systems, in particular nonequilibrium stationary states. To construct math-ematical models it is helpful to take inspiration from computer algorithms usedto study such systems. Aggregates of millions of particles can now be simu-lated on a computer. In this way, equilibrium and nonequilibrium properties ofmaterials may be computed using any desired intermolecular forces and initialconditions [29, 30, 31]. Compared to analytic calculations, many restrictionssuch as simplicity of the forces, approximations and assumptions can be elim-inated. Compared to experiments, the results are only as good as the model,but it is possible to simulate experimentally inaccessible regimes. Comparedto mathematical proofs, the results are usually not rigorous, however while asystem may not be proved ergodic (for example), empirical limits may be placedon non-ergodic behaviour, su�cient to determine whether any such non-ergodicbehaviour is physically relevant. 15



It is di�cult to put rigorous bounds on the accuracy of numerical simulationresults, particularly when the dynamics is exponentially unstable. Often thereis a shadowing theorem stating that the numerical trajectory is close to someexact trajectory of the dynamics, however this does not guarantee that the exacttrajectory is typical with respect to the desired distribution of initial conditions.Sometimes a simulated low dimensional attractor can result in a periodic orbitdue to the �nite number of states accessible to the dynamics. The averages andother properties of this periodic orbit are quite di�erent to the dynamics as awhole. In this case, the addition of small amounts of noise to the dynamics oftenleads to more realistic trajectories, and can actually be used as a mathematicalde�nition of an attractor [32]. When the correlation dimension of the attractoris su�ciently large (for example, 2) precision related periodic orbits are rarelyobserved, and standard tests such as varying the precision of the calculationsusually indicate that the results have probably converged.The results of numerical simulations are as good as the algorithms used.While attaining optimum speed and accuracy is somewhat of an art form, thereare a number of general methods and principles. The equations of motion forsimulations are Newton's equations of motion, reducing in the simplest case ofN spherical identical particles to_xi = pim (26)_pi = �Xj 6=i @�(rij)@xi (27)rij = jxi � xj j (28)interacting via a speci�ed potential �, which can be calculated from pair corre-lation data obtained in di�raction experiments.The Lennard-Jones potential,�LJ (r) = 4� ���r �12 � ��r �6� (29)is quite realistic for monatomic uids such as argon. There are of course moreelaborate models involving interactions between three or more particles for spe-ci�c substances, for example carbon [33], and in principle there are also quantume�ects. Here � and � are parameters setting the length and energy scales, respec-tively. In simulations mass, length and time are scaled so that m = � = � = 1.When there is more than one type of particle it is possible to scale the posi-tions, momenta and forces by appropriate factors of the squareroot of the massin order to removem and � from the problem, however the di�ering radii remainintrinsic to the dynamics.It is sometimes advantageous to eliminate the possibility of bound statesgenerated by the negative part of the potential, and also to make it �nite rangeto shorten the computation. For this reason it is common to use a shifted and16
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Figure 2: Interparticle potentials, scaled so that � = � = 1.truncated version, called the Weeks-Chandler-Andersen [34] potential,�WCA(r) = � �LJ(r) + 1 r < 21=6�0 r > 21=6� (30)which has a continuous �rst derivative across the boundary.Still simpler, and surprisingly realistic at low to moderate densities is thehard ball potential, �HB(r) = � 1 r < �0 r > � (31)See Fig. 2. The great advantage of hard potentials for simulations is that thesolution of the equations of motion is known, so it is not necessary to useintegration routines which are much slower than substitution into an explicitformula and often require relatively small steps for accuracy. The disadvantagefrom a physical point of view is the absence of a characteristic energy scale,leading to a trivial dependence of thermodynamic qunatities on the temperature.Nevertheless, hard ball gases exhibit fairly realistic phase transitions in termsof pressure and density.The boundary conditions are extremely important for both equilibrium andnonequilibrium simulations. For example, suppose we have 103 particles in 3dimensions, so 10 particles in each direction. Suppose also that the boundaryconditions are not treated correctly, a�ecting a boundary layer of one particle.17



This is a conservative estimate, since a dilute system would have a longer meanfree path and hence a thicker boundary layer. The number of particles not onthe boundary is 83 = 512. Thus almost half of the particles are a�ected by apoor choice of boundary conditions in this example.Often we are interested in the bulk properties of a medium, far from anyphysical boundary. For these properties the natural boundary conditions areperiodic, viewed either as a unit cell in�nitely repeated (corresponding to anin�nite system with a special symmetry) or as a �nite system where particlesthat exit via one boundary reappear at the opposite boundary. Both viewpointsare useful, depending on what is being discussed. The most common periodiccells for molecular dynamics simulations are either chosen for simplicity (square,cube), or based on a close packed array, particularly for high density (hexagonal,rectangle with side ratio a rational multiple of p3, similar choices in threedimensions). The hexagonal case is of special interest for the Lorentz gas, as itcan lead to a �nite horizon, see Sec. 4.2.It is clear that equilibrium properties can be calculated in this way, butthe correct approach to nonequilibrium properties is far from obvious. Themany possible schemes of theoretical and/or practical interest may be broadlycategorised as follows:1. Linear response (Green-Kubo) formulae from which linear transport coef-�cients may be calculated from purely equilibrium simulations.2. Homogeneous molecular dynamics, where the contact with the environ-ment is simulated by driving forces on each particle, thermostat \fric-tional" forces, and (for shear ow) \sliding brick" boundary conditions.3. Inhomogeneous systems driven entirely by boundary e�ects.4. Inhomogeneous systems with a combination of boundary e�ects and bulke�ects such as thermostats.The most e�cient methods for calculating the linear transport coe�cientsare the homogeneous thermostatted approaches, which is what they were de-signed for. The other approaches nevertheless have a great deal of theoreticalinterest, including a number of analytic relations between dynamical (micro-scopic) and thermodynamic (macroscopic) properties.The calculation of nonequilibrium properties from equilibrium simulationsis clearly limited to situations close to equilibrium; beyond linear transportcoe�cients the response is usually nonanalytic as in Sec. 5.6. For the otherapproaches, the degree to which far from equilibrium predictions can be madedepends on the physics. A system far from equilibrium that remains homoge-neous must usually radiate heat (by phonons, photons, neutrinos etc. with longscattering lengths) rather than conduct it. Similarly, boundary driven nonlin-ear e�ects are more strongly a�ected by the choice of boundary conditions thannear equilibrium. For reasons such as these, far from equilibrium situations needto be put on a more individual basis, not to say that they don't share manyproperties in common. 18



The remainder of this article discusses a number of these schemes in detail,speci�cally Green-Kubo formulae and some thermostatted and boundary meth-ods. These are illustrated using the Lorentz gas, from which general propertiesof nonequilibrium steady states can be understood and discovered, and to whichwe turn now.4.2 The periodic Lorentz gasWhat is the simplest possible molecular dynamics model? If we use periodicboundary conditions, momentum is conserved, so a single particle moves triv-ially with constant velocity. The simplest interaction potential is the hard ball,Eq. (31). Two identical hard rods in one dimension exchange their velocitieson collision, again leading to trivial dynamics. Thus we need two hard disksmoving in two dimensions under periodic boundary conditions.Assuming there is no drift (that is, no centre of mass motion) and moving torelative coordinates, we see that the problem of two hard disks is equivalent toa point particle colliding with a disk with twice the original radius in periodicboundary conditions or (equivalently) on a periodic lattice of such scatterers.This is the periodic Lorentz gas. As a model it di�ers only from the randomLorentz gas, Sec. 3.3 in the location of the scatterers and possibly whether theyoverlap, but the interpretation here is quite di�erent.There are three possible regimes in the periodic Lorentz gas, dependingon the shape of the periodic cell and the size of the hard disks, see Fig. 3.Because the reduction to relative coordinates has the e�ect of doubling theradius, it is possible for the disks in the reduced case to overlap, often leading toa trapped scenario where there is no di�usion. It is possible to de�ne a viscosityhowever [11]. When the disks do not overlap, it is possible for a hexagonal cellto have an upper bound on the time between collisions, and the Lorentz gas issaid to have �nite horizon, and there is normal di�usion de�ned by hx2i � t,see (35) below and Ref. [35]. This is similar to the random Lorentz gas of Sec. 3.3which has zero probability of an in�nite trajectory, and also normal di�usion.For square, rectangular, and three dimensional cells, non-overlapping disks havean in�nite horizon, leading to anomalous di�usion of the form hx2i � t ln t (seeRefs. [36, 37] for two dimensions).The periodic cell in two dimensions is usually square, rectangular or hexag-onal. In each of these cases, the Lorentz gas is dynamically equivalent to a�nite billiard of the same shape and size and with hard wall boundaries. Thisis because a billiard with reections at the boundary can be extended by re-ecting (rather than translating) the domain across each straight boundary. Inaddition, the square, rectangle and hexagon are the same whether reected ortranslated, so reecting boundary conditions are equivalent to periodic bound-ary conditions. Thus the Lorentz gas with a square periodic cell is equivalent tothe Sinai billiard, which contains a circular scatterer at the centre of a squarebilliard.Common to many models with hard collisions, it is often convenient (alsofor nonequilibrium extensions discussed below) to consider the natural Poincar�e19
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Figure 3: The periodic Lorentz gas with hexagonal lattice. The scatterers haveunit radius. There are three regimes depending on the spacing w: (a) In�nitehorizon, w > 4=p3� 2; (b) Finite horizon, 0 < w < 4=p3� 2; (c) Overlapping,p3� 2 < w < 0.section determined by the collisions, replacing the ow in continuous time bya map from one scatterer to the next, together with useful phase functions de-rived from the ow such as the time between collisions and the displacementbetween the centres of the initial and �nal scatterers. For the two dimensionalLorentz gas this corresponds to a two dimensional map, with the variables givenby position on the scatterer and outgoing direction of the particle. For periodicmodels, the dynamics does not distinguish between scatterers due to transla-tional invariance, but it is necessary to keep track of the displacement of theparticle from its initial position in order to calculate, for example, the di�usioncoe�cient.4.3 Green-Kubo relationsThe method of Green [38] and Kubo [39] computes the linear transport co-e�cients in terms of time correlation functions of quantities computed in anequilibrium state. The relations can be derived either from linear responsetheory or an approach based on the Chapman-Enskog method of solving theBoltzmann equation (for example see Chap. 6 of Ref. [7]). Here we give a shortderivation of the Green-Kubo relation for the di�usion coe�cient, then discussvarious extensions. 20



