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Abstract

Nonequilibrium stationary states form the building blocks of more complicated nonequi-
librium systems as they define the transport coefficients appearing in the hydrody-
namic equations. Recently, many connections have been made between the micro-
scopic dynamical properties of such systems and the macroscopic transport. Although
it is often difficult to visualise or understand the dynamics of systems with many
particles, it turns out that the Lorentz gas, a system containing only one moving par-
ticle, provides a paradigm with which many of these connections can be exhibited and
studied. This article surveys the properties of nonequilibrium stationary states, from
thermodynamics to the computation of transport coefficients, demonstrating how the
Lorentz gas appears as one of the simplest models. A number of current approaches are
considered, including linear response formulae applied to equilibrium systems, ther-
mostatted systems and boundary driven systems. All of these and the connections
between them can be understood in some detail using the Lorentz gas.

Contents

1 Why a paradigm? 2

2 Thermodynamics 3
2.1 The second law and nonequilibrium stationary states . . . . . . . 3
2.2 The Clausius entropy . . . . .« « v v v v v v vt 5
2.3 Entropy production . . . . . .. ... Lo 6

3 Statistical mechanics 7
3.1 The Boltzmann entropy . . . . . ... ... .. .. ... ..... 7
3.2 The Boltzmann transport equation . . . . . . ... .. ... ... 9
3.3 The random Lorentzgas . . . . . ... ... ... .. .. ..... 9
3.4 The Gibbs entropy . . . . . . . .. Lo 13



4 Equilibrium molecular dynamics 15

4.1 Numerical methods . . . . . . . ... ... ... ... .. ..... 15
4.2 The periodic Lorentz gas . . . . . . . . .. ... ... .. ..... 19
4.3 Green-Kubo relations . . . . ... .. ... ... ......... 20
5 Nonequilibrium molecular dynamics 23
5.1 Introduction to thermostats . . . . . . ... .. .. ... ..... 23
5.2 Gaussian and Nosé-Hoover thermostats . . . . .. ... .. ... 24
5.3 The nonequilibrium Lorentzgas . . . . . ... ... ... ..... 26
5.4 Symplectic properties . . . . . ... .o oo 30
5.5 Periodic orbit approaches . . . .. .. ... ... ... ... 34
5.6 Nonlinear response . . . . . . . . . . . ... 37
6 Boundary driven systems 40
6.1 Open boundaries: The escape rate formalism . . ... ... ... 40
6.2 Flux boundaries . . . . . . . . .. . . ... ... ... ... 42
6.3 Boundaries with thermostats . . . . . ... .. ... .. ..... 43
7 Outlook 44

1 Why a paradigm?

Equilibrium statistical mechanics has always been associated with dynamical
properties such as ergodicity and mixing [1], although proofs of such properties
have been made only recently, and are mostly restricted to billiard and hard ball
systems [2]. The advent of the computer has made visualisation and simulation
of many kinds of systems possible, inspiring theoretical advances in nonlinear
dynamical systems, statistical mechanics, and the relationship between them
(and maybe also detrimental effects, Sec. 1.1 of [3]). Dynamical systems theory
has benefited from Ruelle’s thermodynamic formalism [4] and Feigenbaum’s
renormalisation approach to the bifurcation cascade [5], while dynamics in its
turn elucidates the foundations of statistical mechanics [6, 7].

At the heart of the connection between dynamical systems and statistical
mechanics lies a paradox. Statistical mechanics is a theory of large systems,
valid in the limit as the number of particles (or spins, etc) approaches infin-
ity. Statistical treatments of small systems lack the ensemble equivalence and
automatic averaging characteristic of large systems. On the other hand, dy-
namical systems are most understood in up to three phase space dimensions,
due to easier visualisation and topological properties. Systems of infinite extent
and number of particles are excluded from the usual definition of a dynamical
system, and in any case are difficult to visualise and simulate.

The paradox can be resolved, at least partly, in a number of ways: Real
macroscopic systems have a finite number of degrees of freedom, even if that
number is large; many of the results connecting dynamic and thermodynamic
properties (see below) apply to large as well as small systems; Gallavotti and



Cohen [8, 9] conjecture that the physically relevant properties of systems with
many degrees of freedom are those of strongly chaotic dynamics in the sense of
Anosov; a turbulent fluid at the onset of chaos has effectively only a few degrees
of freedom; numerical methods use a finite number of particles with periodic
boundary conditions to simulate an infinite homogeneous system.

Most macroscopic systems, however, have many effective degrees of free-
dom. The chaotic properties of such systems can be difficult to visualise, and
the building blocks of a dynamical description such as Markov partitions and
periodic orbits are all but impossible to construct. It is thus difficult to develop
a useful intuition and make predictions without some intermediate example,
sharing both the properties of chaotic dynamics and of the large systems of in-
terest, without the complexity of many degrees of freedom. Another advantage
of such an illustration is that it is possible to investigate the distinction between
macroscopic properties that are related to chaotic dynamics, and those that are
due to many degrees of freedom.

The discussion thus far has included both equilibrium and nonequilibrium
systems. This article focuses on nonequilibrium stationary states for which a
natural paradigm is the Lorentz gas. The Lorentz gas can be represented as a
two dimensional chaotic map and also exhibits transport in the form of diffusion.
The main alternative, discussed in [10], is a class of models based on Baker maps
which are exactly solvable, but have less relation to the physical processes they
are designed to mimic.

Section 2 outlines the physics of nonequilibrium steady states, introducing
the central concepts of entropy production and irreversibility. Section 3 gives
statistical definitions of entropy, and how the random Lorentz gas appears nat-
urally as a model of dilute fluids. Section 4 explores computational techniques
for systems of many particles, from which the periodic Lorentz gas appears as
the simplest example. Section 5 discusses thermostatted models of nonequilib-
rium stationary states and how results for the Lorentz gas can be applied to
such models and hence to systems with many degrees of freedom. Section 6
discusses open models of nonequilibrium stationary states, and their connection
to thermostatted models. Finally, section 7 covers the limitations of the Lorentz
gas paradigm and outlook for the future.

2 Thermodynamics

2.1 The second law and nonequilibrium stationary states

An empirical observation is that it is impossible to convert thermal energy
of a system into work without affecting the environment, the second law of
thermodynamics. Conversely, there are many processes that convert work into
thermal energy without affecting the environment, so these are irreversible. It is
possible to extract work from a warmer and a cooler subsystem (this is frequently
achieved in electricity generation). Thus it is not possible to separate a uniform
system into warmer and cooler parts without the addition of work, as this would



permit the extraction of work from the thermal energy of the original system.
Conversely, the spontaneous flow of thermal energy from a warmer to a cooler
subsystem without the extraction of work is also an irreversible process.

Many irreversible processes, including mutual diffusion of different particle
species, electric current flowing through a resistor, shear flow of a viscous fluid
and heat conduction can occur in such a way that macroscopic variables includ-
ing the various forces and fluxes are independent of time in a region of interest.
Such a system is said to be in a nonequilibrium stationary state. Two properties
should be noted immediately:

1. Due to the irreversible processes, the region is necessarily in contact with
an environment which is not truly stationary. For example, a resistor
continually depletes its voltage source as well as heating its environment.
Conceptual difficulties can arise when the environment is either ignored
or assumed to be infinite and hence unaffected by contact with the region
of interest.

2. The stationarity is of a statistical kind, as is usual when dealing with
systems with many degrees of freedom. The individual particles are not
stationary, leading to statistical fluctuations in macroscopic quantities,
although these are often small when very many particles are involved.
Statistical stationarity is quantified in terms of ensembles, or probability
distributions on phase space, that may be stationary as determined by the
dynamics and boundary conditions. This distinction between the prop-
erties of individual realisations and ensembles is particularly striking in
systems with few degrees of freedom, such as the Lorentz gas, where the
fluctuations are very large.

When the driving forces (concentration gradient, electric field, shear stress or
temperature gradient) in the above examples are set to zero, there are no longer
any irreversible processes, and the steady state of the system is an equilibrium
state similar to that of an isolated system. The only difference would be due
to the interaction with the environment, which appears in the ensembles of
equilibrium statistical mechanics. The microcanonical ensemble of an isolated
system is equivalent (in the limit of many particles) to the canonical ensemble
of a system in thermal contact with its environment. An equilibrium state may
not be unique, for example a substance that is a crystalline solid at a certain
temperature may have its axes in many possible orientations.

When the driving forces are very small compared to relevant physical scales
so that, for example, the relative variation of all quantities is much less than
unity over a distance equal to the mean free path, the steady state is said to be
close to equilibrium. Linear response theory may be applied, leading to fluxes
(particle current, electric current, strain rate or heat flux) proportional to the
forces. The constants of proportionality (diffusion coefficient, electrical conduc-
tivity, shear viscosity or thermal conductivity) are known as linear transport
coefficients. They appear in macroscopic descriptions such as the Navier-Stokes



equations. Mathematical proofs of their existence have been given for some
small systems [11].

A steady state need not be close to equilibrium, and such states show a rich
range of phenomena, as we will see in the Lorentz gas. There may be non-
linear relationships between the fluxes and forces, but the concepts themselves
change as properties no longer resemble those of an equilibrium system. A vis-
cous system shearing sufficiently so that nonlinear terms become important will
also be generating enough heat for thermal conduction effects to contribute.
Higher shear rates correspond to an increasing Reynolds number, leading to
turbulence. There is in general no guarantee of uniqueness or even existence of
a nonequilibrium steady state.