We begin by solving the di�usion equation for the probability density of�nding a particle at a given position and time P (x; t), which is the Boltzmanndistribution function f(x;v; t) integrated over velocity in the macroscopic limit(large times and distances), @P@t = Dr2P : (32)We used a Fourier transformed version of this equation to de�ne the di�usioncoe�cient of the random Lorentz gas in Sec. 3.3. The equation is linear, so thegeneral solution is an integral over the Green's functions given by the solutionfor an initial Dirac delta distribution P (x; 0) = �(x� x0), that is,P (x; t) = (4�Dt)�d=2 exp �� (x� x0)24Dt � (33)where d is the spatial dimension. The mean square displacement of a particleis thus h(xt � x0)2i = Z (x� x0)2P (x; t)dx = 2dDt (34)We expect the di�usion equation to approximate particle dynamics only atsu�ciently large times, larger than typical correlation times since the di�usionequation contains no memory, and we have also neglected the velocity degreesof freedom. Thus we have D = limt!1 h(xt � x0)2i2dt (35)which is the Einstein relation for the di�usion coe�cient. The di�usion coe�-cient is thus given (assuming the limit exists) byD = 12d limt!1 ddt h(xt � x0)2i= 1d limt!1h(xt � x0) � vti= 1d limt!1 Z t0 hvt0 � vtidt0= 1d Z 10 hvt0 � v0idt0 (36)which is the Green-Kubo relation for di�usion. This relation has been used tocalculate the di�usion coe�cient of the periodic Lorentz gas [35].A superdi�usive case where the mean square displacement grows faster thanlinearly with the time, such as when there is an in�nite horizon, then correspondsto an in�nite integral above, as when the velocity autocorrelation function de-creases as 1=t or slower with a �nite number of sign changes. Systems that aresubdi�usive with a slower growth of the mean square displacement correspond21



to zero integral which is harder to observe, and not expected in the Lorentz gasunless a signi�cant proportion of the disks are touching or overlapping.Truncating the correlation integral at �nite time gives (omitting the limitsabove) a time dependent di�usion coe�cient, proportional to the time deriva-tive of the mean square displacement at short times. Such a time dependentdi�usion coe�cient is useful to describe the \transient" response, that is, beforecorrelations have died away.Anisotropic systems can di�use at di�erent rates in di�erent directions. Thedi�usion coe�cient is replaced by a real symmetric positive de�nite matrix Dij ,which can then be diagonalised leading to d di�erent coe�cients along the co-ordinate axes. The symmetries of the Lorentz gas in a square or hexagonallattice preclude such an anisotropic di�usion coe�cient, however it occurs nat-urally with a rectangular lattice. As noted above, a rectangular lattice of onescatterer has an in�nite horizon and hence anomalous di�usion, so at least twoscatterers per unit cell are required to obtain anisotropic normal di�usion. Herewe typically refer to the hexagonal Lorentz gas and write simply D, however itis easy to generalise most equations, for example (32,49) to the anisotropic case.Nonlinear response is more general, and leads to anisotropic behaviour even forthe more symmetric hexagonal case (see Sec. 5.6).A more general macroscopic equation for P (x; t) would involve more spatialderivatives, corresponding to behaviour at shorter distances, and nonleadingterms in the dispersion relation (14). The coe�cients of such terms are calledlinear Burnett and super-Burnett coe�cients (not to be confused with nonlinearBurnett coe�cients involving higher powers of the forces). The time correlationfunction expressions for these coe�cients [6] involve cumulants of the formhv0vtvt0vt00i � hv0vtihvt0vt00 i � hv0vt0ihvtvt00i � hv0vt00ihvtvt0iintegrated over all times. They are in general less convergent, so are expected todiverge for the random Lorentz gas due to its power law decay of correlations [20,25]. This divergence corresponds to a nonanalytic dispersion relation (14), seeRef. [26]. The map corresponding to the �nite horizon periodic Lorentz gas hasexponential decay of correlations [40, 41], probably leading to convergence ofall coe�cients. See Ref. [6, 42] for the connection between this map and thedi�usion and Burnett coe�cients calculated in continuous time.In general, all linear transport coe�cients can be written in terms of integralsof time correlation functions similar to (36), with the velocity replaced by therelevant thermodynamic ux. For example, the viscosity is computed in terms ofcorrelations of the shear stress, and thermal conductivity is computed in termsof correlations of the heat ux. All correlations are computed at equilibrium.Details can be found in Ref. [30].There are a couple of limitations to the use of Green-Kubo relations forcomputing properties of nonequilibrium systems. The most obvious is thatthese relations apply only to linear response; they cannot be applied to systemsfar from equilibrium. The other limitation is that correlation functions beingstatistical in nature are di�cult to calculate to a high degree of precision, com-pounded by the necessity of a numerical integration, often with a poor rate of22



convergence. Both of these di�culties can be alleviated using thermostats, thesubject of the next section.5 Nonequilibrium molecular dynamics5.1 Introduction to thermostatsA thermostat, as its name implies, is a device constructed to control the temper-ature. In the context of molecular dynamics simulations, it is a term added tothe equations of motion of a system to simulate the e�ects of the environment.As such, thermostats serve two main purposes:1. They allow simulation of nonequilibrium steady states. As noted in Sec. 2.1,nonequilibrium stationary states necessarily have contact with the envi-ronment. There are external forces and heat ows. In such situations athermostat is needed to keep the energy of the system constant (eitherexactly or in an average sense), so that the system remains in a stationarystate despite external forces that tend to increase the energy.2. They allow simulation of di�erent ensembles. Sec. 3.4 describes equilib-rium ensembles in terms of contact with the environment, and also pairsof conjugate variables. The Nos�e-Hoover thermostat (below) allows simu-lations in the canonical ensemble, by �xing the temperature and allowingthe energy to vary. Similarly, thermostats may be designed to �x almostany system variable (for example kinetic energy, total energy, current,pressure, enthalpy) while leaving conjugate variables to vary. The variousthermostats can thus be understood as the ensembles of nonequilibriumstatistical mechanics. It is expected that they should lead to equiva-lent results in the thermodynamic limit (except for uctuations in the�xed quantities) as do the equilibrium ensembles, at least in the linearregime [30, 43, 44].An alternative to a thermostat where environmental e�ects are put in theequations of motion is to simulate such e�ects at the boundary, which we discussin Sec. 6; an advantage of thermostats is that they permit the simulation toremain homogeneous, see Sec. 4.1.A common objection to the use of thermostats is that they add \unphysical"forces to Newtons \exact" equations of motion. The fact is that any schemeused to replace an unbounded environment by a �nite number of degrees of free-dom (including alternative boundary methods) must unavoidably make drasticapproximations. Some facts that inspire con�dence in thermostatted methodsare their ensemble equivalence (above) and their agreement with Green-Kuborelations for linear transport coe�cients. Far from equilibrium, thermostattedapproaches should apply whenever the bulk of the system is in contact withthe environment, either because it is two dimensional, or thermal transfer byradiation is su�ciently strong. 23