Another problematic aspect of far from equilibrium steady states is the diffi-
culty in defining a thermodynamic limit, where the number of particles, volume,
and other extensive variables go to infinity such that their ratios are finite. The
presence of strong gradients rapidly causes huge variations in temperature, den-
sity, and so on, leading to physically unrealistic scenarios. This difficulty is
solved in the linear regime by demanding that the variations in such quantities
remain fixed, so that their gradients approach zero in the thermodynamic limit.

There are a number of equivalent statements of the second law, and as many
approaches to the related issues of irreversibility and entropy as there are texts
on thermodynamics. Some of the more important ideas are sketched below with
their relation to the Lorentz gas and nonequilibrium stationary states.

2.2 The Clausius entropy

Just as the notion of temperature can be understood in a qualitative manner
from the direction of the flow of thermal energy, it is clear that the existence
of irreversible processes implies that there is a property of the system, namely
the entropy, that remains constant in reversible processes and increases in ir-
reversible processes. A unique state of maximum entropy then corresponds to
equilibrium, because there are no more states to which the system can go. We
will usually assume (quite reasonably for fluids, at least) that there is only one
equilibrium state for given constants of the motion (energy, number of particles,
volume) corresponding to maximal entropy.

Historically the first quantitative statement in this direction, due to Clau-
sius, defines the change in entropy as a system moves quasistatically from one
equilibrium state to another. Specifically,

dgq

ASc= [ = (1)
where S¢ is the entropy (defined up to an additive constant), T' is the tem-
perature, and ¢ is the thermal energy injected into the system from a thermal
reservoir at the same temperature as the system. “Quasistatically” means a
limit in which all time derivatives approach zero. It disallows processes such
as the free expansion of a gas when a partition is removed; such processes are
inherently irreversible. The temperature can be defined from the equation of



state of an ideal (in practice, dilute) gas, that is, proportional to the pressure
times the volume. Alternatively, if we equate S with one of the statistical me-
chanical entropies discussed below, the temperature is then defined from Eq. (1)
or its equivalent.

Note that the thermodynamic definition of entropy only makes sense for a
system at or very close to equilibrium. Once we know the entropy of a particular
substance as a function of temperature (or energy density) and pressure (or mass
density) at equilibrium, the definition can be extended to systems in “local
equilibrium”, including stationary states close to equilibrium, by assuming the
extensive property, that is, the total entropy of a system is equal to the sum
of the entropies of its subsystems, and that the subsystems can be considered
close to an equilibrium state.

Extensivity is expected classically when interactions between the particles
are short ranged, which is usually the case. In the large system limit, the
interactions reduce to boundary terms which are much smaller than the bulk
effects. Notable exceptions to extensivity include some quantum systems (for
example Bose-Einstein condensation) and gravitational systems (for example
black holes). When there are strong interactions between subsystems it does
not make sense to consider the Clausius entropy of the subsystems.

2.3 Entropy production

It is possible to apply the above prescription to nonequilibrium stationary states
that are close to equilibrium. The entropy of the region under consideration does
not vary with time, due to stationarity. However, the irreversible processes cause
an overall increase, or production of entropy, so that thermal energy released
into the environment increases its total entropy. Thus we have

0= Sness = Sirr + Sin (2)

where Spess corresponds to the nonequilibrium steady state, Siyr is the irre-
versible entropy production, and Siy, is the (negative) flow of entropy in from the
environment. Such entropy balance equations figure prominently in the Baker
map approaches [10] in various notations. The irreversible entropy production
and entropy flux are also independent of time from stationarity,

Sirr =0=5in . (3)

The origins of the entropy flux S’in depends on the nature of the system. An
electric current density J is driven by an electric field E that does work but
does not affect the entropy. This work is converted into an equivalent amount
of thermal energy that then leaves the system, taking with it an entropy flux
given by (1). Thus we have

Sirr = _Sin = (4)

where V' is the volume. Similar considerations hold for shear flow. In the case of
heat conduction, S;, contains contributions from heat (and hence entropy) flow



in from a higher temperature and out to a lower temperature. The amounts of
heat are equal since energy is balanced, but more entropy flows out owing to the
different temperatures in the denominator. Entropy is also produced when two
substances mutually diffuse; see the discussion on the Gibbs mixing paradox in
Sec. 3.4 below. The connection between mutual diffusion and heat flow is more
difficult to understand, but it is clear that work or a temperature differential is
required to separate a mixture. Whatever the situation, the entropy production
is always the product of a force and a flux. The second law, which requires
positive entropy production, thus determines that transport coefficients (the
quotient of a flux and force) are positive.