5.2 Gaussian and Nos�e-Hoover thermostatsA simple method of ensuring that a nonequilibrium molecular dynamics sim-ulation remains stationary in time despite external forcing is to periodicallyrenormalise the velocities of all the particles to keep the (kinetic or internal)energy constant. If the time interval between successive renormalisations is re-duced to zero, we obtain the Gaussian thermostat, discovered independently forthe kinetic energy by Hoover and collaborators [45] and for the internal energyby Evans [46]: _x = p_p = Fi + Fe � �p (37)Here the mass m = 1 and the particle indices have been suppressed, leading to adescription in terms of Nd-dimensional vectors. Fi contains all the interparticleforces as described in Sec. 4.1, Fe contains external driving forces, and � is ascalar thermostat \friction coe�cient" which is the same for all particles anddirections.The value of � is determined by the desired constraint: For constant kineticenergy we have the Gaussian isokinetic thermostat,�GIK = (Fi + Fe) � pp � p (38)where the dot product includes a sum over the particles. It is easily veri�ed thatthe kinetic energy K = p � p=2 is identically preserved by these equations. Theterm \Gaussian" applies to Gauss' principle of least constraint, whereby theseequations may be derived by demanding the smallest constraint force (accordingto the above dot product) at any time, see [30, 47].For constant internal (kinetic plus interparticle) energy we have the Gaussianisoenergetic thermostat, �GIE = Fe � pp � p (39)which preserves K+�i assuming that the internal forces are conservative, Fi =�r�i.In this notation the Nos�e-Hoover approach treats the thermostatting multi-plier � as an additional dynamical variable with a feedback mechanism, so wehave for the Nos�e-Hoover (isokinetic) thermostat_�NHIK = 2Q(K �K0) (40)where Q is a constant that determines the time scale of the feedback and K0is the desired kinetic energy, usually NdkBT=2. This is (apart from slightdi�erences in notation) Hoover's reformulation of the Nos�e thermostat discussedin Sec. 5.4, see Refs. [48, 49, 50]. The feedback operates as follows: Supposethe initial kinetic energy becomes too high, then _� is positive, leading to more24



damping in (37) which then decreases the kinetic energy, and similarly if thekinetic energy becomes too small. It is also possible to replace the K's aboveby the internal energy to construct a Nos�e-Hoover isoenergetic thermostat.All of these thermostats simulate the exchange of thermal energy betweenthe system and its environment. On the average this ow is outward (zero atequilibrium), corresponding to positive h�i, however there is no reason that �should not become negative occasionally, unlike macroscopic frictional forces.To be more precise, we can compute the amount of heat being removed by thethermostat and use irreversible thermodynamics (Sec. 2) to write_Sirr = �p2T (41)from which we deduce that the non-negativity of � on average is guaranteed bythe second law.In the limit of large systems, we expect that all the various processes thatthe particles undergo tend to average out, leading to a more or less constantvalue of �, as well as various macroscopic variables[51]. This is consistent withthe very low probability of a decrease in entropy in a large dissipative sys-tem. Because the uctuations of all thermodynamic quantities are smaller inlarge systems (except near phase transitions), di�erent thermostats approachthe same thermodynamic state, another statement of ensemble equivalence.At equilibrium, that is, with no external force Fe it is clear that the isoener-getic thermostat multiplier �IE is identically zero, while the other thermostatsvary around zero. The Nos�e-Hoover thermostat is special in that the equationsgenerate the canonical ensemble [48, 49, 50], that is, assuming the dynamics isergodic (a reasonable assumption in practice for all but the smallest systemsbased on numerical work [52]), the probability distribution of x and p (averag-ing over �) is given by (19). This means that the Nos�e-Hoover thermostat canbe (and is) used to simulate an equilibrium system at �xed temperature, ratherthan �xed energy.There are many other types and uses of thermostats. There are speci�c algo-rithms for computing all possible transport coe�cients. For example, shear vis-cosity can be computed using \sliding brick" boundary conditions, thermostat-ted such that the temperature is measured relative to a linear velocity pro�lecharacteristic of Couette ow. Thermal conductivity can be computed by in-cluding forces that accelerate hot and cold particles in di�erent directions. Bothof these examples are homogeneous, with no dependence of distributions on po-sition. There are also inhomogeneous algorithms, where di�erent parts of asystem (for example particles su�ciently close or belonging to the walls) arethermostatted at di�erent temperatures, or at the same temperature relativeto di�erent velocities. Finally, it is possible to apply thermostats to enforceother ensembles, for example constant pressure (hence uctuating volume). Allthese examples and more are described in texts on nonequilibrium moleculardynamics [29, 30, 31]. A more recent review of the Gaussian and Nos�e-Hooverthermostats with a discussion of Gauss' principle and application to the Lorentzgas is given in Ref. [47]. 25



5.3 The nonequilibrium Lorentz gasJust as the random Lorentz gas appears as one of the simplest applications ofthe Boltzmann equation (Sec. 3.3) and the periodic Lorentz gas appears as oneof the simplest examples of equilibrium molecular dynamics (Sec. 4.2), so the(more precisely \a") nonequilibrium Lorentz gas appears as one of the simplestexamples of nonequilibrium molecular dynamics. We begin with a descriptionof the \colour di�usion" algorithm for the self di�usion coe�cient, see Ref. [30].This is arguably the simplest nonequilibrium molecular dynamics algorithm, asit is homogeneous, involves only the usual periodic boundary conditions, andthe external force on each particle is a constant.The self di�usion coe�cient is the limit of the mutual di�usion coe�cientof a mixture of two species that become identical. In the colour di�usion al-gorithm, each particle is assigned a positive or negative \colour charge" which(unlike electric charge) has no e�ect on the interparticle forces, but determinesthe interaction with an external \colour �eld" Ec. Thus the external force onparticle i with charge ci is Fe = ciEc. The response to such an external �eldis the \colour current", Jc = P cipi=m. The di�usion coe�cient (equivalentto \colour conductivity") is then proportional to the ratio jhJcij=jEcj in thelimit jEcj ! 0. In order for the time average of the current to make sense,a thermostat must be applied. From the point of view of calculating the lin-ear response of a many particle system, it doesn't matter which thermostat isapplied, or whether it is applied to the whole system or to the two types ofparticles separately.The simplest such case of the colour di�usion algorithm is thus two particles(one of each colour charge) interacting with a hard ball potential in two di-mensions with a Gaussian thermostat (since a Nos�e-Hoover thermostat has anextra phase space variable �). The isokinetic and isoenergetic thermostats areequivalent here, since the internal force is zero outside collisions, and the colli-sions are not a�ected by either thermostat. As in Sec. 4.2 we consider relativecoordinates, which reduces the problem to that of a single point particle movingin a periodic cell under the inuence of a constant �eld F and a thermostat, andcolliding with a single circular scatterer: The nonequilibrium Lorentz gas [53].The thermostat ensures that twice the energy of the particle, p2=m is con-stant, so as before it is possible to set the magnitude of the momentum, themass and the radius of the scatterer equal to unity by appropriate scaling. Theequations of motion are thus _x = p (42)_p = F� F � pp (43)Note that the denominator of (38) for �GIK may be set equal to unity due tothe constancy of the kinetic energy, so that the equations for the nonequilib-rium Lorentz gas, generalised to arbitrary dimension and position dependentexternal forces apply to many particle systems constrained by the Gaussianisokinetic thermostat, and hence approximately to other thermostatted systems26



when ensemble equivalence holds. This close connection between the nonequi-librium Lorentz gas and many particle systems in a nonequilibrium steady stateis extremely useful in discovering and demonstrating general properties of thelatter.The solution of the isokinetic equations for the Lorentz gas is most easilyexpressed in terms of the angle � between the direction of motion and the�eld, which is assumed to be in the positive x direction and have magnitude F .Speci�cally px = cos � and py = sin � in two dimensions, leading to _� = �F sin �.Given initial conditions with a subscript 0, the solutions aretan(�=2) = tan(�0=2) exp�� t� t0F � (44)x = x0 � 1F ln� sin �sin �0� (45)y = y0 ��� � �0F � (46)with direct generalisations to higher dimensions. Note that the displacementtransverse to the �eld y�y0 cannot exceed �=F ; the particle rapidly approachesthe direction of the �eld. The transcendental functions make it di�cult todetermine analytically when a collision with the circular scatterers takes place;one possible numerical approach is to put a lower bound on the time to thenext collision using a circular approximation to the trajectory, moving forwardthis time step, and iterating to convergence [54]. In spite of this di�culty, it ispossible to obtain analytic expressions for the linear integrated equations usedto compute the Lyapunov exponents in terms of the initial and �nal angles ofeach free path between collisions, see Refs. [47, 55].In response to the external �eld F and collisions with the (usually hexagonal)lattice the particle drifts with a current given byJ = _x (47)assuming �nite horizon. Using Eq. (38) with jpj = 1 for � we �ndJ �F = � (48)in agreement with (41). In the limit of small �eld the average current is thesame for almost all (Lesbesgue) initial conditions [57] and is given byhJi = DF+ o(F) (49)where D is the di�usion coe�cient, or tensor in the anisotropic case. For thecase of in�nite horizon, there are two possibilities: When the �eld is along oneof the in�nite horizon directions the particle almost always ends up movingwithout collisions along this direction, otherwise the current appears normal.The zero �eld limit is thus not de�ned, and in any case would correspond toanomalous di�usion.The equations of motion of the nonequilibrium Lorentz gas have the followingimmediate properties, which also apply to more general thermostatted systems:27