For steady states far from equilibrium, it is not clear how to calculate the
entropy from (1) since there is no equilibrium state with which to compare the
system. However, if it is possible to couple the system reversibly to a thermal
reservoir close to equilibrium, all of the above arguments remain valid so the
entropy production can be calculated from the forces and fluxes as above. There
are some possible pitfalls to this approach, for example some steady states far
from equilibrium have different effective temperatures for particles moving in
different directions. This makes it difficult to imagine how to construct the
required thermal reservoir in principle, let alone in practice. Typically such
details are ignored, the above equations are applied, and an additional postulate
is added to the theory.

3 Statistical mechanics

3.1 The Boltzmann entropy

Now we turn to the statistical viewpoints of Boltzmann and Gibbs. The macro-
scopic thermodynamic variables fluctuate due to microscopic movement of the
molecules, with the exception of exactly conserved quantities such as the energy
of an isolated system. This means that, for example, the second law of ther-
modynamics is not always valid. The local temperature (as measured by the
average kinetic energy over a small region) of an equilibrium system fluctuates,
leading to a transition from a state with uniform temperature to a state with
slight variations in temperature. However, large fluctuations as measured by a
large decrease in entropy are very rarely observed.

In order to quantify the frequency of certain fluctuations, and because we do
not have precise information about the positions and momenta of macroscopic
numbers of particles (and also for reasons related to quantum mechanics, which
we shall ignore here), it makes sense to describe a system in terms of probabil-
ities. Probabilistic assumptions about the initial conditions of the microscopic
particles can also explain the paradox of irreversibility, how the second law of
thermodynamics is compatible with perfectly reversible Newtonian microscopic
equations of motion. The time reverse of a dissipative process shows large vio-
lations of the second law, but is not observed because the initial conditions are
not very probable for some reason, depending on the physical or philosophical



justification of the probabilistic assumptions of the theory.

For Hamiltonian systems with, say, NV particles moving in d dimensions, the
most natural probability measure on the 2Nd—1 dimensional surface of constant
energy I is the (restricted) Lesbesgue measure dI' = §(H — E)dz™N?dpNd/hNe,
the postulate of equal a priori probability. In the nineteenth century the only
real justification for this was the theorem of Liouville that this measure is pre-
served by Hamiltonian dynamics (see Sec. 3.4). Ergodicity implies that this
measure does indeed give the correct time averages, but the time required for a
system to closely approach all points in the phase space with even very coarse
precision is astronomical for systems with many degrees of freedom. See [1] for
a more detailed discussion of ergodicity. Many of the current models of nonequi-
librium stationary states do not preserve Lebesgue measure, so other invariant
measures are more appropriate, and will be discussed later. The above measure
is normalised by powers of Planck’s constant i for dimensional reasons. This
particular normalisation can be justified in quantum mechanics, but here we
note that it sets the (classically) arbitrary additive constant associated with the
entropy.

The Boltzmann definition of entropy considers that for each configuration of
macroscopic system variables X, there is a region in microscopic phase space of
volume [, dI'. Then the entropy corresponding to the configuration is

SB(X) = k‘B ln/XdF (5)

where kp is Boltzmann’s constant and has dimensions of an energy divided
by a temperature, see (1). The idea is that a system will be most likely to
move to one of the very large regions of phase space corresponding to greater
entropy. The probability of finding the system in a given state is thus propor-
tional to exp[—(So — Sp)/kp] which is virtually zero for a large system not in
its maximum entropy state Sy since the entropy is proportional to the number
of particles. The Boltzmann entropy of a unique equilibrium state is thus the
logarithm of the volume of the whole surface of constant energy, and agrees
with the Clausius definition in the cases where they can be compared, that is,
equilibrium systems with many particles. Boltzmann’s entropy and its relation
to irreversible processes is discussed in Ref. [12].

In order to apply this to nonequilibrium steady states, decisions must be
made about the most natural phase space for a system in contact with its envi-
ronment (discussed extensively below) as well as the correct measure to use. In
this context it should be noted that recent papers of Rugh using the Boltzmann
entropy to define a dynamical temperature for Hamiltonian systems [13, 14]
have been applied to nonequilibrium systems [15] by means of the Hamiltonian
formulation of the isokinetic thermostat (Ref. [16], see Sec. 5.4 below), and also
to identify the heat flow in systems with inhomogeneous shear [17]. Apart from
this, most application of entropy to nonequilibrium steady states seems to be
closer in spirit to the Gibbs approach, Sec. 3.4.



3.2 The Boltzmann transport equation

Another type of statistical assumption appears in the Boltzmann equation which
describes dilute gases at or away from equilibrium. The quantity of interest is
the single particle distribution function f(x,v,t) which gives the probability
density of finding a particle with the given position and velocity at a certain
time. A straightforward derivation based on the equations of motion gives
?+V-me+lFe-V,,f:Fcou (6)
t m
where m is the mass, F. is the external force on each particle, and the term on
the right hand side denotes the effect of the collisions between particles.

For a dilute gas without long range interactions between the particles, only
two-body collisions contribute, however an exact treatment requires the two-
particle distribution function fa(x1,x2,v1, va,t) which gives the joint probabil-
ity of two particles entering a collision. The assumption made by Boltzmann,
called the stosszahlansatz, consists of replacing the two-particle distribution by
the product of two one-particle distribution functions, thus assuming that the
particles entering the collision are uncorrelated.

Boltzmann showed in his celebrated H-theorem that a certain quantity,

H(t) = /dxdvf(x,v,t) In f(x,v,t) (7)

never increases as f evolves under (6) with the stosszahlansatz. In fact, —kg H
can be identified with the entropy (up to an additive constant), and Boltzmann
argued that this was a derivation of the second law.

The Boltzmann equation describes a dilute gas approaching equilibrium well,
but the addition of this statistical assumption has the effect of ignoring the
fluctuations that are known to occur. The solution of the Boltzmann equation
can never return to a state of smaller entropy, despite the fact that this is
known to happen occasionally. For this reason, the statistical assumptions going
into the Boltzmann equation, although useful for calculating the properties of
nonequilibrium gases, are not viewed as a fundamental explanation of the second
law. See Ref. [18] for further discussion.

3.3 The random Lorentz gas

The Boltzmann equation is a nonlinear integro-differential equation, and as such
it cannot be solved in most cases without making restrictive and sometimes
physically obscure approximations. One case that illustrates the properties of
the Boltzmann equation well, while remaining simple enough to solve is the
random Lorentz gas [19, 20].

The random Lorentz gas can be motivated on physical grounds as follows:
Suppose we have a dilute gas in equilibrium, consisting of a mixture of two
species. Both are spheres (or in two dimensions, disks) that are rigid (so any
internal degrees of freedom are ignored), and hard (so the range of interaction is
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Figure 1: The random Lorentz gas. In the Lorentz Boltzmann equation (10)
below, the particle arrives in direction 6 from direction 7 + 6 + 2.

much smaller than other length scales) with one much larger and heavier than
the other, and with number densities (number per unit volume) such that there
are many more smaller particles, but almost all collisions are between smaller
and larger particles, rather than among the smaller particles. Thus for masses
mg and myp, radii r¢ and rr, number densities ng and n; and dimension d
we require mg <K myp, rs < rr, ng > ny and nsrg_l < nLr%_l. The
equipartition of energy implies that at equilibrium, the average kinetic energy of
each particle is equal, hence the larger particles have much smaller velocities. In
this limit we have a large number of noninteracting pointlike particles colliding
with fixed, randomly placed spherical (or circular) obstacles. The magnitude of
the velocity is a constant of the motion, and changing the velocity is equivalent
to scaling the time, so we can restrict ourselves to the case of unit velocity,
averaging over the velocity distribution later if necessary. Similarly, scaling the
distance permits us to set the radius of the scatterer equal to unity (there are
other conventions possible, such as setting the mean free path to unity). We
thus have a model with one free parameter, the number density of scatterers n,
called the random Lorentz gas. See Fig. 1.

The designation “random” comes from the placement of the scatterers; a
periodic placement appears naturally from the methods of molecular dynamics,
and is discussed in Sec. 4.2. From a mathematical point of view, it can be
assumed that a random placement ensures that there is no exact relation be-
tween the positions of the scatterers. It is possible to consider an average over
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all such random configurations, however this is generally unnecessary since any
given finite arrangement of scatterers appears to arbitrary precision somewhere
in an infinite arrangement. A random configuration drawn from the correct
distribution can be obtained on a computer by a variant of the Metropolis al-
gorithm [21], in which any initial arrangement (perhaps periodic) is modified
by a large fixed number of attempted random shifts of randomly chosen scat-
terers; any illegal shift resulting in overlapping scatterers is rejected, and the
configuration is unchanged. Note that the number of attempted random shifts
is fixed, not the number of successful shifts. As a model in its own right (but not
for Boltzmann equation approaches), the dilute condition (not included above,
npr? < 1) may be relaxed. It is also possible to consider a model where the
scatterers are permitted to overlap.