1. Time reversibility: Reversing the direction of time is equivalent to replac-ing p by �p, as in Newtonian (unthermostatted) mechanics. This has thee�ect of changing the sign of �. On the Poincar�e section determined bythe surface of the scatterers this corresponds to a reection in the outgoingangle across the normal to the scatterer, that is, replacing � by � + 2� inFig 1.2. Phase space contraction: Liouville's equation (21) implies that the rateof growth of a volume element �V , which is inversely proportional to theprobability density � evolves according to_�V�V = �1� d�dt = �1� �@�@t + F � r�� = r � F (50)Evaluating r � F for the equations of motion, (37) with (38-40) we �ndr � F = 8<: �(Nd� 1)�GIK�(Nd� 1)�GIE�Nd�NHIK (51)which reduces to �� in the two dimensional Lorentz gas. The collisionsof the Lorentz gas (or other hard ball systems) are instantaneous andpreserve phase space volume, so they do not a�ect the above formulae.The phase space contraction has a number of e�ects, namely that the sumof the Lyapunov exponents is negative, and related to the average value of �,X� = hr � F i (52)For the case of the two dimensional Lorentz gas, the Kaplan-Yorke relationgives the information dimension [56] of the attractor for the Poincar�e map forsu�ciently small �eld [57],D1 = 1 + �1j�2j = 2�1 + h�i�1 + h�i (53)This is less than the dimension of the map (two) since the phase space con-traction requires the density to concentrate on a small set most of the time.Nevertheless, the attractor is dense in phase space for su�ciently small �eld [57],D0 = 2 (54)Numerical evidence for what \su�ciently small" implies in practice is givenbelow, Sec. 5.6. The concentration of the density onto multifractal distributionsmeans that for the steady state, the density becomes a distribution, and isstudied by means of more general techniques, such as Sinai-Ruelle-Bowen (SRB)measures or periodic orbit measures, Sec. 5.5.It is clear from Eq. (41) that � is related to the rate of entropy production,so now phase space contraction can also be related to entropy production. The28



Gibbs entropy, Sec. 3.4, which was constant for equilibrium (speci�cally phasespace volume conserving) systems, now decreases to negative in�nity!limt!1 dSGdt = limt!1 Z (r � F )�d� = �h�i < 0 (55)Needless to say, this has been the source of a large amount of confusion in theliterature. The correct resolution is probably along the following lines: TheGibbs entropy is telling us (appropriately) that entropy is being removed fromthe system via the thermostat; it does not take into account irreversible entropyproduction in the system, as it did not do so for isolated systems; it cannot tellus about the entropy increase in the environment since the phase space doesnot include these degrees of freedom. There have been a number of attempts(mostly in connection with Baker maps) to coarse grain the Gibbs entropy ofa nonequilibrium system, in order to take into account the irreversible entropyproduction. This is a very active area of discussion at present, see Refs. [10, 28].The accumulated phase space contraction along a trajectory is easily foundto be �V (t)�V (0) = e�R t0 �(t0)dt0 (56)for the nonequilibrium Lorentz gas (with obvious extensions to all the ther-mostats considered above), corresponding to a probability density of�(xt; t)�(x0; 0) = eR t0 �(t0)dt0 (57)assuming continuous distributions. This is an example of a Kawasaki distribu-tion function [30, 58]. The argument of the exponential gives the total amountof entropy removed by the thermostat; for the Lorentz gas this isZ t0 �(t0)dt0 = Z t0 J � Fdt0 = Z F � dx = ��� (58)assuming the external force is conservative,F = �r� (59)For the Lorentz gas, � is a linear function of the coordinates. This expressionfor the accumulated phase space contraction provides a motivation for the sym-plectic structure of the next section, as well as a basis for a discussion of timereversibility.Newton's equations are time reversible, so one of the di�culties in under-standing the second law of thermodynamics is that for any system observed toincrease in entropy, it is possible to set up a time reversed system with a decreasein entropy with time. Boltzmann's solution (Sec. 3.1, Ref. [12]) is that the mostlikely states (corresponding to large regions of phase space) are those with highentropy; the initial state of the Universe has very low entropy for some reason,but the �nal state is not constrained in this way. In the same way, for every29



trajectory in a thermostatted system with positive � and hence positive entropyproduction, there is a time reversed trajectory with the opposite. However auniform initial distribution, or in fact any smooth initial distribution, has (atlong times) a greater probability of positive � leading to a positive h�i. Thisis because the volume in phase space is bounded, and so only an exponentiallysmall proportion of trajectories can grow with a positive exponential, while theremainder are forced to contract to make room for the growing trajectories.A more quantitative description can be given in terms of periodic orbits, seeSec. 5.5 and Ref. [59].If, in addition to phase space contraction, su�ciently strong chaotic prop-erties (\Anosov-like") can be assumed, the ratio of the probabilities that a tra-jectory of length � will have entropy production �S (as measured by the phasespace contraction above) or ��S in the limit � !1 approaches e�S. The limitis taken keeping the entropy production rate �S=� constant. This result, calledthe uctuation theorem was �rst observed for shearing ow in Ref. [60] andproved in Refs. [61, 62]. It applies to the Lorentz gas if the �eld is not too large;although it is not strictly Anosov due to the collisions, it nevertheless retainsvery strong chaotic properties. The uctuation theorem and its generalisationsare an active area of investigation at present [9].5.4 Symplectic propertiesAnother of the unexpected properties of thermostatted systems (in particularthose with isokinetic thermostats) is that, despite phase space contraction, it ispossible to express the dynamics in terms of Hamiltonian equations which areby de�nition (23) phase space conserving. The �rst such formulation was theoriginal Nos�e thermostat [48, 49, 50],HN (x; s;�; ps;�) = NXi=1 j�ij22mis2 + �(x) + p2s2Q + 2K0 ln s (60)Here s and its conjugate momentum ps are supposed to represent the \heatbath". If we interpret the time variable � as related to physical time t bydt = d�=s then we can derive Hoover's form of the equations, Eqs. (37,40) usingpi = midxi=dt = �i=s and � = ps=Q (and in our case, setting the massesequal to one). Note that rewriting the equations in this manner has reduced thenumber of dimensions of phase space by one, since the equations of motion forx, p and � do not contain s. This also means that there is no manifest constantof motion (given by HN ) for the new form of the equations. The new equationsare phase space contracting because they are written in di�erent variables | thephysical momentum p di�ers from canonical momentum � by a factor s, whichkeeps track of the entropy production since its equation of motion is ds=dt = �s.Another Hamiltonian for a thermostatted system is that of the Gaussianisokinetic thermostat, which in contrast to the Nos�e-Hoover thermostat has amanifest constant of motion, namely the kinetic energy. Thus it is natural forthe Hamiltonian to be some function of the kinetic energy, written so that the30



physical and canonical momenta vary by the accumulated phase space contrac-tion, e�� (see the end of the previous section). In fact, the Hamiltonian [16]HG(x;�;�) = e2��22 (61)with the interpretation dt = e�d� leads to the Gaussian isokinetic equations (37,38)with p = e�� and F = �r� when the constraint p2 = 1 is imposed. This isalso a Hamiltonian that generates geodesics [63] on the space with conformallyat metric ds2 = e�2�dq2 (62)leading to variational approaches based on �nding the stationary (usually mini-mum) geodesic length, and an interpretation as light passing through a mediumwith refractive index n = e��.There is a third thermostat with a Hamiltonian description, namely theisoenergetic thermostat (39) restricted to the case where the internal and exter-nal forces are proportional, that is Fe = �F, Fi = (1 � )F with  constantand F = �r�. The momentum equation is thendpdt = F� F � pp2 p (63)with the conserved energy E = p2=2 + (1 � )�. This restricted isoenergeticthermostat is not realistic from the point of view of internal and external forcesbeing proportional; rather it allows a continuous interpolation between the caseof no thermostat  = 0 to that of the isokinetic thermostat  = 1. Becausethe kinetic energy is no longer constant, the denominator cannot be ignored,in fact an additive constant is added to � to ensure that E is zero, then p2can be replaced by �2(1� )�. Noting that F=� can be written �r ln j�j, theaccumulated phase space contraction (56) is thus j�j=(2(1�)). Paralleling theisokinetic thermostat, we then arrive at the \restricted Gaussian isoenergetic"Hamiltonian [64]HRGIE(x;�;�) = j�j�=(1�)�22 + (1� )� (64)which, coupled with the constraint HRGIE = 0 and the time scaling dt =j�j�=(2(1�))d� leads to the above equations of motion.It was noted in [16] for the Gaussian isokinetic thermostat, in [65] for theNos�e-Hoover thermostat, and in [64] for the restricted Gaussian isoenergeticthermostat that the somewhat arbitrary time scaling may be obviated by addinga constant to the Hamiltonian to make its numerical value zero, and then mul-tiplying by an appropriate factor, namely e�� for the Gaussian thermostat ands for the Nos�e-Hoover thermostat. In general, the Gaussian isokinetic Hamilto-nian with a time scaling of dt = e��d� becomesH�(x;�;�) = e(�+1)��22 � e(��1)�2 (65)31