Before returning to the Boltzmann equation, and hence the low density limit,
we note an exact result that holds for all densities, that is, the mean free time
between collisions (or distance, since the velocity is one). The mean free time
can be computed exactly for all billiard systems [22], and this calculation can
be applied to the (infinite) Lorentz gas by carefully taking a large system limit.
Briefly, the argument is that the total volume of phase space can be computed
in two ways, one by subtracting the volume of the scatterers from the total
volume, and the other by considering the mean path length over each point on
the boundary. The result in two dimensions is

__meQ 1w
TT19Ql T2 2 ®)
and in three dimensions is
_4Ql _ 1 4
= — = — — — 9
T 0Q| mn 3 9)

where |@| is the volume of the billiard and |0Q)| its boundary. The last equality in
each case corresponds to the non-overlapping Lorentz gas with n scatterers per
unit volume. It is always positive; n can never be larger than the close-packed
values. These formulas are valid regardless of the locations of the scatterers,
so they apply to both the random and the periodic Lorentz gas as long as the
scatterers do not overlap.

The Boltzmann equation for the Lorentz gas in the low density limit is linear,
because the probability distribution of one of the objects involved in a collision
(the fixed scatterer) is constant. For example, in two dimensions we have for
the single particle distribution function f(z,y,6,t) where 6 € R/27Z is the
direction of the velocity:

0 0 )
(a + cosﬂa + sm98—y> flz,y,0,t) (10)

w/2
= / f(z,y,m+ 6+ 2x)ncosx dx — 2nf(x,y,0,t)
—m/2
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Here, the external force in (6) is zero, and the right hand side contains two terms
giving the rate of particles entering and leaving a given velocity direction, see
Fig. 1. Without explicitly solving the equation, it can be seen that the effect of
the collision operator is to redistribute the 2n f to the other velocity directions,
making the distribution flatter and smoother. We can immediately write down
a solution in the form

f(z,y,6,t) = Z fm exp(ikyx + ikyy + imb — ~t) (11)

m=—0o0

which is substituted to obtain

ik + k tky — k
('Ym_'Y)fm"‘Tyfm—l“‘Tyfm-i-l =0 (12)
with ,
&nm
Tm = T (13)

the decay rates of the modes in the homogeneous case (k, = ky = 0). Perturbing
the homogeneous zero mode with small &, and k, we obtain a “dispersion”
relation

Y0(k) = Dok + O(k*) (14)
with the diffusion coefficient in two dimensions given by
3
Dy = — . 15
>~ 16n (15)
In three dimensions the diffusion coefficient is
1
Dy =— . 16
7 3mn (16)

For general dilute gases, in which the Boltzmann equation cannot be solved
exactly, the diffusion coefficient is obtained by the Chapman-Enskog methods
of standard kinetic theory [23], for which the random Lorentz gas provides
a useful pedagogical example. More calculations and relations involving the
diffusion coefficient of the Lorentz gas are given in later sections. A Boltzmann-
like equation for the Lorentz gas has also been applied to a dynamical problem,
that of computing the Lyapunov exponents and the Kolmogorov-Sinai entropy,
see [24] for a detailed discussion.

At higher densities the Boltzmann equation is no longer a good approxima-
tion, and the physics changes due to the appearance of power law decay in the
correlation functions, the “long time tails”, both for the random Lorentz gas
and more general gases [20, 25]. The Lorentz gas has a velocity autocorrelation
function decaying as t~%/2*1, sufficient to lead to nonanalytic higher terms in
Eq. (14), see Secs. 4.3, 5.6 and Refs. [20, 26].

We leave the random Lorentz gas at this point to continue our discussions of
entropy in nonequilibrium stationary states, but it is worth noting that many
of the results obtained in connection with molecular dynamics and the periodic
Lorentz gas in later sections also apply to the random case.
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3.4 The Gibbs entropy

The other statistical formulation of the entropy we will consider is due to Gibbs.
Given an arbitrary smooth probability density p(T") on phase space the Gibbs
entropy is defined as

Sa = —kB/p(F) In p(T)dT" . (17)

This is similar to the Boltzmann H function of Eq. (7) except that p is de-
fined on the whole of accessible phase space compared with the single particle
distribution function f. The accessible phase space I' could be the constant
energy surface of an isolated system, but will be generalised below when other
ensembles are discussed.

The Gibbs entropy is also extensive (Sec. 2.2) if it is noted that when there
are N identical particles, the phase space is a subset of R>V?/Sy where Sy
is the permutation group of order N. In terms of the standard “unreduced”
phase space (which is easier to compute with) this means multiplying p by a
factor N! when the particles are indistinguishable. The difference between the
entropy of identical and distinguishable particles is called the entropy of mixing,.
It solves the Gibbs paradox which notes that mixing of identical substances has
no effect, while mixing of different substances (without extraction of work) is
an irreversible process. In other words, self diffusion is not associated with an
increase in entropy, and is not observable without artificial means such as a
“tagged particle”, whereas mutual diffusion is a true irreversible process, asso-
ciated with an increase in entropy and directly observable.

This is relevant to the Lorentz gas in that when the Lorentz gas is considered
to be a mixture of two different species (as in Sec. 3.3) there is an entropy pro-
duction associated with the diffusion coefficient, and when it is considered to be
a model of one species (as in Sec. 4.2) there is no entropy production involved.
The physics of entropy production is thus connected to the interpretation of the
model rather than anything in the model itself, such as the equations of mo-
tion. This illustrates the need for caution whenever establishing an equivalence
between features of the model and physical reality.

The Gibbs entropy can be used to derive the ensembles of equilibrium sta-
tistical mechanics as follows: The maximum entropy (subject to normalisation
of the probability) corresponding to the equilibrium state of an isolated system
is attained when p is a constant, consistent with the postulate of equal a priori
probability, Sec. 3.1. If the system can exchange energy with the environment,
the constant energy constraint on phase space is replaced by an average energy
constraint on p,

(B) = [ E@p(r)ar (18)

in addition to conservation of probability. The extra constraint when maximis-
ing the Gibbs entropy gives a Lagrange multiplier which turns out to be related

13



to the temperature. In this manner the canonical ensemble

p(T) = exp (,;B—’;) (19)

is derived. Similarly, when the system can exchange particles with the environ-
ment, the constraint of fixed N is replaced by a Lagrange multiplier which is
related to the chemical potential u, and the phase space is expanded to include
all numbers of particles. For more details see for example Ref. [27]. In general,
for each constant of the motion (in a general sense) E, N and volume V there
is a thermodynamic conjugate variable 7', u and the pressure p respectively.

Given its success in equilibrium statistical mechanics, the possibility of ex-
tending the phase space to allow for interactions with the environment, and the
appearance of conjugate variables analogous to the conjugate forces and fluxes
of irreversible thermodynamics (Sec. 2.3), it would seem that the Gibbs entropy
is the natural candidate for extension to nonequilibrium systems. Unfortunately
there is one major obstacle, which we now discuss.

Suppose an isolated system with phase point I has equations of motion

dr
— = F(T 20
= F(T) (20)
then the Liouville equation for a probability density p(T") is

ap
ot

and hence (after two partial integrations)

+V-(Fp)=0 (21)

d
dSa _ /(V-F)de‘ . (22)
dt
For a Hamiltonian system
V-F=V,-¢+Vy,-p=V,-V,H-V,-V,H=0 (23)

so both the phase space volume and the Gibbs entropy are constants of the
motion:

dp _Op _

=g TE Vp=0 (24)
dSe
@ (25)

The Gibbs entropy as it stands cannot explain the second law of thermodynam-
ics.

The reason behind this becomes clear as we realise that a Hamiltonian system
(or any system with phase space volume conservation) moves probability density
around, but does not alter its initial values. If the system has chaotic dynamics
(say, mixing), an initially smooth distribution will be stretched and folded to
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become rapidly varying in the stable directions, but remains continuous for all
times. The Gibbs entropy gives minus the amount of information (in the sense of
information theory) we have about the state of the system, and this information
does not change under incompressible time reversible deterministic dynamics.

It is clear that any observation of a real system is uncertain to some degree,
so that from the point of view of measuring the system, a rapidly varying prob-
ability distribution may be replaced by its average over the scale of resolution.
This procedure is called coarse graining, and the smoother distributions gener-
ated by such a procedure have a higher entropy than the initial distributions.
Like the Boltzmann entropy, for which the definition of the state X is some-
what arbitrary, the coarse grained Gibbs entropy depends on the observer. The
paradox is that the second law of thermodynamics is valid however (and indeed
whether) the system is being observed. Quantum mechanics is not obviously
helpful in explaining this dilemma, since the second law is observed in classical
computer simulations. A critical review of this issue as applied to recent work
along the lines of the thermostatted and open models discussed below (see also
Sec. 5.3) concludes:

The above discussion on the coarse grained approach to a complete
dynamical theory of irreversible thermodynamics pointed out diffi-
culties which we found in the current formulations. Therefore it
seems that a coarse grained entropy approach based on Sg does not
provide a satisfactory connection with irreversible thermodynamics,
... further study of the connection of the dynamics of particle sys-
tems in nonequilibrium states and irreversible thermodynamics is
still required. [28]