with the isokinetic constraint simply H� = 0. These Hamiltonians apply tothermostatted systems with arbitrary conservative forces and arbitrary numbersof particles. The Lorentz gas version of the case � = �1 corresponding to thefamiliar kinetic plus potential energy Hamiltonian was noted by Hoover andcollaborators eight years previously [66].The Hamiltonian gives an alternative derivation of the solutions of the equa-tions of motion of the nonequilibrium Lorentz gas, Eqs. (44-46). The potential� = �Fx does not depend on y, so �y = eFxpy is a constant of the motion. pxis determined by the constraint p2x + p2y = 1, allowing an immediate solution incartesian coordinates by integration.While the equations of motion of these thermostats can be derived from aHamiltonian, the global structure including the periodic boundary conditions isnot strictly Hamiltonian. This is because the potential � (for example) is notperiodic; for the Lorentz gas it is a linear function of position. The lack of aglobal Hamiltonian allows the steady state distributions not to be uniform onsome energy surface; they are typically multifractal. In spite of this, the localsymplectic structure is su�cient to ensure the pairing of Lyapunov exponents,discussed next. The isokinetic Hamiltonian has also been applied to a de�nitionof temperature using the Boltzmann entropy in [15]. Choquard [67] has a furtherexposition of the variational properties of the isokinetic thermostat, includinga Lagrangian approach and a link with the conformally symplectic formalismused in Ref. [68] for a proof of the pairing rule, below.We have already seen the Lyapunov sum rule (52), which relates the entropyproduction, a macroscopic quantity, to the sum of the Lyapunov exponents, amicroscopic quantity. The pairing of Lyapunov exponents, also called the con-jugate pairing rule or symmetry of the Lyapunov spectrum, is a much strongerproperty, relating individual pairs of Lyapunov exponents. It is proved usingthe symplectic property of the dynamics, and appears to be limited in validityto systems admitting a Hamiltonian description.It has been known for some time that the Lyapunov exponents of a Hamil-tonian system come in � pairs, that is, they may be split into groups of two,each of which sums to zero [69]. In 1988 Dressler [70] showed that for a con-stant frictional coe�cient �, the sum of each pair of Lyapunov exponents is ��.Incidentally, the constant � \thermostat" can also be derived from a Hamil-tonian, obtained as for the isokinetic thermostat above, with the accumulatedphase space contraction e� replaced by e��t = 1=(��). In contrast to the usualthermostats, this Hamiltonian is explicitly time dependent.Meanwhile, numerical simulations of many particle systems where Lyapunovexponents were computed began to show evidence for a similar law [30, 71,72, 73]. Ironically the �rst observations of Lyapunov exponent pairing were inshearing systems, where more detailed recent computations have ruled out exactpairing [74]. Initially the results were explained in terms of the large numberof particles [75]. In systems of many particles it is often easier to computethe largest and smallest Lyapunov exponents than the whole spectrum, so thepairing rule if it holds can be used to relate these measurable exponents to theentropy production and (also measurable) transport coe�cients.32



In order to clarify the role of the system size, and also because it is possible tocompute Lyapunov exponents more precisely in small systems, the author andtwo collaborators studied the Lyapunov exponents of the simplest thermostattedsystem with more than one nontrivial pair of Lyapunov exponents, the threedimensional Lorentz gas [54]. The results, that two pairs of Lyapunov exponentseach sum to �h�i whether positive or negative and that a trivial pair is zero dueto the conservation of kinetic energy, were extremely helpful in understandingthe conditions under which pairing occurs. In this case at least, pairing does notdepend on a large system limit, or on chaotic properties associated with positiveLyapunov exponents, so it must be derived from the equations of motion. Thedegrees of freedom corresponding to the direction of the ow and the conservedkinetic energy give zero exponents not summing to �h�i, so they must somehowbe excluded from consideration. With these points in mind, we move on to astatement of the result and a sketch of the proof.The conjugate pairing theorem states that for the isokinetic thermostat andthe restricted isoenergetic thermostat discussed above there are two zero Lya-punov exponents, and the remaining Nd�1 pairs of exponents sum to �h�i��.The Nos�e-Hoover thermostat is the same except that there is one zero exponentand Nd pairs. The Lyapunov exponents and average values of � are computedusing the same invariant measure, which may be any trajectory or invariantmeasure of the system. In particular, the theorem holds irrespective of chaoticproperties such as ergodicity or positive Lyapunov exponents, and irrespectiveof the size of the system.The main ideas of the proof are sketched below; details can be found for theisokinetic thermostat in Refs. [68, 76, 77], the restricted isoenergetic thermostatin Ref. [78] and the Nos�e-Hoover thermostat in Refs. [65, 68]. Refs. [68, 77]explicitly include the collisions, and the isokinetic thermostat on a curved man-ifold. Numerical evidence excludes pairing in shearing systems [74] and a moregeneral isoenergetic thermostat [78].Hamiltonian dynamics can be written most simply using a matrixJ = � 0 I�I 0 � (66)where I is the unit submatrix, and the block form corresponds to x, �. Wehave the transpose JT = �J and J2 = �1. Then Hamilton's equations are_� = JrH and the equation of motion for perturbations is _�� = T (t)�� whereT = JrrH . The matrix T satis�es the equation T TJ + JT = 0 (where asuperscript T denotes transpose) due to derivatives of H commuting, comparewith Liouville's theorem (23). The �rst step to prove the pairing rule is to showthat the appropriate matrix T satis�es a generalised equation,T TJ + JT = ��J (67)For the case of constant � this is straightforward, but for the other thermostatsit is �rst necessary to reduce the space to exclude the zero exponents by rulingout perturbations that are parallel to the ow, and for the isokinetic thermostat,33



those that violate the constant energy condition. The T matrix then containscoe�cients of the constrained perturbation equations. Refs. [68, 77] also provean equivalent condition for the hard collisions.The equation (67) for the perturbation evolution equations can be extendedto �nite evolutions ��(t) = L(t)��(0) using the equation for the L matrix,_L = TL with initial condition L(t = 0) = 1 to obtain�LTJL = J (68)where � = exp(R0 �dt). Consider the eigenvalues of M = LTL, which obeys�2MTJM = J following from (68). Straightforward matrix manipulations ofthe eigenvalue equation leads to the result that the eigenspace of an eigenvalue�2 is transformed by J into an eigenspace with eigenvalue 1=(�2�2). The Lya-punov exponents are the in�nite time limit of the logarithm of the eigenvalues,divided by twice the time. Thus the spectrum is symmetric with the pairssumming to �h�i, and the theorem is proved.5.5 Periodic orbit approachesIt was noted in Sec. 5.3 above that invariant measures of thermostatted nonequi-librium systems (including the Lorentz gas) are multifractal. This means in par-ticular that the concept of a smooth probability density �(�) must be replacedby a more general description.The most primitive approach is to coarse grain the space into arbitrarypartitions (say, of equal size) and count the number of times a long (hopefullytypical) trajectory passes through each cell. This does not depend on strongchaotic properties; ergodicity is su�cient to de�ne a unique measure. Thedisadvantages are that there are few mathematical results for such a generalframework, the partition does not take into account the natural structure of thedynamics, and it is not immediately clear how to de�ne measures on repellers ofopen systems, which almost all trajectories leave after a �nite (typically rathershort) time, see Sec. 6.It may be possible to prove (or make a plausible hypothesis) that the dy-namics is su�ciently hyperbolic that there are invariant measures smooth alongunstable (expanding) directions in phase space; these are called Sinai-Ruelle-Bowen (SRB) measures. While it is possible to prove a number of results per-taining to such systems [32, 77], a proof of the existence of (for example) aMarkov partition does not necessarily show how to construct it e�ciently, andis of no use if the required dynamical properties have not been shown. For thenonequilibrium Lorentz gas, rigorous results are mostly restricted to the case ofsmall �eld and �nite horizon, see for example [57].Periodic orbit theory [3, 79] provides both the mathematical justi�cation(given su�ciently strong hyperbolicity [80]) and also gives explicit expressionsfor multifractal measures that can be applied to many systems (with apparentsuccess, although sometimes slower convergence [81]) for which enough periodicorbits can be located, but rigorous proofs are not available. In addition, the34



periodic orbits are coordinate invariant, make use of the dynamics in a naturalmanner, and are applicable to open systems. We refer here to classical periodicorbit theory; there are similar theories applicable to quantum systems in thesemiclassical limit [3, 82] and more recently to stochastically perturbed classicalsystems [83, 84].It may seem strange that the properties of a system can be determined froma set of zero measure orbits such as the periodic orbits; to make an analogy,numerical integration schemes often use only rational points at which to evaluatethe integrand. The main question is whether the set of zero measure (rationalpoints or periodic orbits) is dense in the measure (phase space or some lowerdimensional attractor). For the case of periodic orbits, this is usually eitherproven or a reasonable assumption.Periodic orbits arise naturally when system properties are computed fromthe spectrum of evolution operators. The desired property is �rst expressedin terms of a generating function that is multiplicative in time, for examplethe current (for the nonequilibrium case) and the di�usion coe�cient (for theequilibrium case) are expressed asJi = @@�i s(�)j�=0 (69)D = 1d trDij = 12dXi @@�i @@�i s(�)j�=0 (70)s(�) = limt!1 1t lnhe���xi (71)using the Einstein relation (35) where � is a dummy variable, �x = x(t)�x(0)and s(�) gives the rate of exponential growth of the average, and is thus theleading eigenvalue of the Liouville operator weighted by the exponential.The leading eigenvalue of an evolution operator (such as a weighted Liouvilleoperator) may be computed in a number of ways. Some of the most common,namely the long time asymptotic form of its trace, Ruelle's dynamical zetafunction, and the Fredholm determinant lead to expressions in terms of periodicorbits [3, 4, 7, 79, 85]. For example the most rapidly convergent expressionsusually come from the Fredholm determinant of a discrete time system (forexample using the collisions of the Lorentz gas to de�ne the dynamics), det(1�zL) where z = e�s and L is the weighted evolution operator. The determinant isthen expanded using the general matrix relation detM = etr lnM to a maximumorder in z. The resulting expression involves trLn which counts the ways thesystem can return to its starting point after n iterations, the periodic orbits oflength n. Speci�cally, trLn = Xx:fn(x)=x e���xj det(1� J (n)(x))j (72)where J is the Jacobian matrix of derivatives of fn, the nth iterated Poincar�emap. 35



The denominator is often approximated by j�j, the product of the expandingeigenvalues of J , that is, those with a magnitude strictly greater than one.j�j is also given by eTP�+ , the exponential of the period times the sum ofthe positive Lyapunov exponents along the periodic orbit. Approximating thedenominator of (72) by j�j is exact in the limit of long orbits and a�ects the rateof convergence but not the result of the periodic orbit expressions for the leadingeigenvalue and derived quantities. They lead to the two most often used closedexpressions for the di�usion constant, one obtained directly from the trace,D = 12d limn!1Px:fn(x)=x�x2=j�jPx:fn(x)=x T=j�j (73)and one obtained using dynamical zeta functions,D = 12dP0fpg(�1)k(�x1 + : : :+�xk)2=j�1 : : :�kjP0fpg(�1)k(T1 + : : :+ Tk)=j�1 : : :�kj (74)Here, �x is the displacement of an orbit that is periodic in the elementary cell.It might be zero, corresponding to a periodic orbit in the extended phase space,or it might be nonzero, �nishing at an equivalent point on a di�erent scatterer.T is the period, in terms of the continuous time. p indicates prime cycles, thatis, those periodic orbits that are not repeats of shorter orbits. For the �rstexpression, the sum is over all periodic points, whether belonging to a primecycle or the repeat of a prime cycle; in the limit n ! 1 almost all cycles areprime, so this does not matter. The second expression is a sum over all sets ofprime cycles containing k = 1; 2; 3 : : : cycles. The alternating sign (�1)k usuallyleads to partial cancellations between longer cycles AB and a combination ofshorter cycles that approximate them, A and B, thus making the zeta functionmore rapidly convergent than the trace formula. The zeta function expressionis usually ordered by topological length, that is, all combinations of cycles witha total number of collisions less than a maximum Nmax are counted, with anassumed limit Nmax!1.The current is computed by similar expressions (omitting 2d and the powersof two), and in fact any phase variable a(x) may be averaged in this manner,replacing �x by R adt computed along the periodic orbit. The trace formula (73)thus leads to a sequence of increasingly detailed measures supported on theperiodic orbits given by Dirac delta functions weighted by the inverse orbitstability. The zeta function expression (74) gives a more complicated but oftenmore quickly convergent (in a weak sense) sequence of measures on the samesets.There have been a number of applications of the above formulae to thehexagonal Lorentz gas [86, 87, 88, 89] numerically searching for periodic orbitsup to typically ten collisions and computing the current or the di�usion coe�-cient. There are a number of technical di�culties, such as making sure all of thetens of thousands of orbits up to this length are found and making maximal useof the symmetry. The conclusions are that the formulae work, although not yet36



to the level of precision of alternative methods; the symbolic dynamics (allowedsequences of collisions) is very complicated and depends strongly on the external�eld; the trace formula may converge more quickly than the zeta function forthis system. A zeta function approach with ordering by stability �max ratherthan topological length Nmax appears to work better when there are many al-most stable cycles at high �eld [65] (see Sec. 5.6) and in other systems withweak hyperbolicity [81].Finally, there are general arguments made using periodic orbit measurescon�rming a number of physical results. It is clear from (73) that the di�usioncoe�cient must be nonnegative, in agreement with the second law of thermo-dynamics. Combining a periodic orbit and its time reverse (with negative dis-placement and Lyapunov exponents) and using the Lyapunov sum rule (52), itis possible to show that J � F and hence the entropy production (41,48) mustalso be nonnegative out of equilibrium. This argument was given in Ref. [90]for the Lorentz gas and extended to systems with many particles in Ref. [91].This leads to the following explanation of the second law in thermostatted sys-tems: periodic orbits corresponding to increasing entropy are more stable andhave smaller values of � than their time reversed counterparts, hence those withincreasing entropy are weighted more strongly, leading to an average entropyproduction which is nonnegative. Rondoni and Cohen [92] have used periodicorbit measures for thermostatted systems to derive the Onsager reciprocal re-lations which state that the full linear response matrix connecting all possibleuxes and forces is symmetric.5.6 Nonlinear responseDi�usion in the Lorentz gas is a linear process. In Sec. 3.3 the point particlesare noninteracting, so the properties of a distribution of many point particlescan be obtained by a linear superposition of many single particle trajectories.Until the noninteracting, pointlike approximation fails, there is no density atwhich the system ceases to be linear. On the other hand, the nonequilibriumLorentz gas has a natural scale, determined by when the curvature induced inthe trajectories by the �eld is comparable to the distance between the scatterers,at which the current is no longer approximately proportional to the �eld.One approach to nonlinear response is to de�ne nonlinear Burnett coe�-cients. Linear Burnett coe�cients which form an expansion for the particle uxin terms of higher derivatives of the density were briey described in Sec. 4.3.We could also envisage nonlinear Burnett coe�cients forming an expansion forthe current in terms of higher powers of the �eld, or vice versa. In realisticsystems such an expansion usually involves nonanalytic terms. For example, inthree dimensional shear ow, the viscosity � is well described in terms of theshear rate  (not too large) by � = �0��11=2 [30]. The nonequilibrium Lorentzgas is still more problematic, with J most likely nondi�erentiable almost every-where, although this has not been proved and numerical evidence is far fromconclusive, see Fig. 4. It is also unknown whether the di�usion coe�cient isa di�erentiable function of the spacing between the scatterers. Discontinuous37
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Figure 4: Current versus �eld for the nonequilibrium Lorentz gas. The latticeis hexagonal with w = 0:236 and �nite horizon, see Fig. 3. The �eld is directedalong the line between nearest neighbours. At small �eld the current is pro-portional to �eld according to (49) with a di�usion coe�cient of approximately0.18. The support of the attractor collapses to a fractal set at about F = 2:2,but this has no apparent e�ect on the current. For some �elds above 2:4 andall �elds above about 2:5 the attractor is a stable periodic orbit. The speed ofthe particle is �xed, so the current can never exceed unity.one dimensional maps are known to exhibit nondi�erentiable di�usion coe�-cients [93], however the Lorentz gas dynamics viewed as a ow is continuous sothe di�usion coe�cient is probably somewhat smoother.We observed in Sec. 4.3 that the symmetry of the hexagonal Lorentz gasrequires that an isotropic conductivity, and hence to linear order the averagecurrent is parallel to the �eld. There is no such restriction for the nonlinearresponse; except for the cases when the �eld points along the line betweennearest or next nearest neighbours (hence a reection symmetry), the averagecurrent is not in general parallel to the �eld [55].It is known that for su�ciently small �eld the two dimensional nonequi-librium Lorentz gas with �nite horizon is ergodic [57]. Together with timereversibility and the continuity of the dynamics (in continuous time, not in thePoincar�e map), this implies that while almost all initial conditions lead to thesame average current, there are arbitrarily large deviations for short times. Thisis because almost every trajectory must pass arbitrarily close to the time reverse38



of a normal trajectory, that is, a trajectory with negative entropy production.At larger �eld strengths, the ergodicity is observed to break in one of twoways, depending on the spacing of the scatterers and the orientation of thelattice with respect to the �eld [94]. One possibility is that a marginally stableperiodic orbit appears, surrounded by an elliptic region separate from the restof the hyperbolic phase space, �rst observed by Moran and Hoover [53]. If theinitial condition is inside this region, the particle always moves between thesame two scatterers, and the average current is zero. Outside the region, thedynamics is similar to that at lower �elds.In the other mechanism, the �nal state (and hence average current) is thesame for almost all initial conditions, however it is no longer dense in phasespace, and has a box counting dimension less than that of phase space. It is nowcompletely disjoint from its time reverse (the \repeller"), and deviations fromthe second law are limited to a single collision. This implies that the distributionof uctuations (both parallel and perpendicular to the �eld) is quite di�erentto that of small �eld. The transition to this state, described in Ref. [94] istermed crisis induced intermittency, and corresponds to a discontinuous changein the box counting dimension of the attractor, but the current, Lyapunov ex-ponent, and information dimension are continuous. Not all periodic orbits nowlie in the attractor, so it is imperative that periodic orbit calculations (Sec. 5.5)only contain those cycles actually in the attractor. This can be accomplishedby searching a long typical trajectory (rather than the whole phase space) forperiodic orbits, often a useful approach in any case.Typically, both mechanisms are observed at di�erent �eld strengths for thesame spacing, and as the �eld is further increased, further crises occur, creating,destroying and removing periodic orbits from the attractor. Eventually one (ormore [95]) periodic orbits becomes stable, attracting all or at least a positivemeasure of initial conditions. There is a range of �elds over which stable windowsand chaotic attractors alternate in a complicated fashion [55]. At su�cientlylarge �elds there is always a stable orbit, and at in�nite �eld, the limitingbehaviour is that of an orbit creeping along a disk until it can move in thedirection of the �eld to the next disk.While it is clear that many similar features occur in the three dimensionalnonequilibrium Lorentz gas [54] and various molecular dynamics simulationsdriven to very high �elds [30], the details depend to a large extent on the modelat hand. While it might require unreasonably strong forcing to generate sta-ble con�gurations with no positive Lyapunov exponents, it is su�cient to letonly one of the positive exponents go negative to expect that the attractor andrepeller are disjoint, and therefore a dynamical and time reversible structurequalitatively di�erent to that near equilibrium. It is also possible that measure-ments of large systems ignore and hence average over many degrees of freedom,which may tend to wash out the multifractal structure of phase space. In anycase, there is much more to be understood about the dynamics of a many par-ticle system in a far from equilibrium steady state.39



6 Boundary driven systems6.1 Open boundaries: The escape rate formalismNow we turn to nonequilibrium systems with Newtonian equations and no phasespace contraction, with nonequilibrium e�ects generated by the boundaries.Systems with both boundary e�ects and thermostats are considered in Sec. 6.3.Suppose we consider a Lorentz gas, either random or periodic (with �nitehorizon), in a bounded region of space. Trajectories in the system can then bedivided into four classes, depending on whether they remain in the system atlate or at early times. Almost all (Lebesgue measure) trajectories remain in thesystem for only a �nite time. Those that remain in the system at both earlyand late times form the repeller, which in this case is the closure of the periodicorbits. Trajectories that are in the system at late but not early times form thestable manifold of the repeller, and those in the system at early but not latetimes form the unstable manifold of the repeller.A smooth distribution of initial conditions will converge (weakly) to a dis-tribution over the repeller and its unstable manifold that is steady except thatit decays in time as the measure escapes through the boundary. In the languageof Sec. 5.5, a generic initial distribution acted on by the Liouville evolution op-erator will be dominated at late times by its leading eigenfunction. The rate ofdecay, the escape rate , is directly given by the leading eigenvalue; the numberof particles in the system given an initial uniform distribution decays asN(t) � N(0)e�t (75)This exponential decay rate and its calculation as an eigenvalue using stan-dard periodic orbit theory [3, 96] depends on the uniform hyperbolicity of thesystem. Nonuniformly hyperbolic systems have recently been treated in thismanner, but with more care due to the appearance of a power law decay anda branch cut in the spectrum [97]. For hyperbolic systems, the escape rate isalso related to other dynamical quantities, the sum of the positive Lyapunovexponents, and the Kolmogorov-Sinai entropy by [32] =X�+ � hKS (76)and in the two dimensional case, also to the partial information codimensionc1 [98]  = �+c1 (77)where c1 is the dimension of phase space minus the information dimension D1 ofeither the stable or the unstable manifold. So far we have related the exponentialescape rate of a hyperbolic system to periodic orbits, the positive Lyapunovexponent(s) and a dimension of the repeller.Suppose now that the dimensions of the system are so large (speci�cally,much larger than the mean free path) that the evolution of phase space densityis well described by the di�usion equation (32). Open square boundaries corre-spond to the condition P = 0 on x = 0, y = 0, x = L and y = L (for simplicity;40



other geometries are possible, altering the constant �2 below), leading to thegeneral solutionP (x; y; t) = 1Xm=1 1Xn=1 pm;n sin m�xL sin n�yL exp��D�2L2 (m2 + n2)t� (78)from which we �nd the decay rate of the leading m = n = 1 mode, = 2�2DL2 (79)Equating the escape rates of the dynamical and hydrodynamic approaches inthe limit of large systems, we obtain escape rate expressions for the di�usioncoe�cient [99],D = limL!1 L22�2 = limL!1 L22�2 (X�+ � hKS) = limL!1 L22�2�+c1 = limL!1 L22�2�+cH(80)where the last equality involving the partial Hausdor� codimension in the largesystem limit is found in Ref. [100]. This is useful since cH can be computed moreeasily than either hKS or c1 [101]. Unfortunately none of the above quantitiescan be calculated e�ciently enough in the large system limit for these equationsto compete with the thermostatted approach as a means of computing the dif-fusion coe�cient. They can be used to check the consistency of the approach,however, and remain of great theoretical interest. Compare Eq. (53) wherethe information codimension in the thermostatted two dimensional Lorentz gasgives a very similar expression for the di�usion coe�cient:D = limF!0 �+c1F 2 (81)Note that the thermostatted Hausdor� codimension is exactly zero up to rea-sonably strong �elds (see Sec. 5.6). The escape rate  plays the same role forthe open system as the multiplier � plays for the thermostatted system in deter-mining the rate of decay of phase space volume occupied by an initially smoothdistribution of particles; in one case particles are lost through the boundaries,while in the other the volume contracts due to the equations of motion.The escape rate formalism applies not only to di�usion, but also to otherlinear transport coe�cients. The idea is that each Green-Kubo expression (36)can be transformed into an equivalent Einstein relation (35) containing themean square di�erence of a quantity other than displacement. Such a quantityis called a Helfand moment, for example, the Helfand moment correspondingto shear viscosity is (up to a constant factor) Pi xipiy where the sum is overparticles. The escape condition then corresponds to a bound on the Helfandmoment. In this way, all linear transport coe�cients may be related to escapein an appropriate system with a large size limit. The small size limit correspondsto a steady state far from equilibrium, however it is quite di�erent to the ther-mostatted system at strong �eld, and it is not clear what physical system itcould represent. More details on the escape rate formalism and its applicationscan be found in Refs. [6, 7, 99, 100, 102].41



6.2 Flux boundariesA Lorentz gas in a �nite domain need not have absorbing boundaries; it is alsopro�table to consider the possibility of injecting particles into the system fromthe boundaries. The most common (but by no means the only possible) geom-etry considered for this situation is that of a Lorentz gas (random or periodicwith �nite horizon) in a slab given by �L=2 < x < L=2 and �1 < y <1. Atthe left (right) boundary, particles are injected in all directions with a densityf� (f+). This is analogous to numerical simulations where boundary conditionsat a certain temperature are maintained by injecting particles at the boundarywith a Maxwell-Boltzmann distribution, ignoring correlations.In the steady state, the particles �ll the whole phase space except the re-peller and its unstable manifold which constitute a set of zero measure. Sincephase space volume is conserved, the density of particles at a given positionand velocity is either f� or f+ depending on the boundary through which theparticles entered. This means that the phase space density is piecewise constant(hence piecewise smooth) with a fractal set where the density is unde�ned.This prescription for the phase space density can be coded by the followingformula [103]: f(x;v) = f� + f+2 + g � x+ Z �T (x;v)0 vtdt! (82)where g = ex(f+ � f�)=L is the density gradient across the slab, and �T isthe time the particle entered the system. The term in the large parenthesesevaluates to the position the particle entered the system, with an x-componentof �L=2; combined with g it provides the necessary increment to obtain thedensity f�. The term g � x gives a linear density pro�le; after integrating overthe velocity directions to obtain P (x) from f(x;v), this is a trivial solution ofthe di�usion equation (32). The integral then determines how far the actualdensity f� di�ers from the average behaviour.As in Sec. 6.1 above, we are really interested in the large system limit,L!1. The gradient g is kept �nite, while f+� f� tends to in�nity. The �rstterm (f+ + f�)=2 can be ignored, as it gives only a constant shift, the averagedensity at x = 0. The time the particle entered the system goes to �1. We�nd that the result, 	(x;v) = g � �x+ Z �10 vtdt� (83)diverges for all x and v. This is perhaps not surprising given that the phasespace density for the nonequilibrium steady state is multifractal in the ther-mostatted approach, Sec. 5.3. In any case, it does not cause a problem, sincethe average with respect to the nonequilibrium distribution hine of an arbitraryphase variable a(x;v) can be naturally de�ned byhaine = ha	i = g � �haxi+ Z �10 havtidt� (84)42



If a is the current J, this leads directly to the expected relation J = �Dg withthe di�usion coe�cient D given by its Green-Kubo formula (36).Distributions of this form were originally introduced by Lebowitz [104] andMacLennan [105]. It is possible to represent 	 by its cumulative distributionfunction, which is continuous [6]. It is one of the main tools used to apply Bakermaps to the understanding of nonequilibrium steady states and entropy produc-tion, where the cumulative distribution function becomes an exactly selfsimilarTakagi function [6, 7, 10]. There is a natural extension to other transport pro-cesses in a similar fashion to the open case, Sec. 6.1. See also Ref. [106] wherethis approach is used to describe hydrodynamics outside local equilibrium.We conclude our discussion of ux boundary conditions with a connection tothe thermostatted approach. Suppose we coarse grain 	 to some resolution �,ignoring smaller variations. We can approximately compute 	 in some region ofsize � in phase space by tracing back in time until the chaotic dynamics ampli�esthe initial uncertainty to the point at which the particle could have come fromany direction with roughly equal probability, time �� . We can then write forthe � smoothed distribution, 	�(x;v) � g � x�� (85)Compare this with an � smoothed distribution using a �eld and thermostat.For su�ciently small �eld, the trajectory remains close to a trajectory without�eld over such a time � . The thermostatted case has no overall variation indensity, so the average density at time �� is roughly unity. However, phasespace contraction increases the average density to approximately eF��x, whichreduces in the limit of small �eld to 1+F ��x. Thus the nonequilibrium steadystate distribution obtained using ux boundary conditions is the same up to amultiplicative constant as the deviation of the distribution from equilibrium inthe weak �eld thermostatted case. The distribution 	 is directly proportionalto the gradient g, so it cannot exhibit any nonlinear features, as expected fordi�usion in the Lorentz gas.6.3 Boundaries with thermostatsThere are also a few approaches combining elements from both thermostattedand boundary driven nonequilibrium models. Chernov and Lebowitz [107, 108]use wall collision rules that are energy conserving, time reversible and phasespace contracting (on the average) to drive a many particle system into a shear-ing steady state. This can be made equivalent to a thin layer where the particleis subject to a strong oblique force and a thermostat, and thus belongs with themethods mentioned at the end of Sec. 5.2.T�el and collaborators [10, 109, 110, 111] consider open systems with an ex-ternal �eld. They focus on Baker map approaches, but much of their discussionon the relationships between escape rate, entropy production and dimensionapplies equally to the Lorentz gas or many particle systems. There are nowtwo limits of interest, F ! 0 and L ! 1. If the latter is taken �rst it is43



necessary to impose a thermostat to keep the velocity under control. Never-theless, the phase space contraction is bounded, since the repeller is in a �nitedomain, see (56). This means that the Lyapunov exponents add to zero as in aHamiltonian system.The analysis proceeds similarly to that of the �eld free case, Sec. 6.1. Eqs. (75-77) pertaining to the escape rate, Lyapunov exponent and the partial informa-tion codimension of general open two dimensional systems remain valid. Thehydrodynamic equation now contains both a di�usion and drift term,@P@t = r � ($D �rP � JP ) (86)where $D and J depend on F according to the microscopic dynamics; for theusual case of a homogeneous system J does not depend on position. For small�eld we have J = DF from (49), where D is the (usually isotropic) zero �elddi�usion coe�cient. The equation is easily solved in a strip 0 < x < L byseparation of variables leading to the escape rate = Dxx�2L2 + J2x4Dxx (87)reducing when the zero �eld limit is taken �rst to (79) and when the largesystem limit is taken �rst to another expression for the di�usion coe�cient,D = limF!0 4F 2 = limF!0 4�+c1F 2 (88)The factor of four di�erence from Eq. (81) was noted in Ref. [110] and is due tothe di�erent (here semi-in�nite) geometry. In all cases the information codimen-sion of the relevant measure can be associated with the transport coe�cient,and hence the entropy production. The thermostatted methods and open sys-tems, alone or in combination, describe the same nonequilibrium processes, atleast in the linear regime.7 OutlookMany of the connections between dynamical and statistical descriptions andbetween microscopic and macroscopic properties of equilibrium and nonequi-librium stationary states have been addressed using a very simple model, theLorentz gas. It is remarkable that most of these connections and propertiesdo not depend on the number of particles, but apply to both the smallest andlargest systems. There are undoubtably many more connections to be made onthis level. One of the chief aims of the present work is to bring a diversity ofideas together to catalyse progress in this direction. For this purpose, it is alsohelpful to keep in mind a few limitations of the Lorentz gas paradigm.In the Lorentz gas it is necessary to distinguish between real space densityP and single particle density f . Similarly, in many particle systems there is an44



additional distinction between single particle density f and phase space density�. A signi�cant conceptual di�culty is that macroscopic entropy, de�ned asan extensive quantity according to Sec. 2.2 is a function of real space, whilethe microscopic descriptions of Sec. 3 involve the phase space. The e�ect ofthis, which is not apparent from the Lorentz gas, is that the thermostattingmultiplier � and the escape rate  are not local quantities in general; theydepend on a simultaneous description of all the particles. These distinctions arealso important with regard to Baker map approaches [10], where concepts suchas real space and phase space do not obviously play the same roles and need tobe carefully delineated.There are some instances where the same chaotic properties act di�erentlyin larger systems. While we expect systems of many particles to have hyperbolicproperties [8], some of the fractal structure might be washed out by measure-ments that average over many of the degrees of freedom. It is also not clear towhat extent such averaging can be simulated by, for example, random placementof the scatterers in the Lorentz gas.Conversely, some chaotic properties of large systems are di�erent to thoseof lower dimensional systems. A number of results, particularly those relatingdimensions and Lyapunov exponents have only been proven for two dimensionalsystems. Higher dimensional results may be more di�cult to prove, or thestructure may be more detailed than in two dimensions. The three dimensionalLorentz gas, corresponding to a �ve dimensional ow or a four dimensionalmap and thus having two nontrivial pairs of Lyapunov exponents, has alreadyprovided a useful example of the conjugate pairing rule [54] and may well containmuch structure characteristic of higher dimensional dynamics. An alternative isthe six dimensional map corresponding to three hard disks in two dimensions.There remain a number of challenges in the theory of stationary states farfrom equilibrium. Not the least of these is the di�culty de�ning a useful andunique entropy, despite the observation that the irreversibility of the secondlaw applies universally, near or far from equilibrium. Another issue is thatmany of the approaches such as various thermostats or boundary conditions areequivalent only in the linear regime. The nonlinear properties of the Lorentzgas given in Sec. 5.6 are only the beginning of what can be understood aboutsuch nonequilibrium systems.The author is grateful for helpful discussions with N. I. Chernov, E. G. D.Cohen, J. R. Dorfman, P. Gaspard and W. G. Hoover, and for collaboration onmany of these subjects with G. P. Morriss.References[1] J. Lebowitz (this volume).[2] N. Sim�anyi and D. Sz�asz (this volume).[3] P. Cvitanovi�c et al, Classical and quantum chaoshttp://www.nbi.dk/ChaosBook .45
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