4 Equilibrium molecular dynamics

4.1 Numerical methods

At this point we move from statistical to dynamical descriptions of many parti-
cle systems, in particular nonequilibrium stationary states. To construct math-
ematical models it is helpful to take inspiration from computer algorithms used
to study such systems. Aggregates of millions of particles can now be simu-
lated on a computer. In this way, equilibrium and nonequilibrium properties of
materials may be computed using any desired intermolecular forces and initial
conditions [29, 30, 31]. Compared to analytic calculations, many restrictions
such as simplicity of the forces, approximations and assumptions can be elim-
inated. Compared to experiments, the results are only as good as the model,
but it is possible to simulate experimentally inaccessible regimes. Compared
to mathematical proofs, the results are usually not rigorous, however while a
system may not be proved ergodic (for example), empirical limits may be placed
on non-ergodic behaviour, sufficient to determine whether any such non-ergodic
behaviour is physically relevant.
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It is difficult to put rigorous bounds on the accuracy of numerical simulation
results, particularly when the dynamics is exponentially unstable. Often there
is a shadowing theorem stating that the numerical trajectory is close to some
exact trajectory of the dynamics, however this does not guarantee that the exact
trajectory is typical with respect to the desired distribution of initial conditions.
Sometimes a simulated low dimensional attractor can result in a periodic orbit
due to the finite number of states accessible to the dynamics. The averages and
other properties of this periodic orbit are quite different to the dynamics as a
whole. In this case, the addition of small amounts of noise to the dynamics often
leads to more realistic trajectories, and can actually be used as a mathematical
definition of an attractor [32]. When the correlation dimension of the attractor
is sufficiently large (for example, 2) precision related periodic orbits are rarely
observed, and standard tests such as varying the precision of the calculations
usually indicate that the results have probably converged.

The results of numerical simulations are as good as the algorithms used.
While attaining optimum speed and accuracy is somewhat of an art form, there
are a number of general methods and principles. The equations of motion for
simulations are Newton’s equations of motion, reducing in the simplest case of
N spherical identical particles to

. DPi
X = (26)
. 0p(rij
pi = — Y —‘Z;(X:) (27)
J#i
rig =[x —x] (28)

interacting via a specified potential ¢, which can be calculated from pair corre-
lation data obtained in diffraction experiments.
The Lennard-Jones potential,

ous) =1e|(2)" = (2)'] (29)

r

is quite realistic for monatomic fluids such as argon. There are of course more
elaborate models involving interactions between three or more particles for spe-
cific substances, for example carbon [33], and in principle there are also quantum
effects. Here o and € are parameters setting the length and energy scales, respec-
tively. In simulations mass, length and time are scaled so that m =0 =€ = 1.
When there is more than one type of particle it is possible to scale the posi-
tions, momenta and forces by appropriate factors of the squareroot of the mass
in order to remove m and € from the problem, however the differing radii remain
intrinsic to the dynamics.

It is sometimes advantageous to eliminate the possibility of bound states
generated by the negative part of the potential, and also to make it finite range
to shorten the computation. For this reason it is common to use a shifted and
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Figure 2: Interparticle potentials, scaled so that 0 = € = 1.

truncated version, called the Weeks-Chandler-Andersen [34] potential,

(30)

1/6
¢WCA(T):{§LJ(T’)+1 r <264

r> 26g

which has a continuous first derivative across the boundary.
Still simpler, and surprisingly realistic at low to moderate densities is the

hard ball potential,

x© r<o

‘bHB(T):{ 0 r>o

See Fig. 2. The great advantage of hard potentials for simulations is that the
solution of the equations of motion is known, so it is not necessary to use
integration routines which are much slower than substitution into an explicit
formula and often require relatively small steps for accuracy. The disadvantage
from a physical point of view is the absence of a characteristic energy scale,
leading to a trivial dependence of thermodynamic qunatities on the temperature.
Nevertheless, hard ball gases exhibit fairly realistic phase transitions in terms
of pressure and density.

The boundary conditions are extremely important for both equilibrium and
nonequilibrium simulations. For example, suppose we have 10 particles in 3
dimensions, so 10 particles in each direction. Suppose also that the boundary
conditions are not treated correctly, affecting a boundary layer of one particle.

(31)
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This is a conservative estimate, since a dilute system would have a longer mean
free path and hence a thicker boundary layer. The number of particles not on
the boundary is 8 = 512. Thus almost half of the particles are affected by a
poor choice of boundary conditions in this example.

Often we are interested in the bulk properties of a medium, far from any
physical boundary. For these properties the natural boundary conditions are
periodic, viewed either as a unit cell infinitely repeated (corresponding to an
infinite system with a special symmetry) or as a finite system where particles
that exit via one boundary reappear at the opposite boundary. Both viewpoints
are useful, depending on what is being discussed. The most common periodic
cells for molecular dynamics simulations are either chosen for simplicity (square,
cube), or based on a close packed array, particularly for high density (hexagonal,
rectangle with side ratio a rational multiple of v/3, similar choices in three
dimensions). The hexagonal case is of special interest for the Lorentz gas, as it
can lead to a finite horizon, see Sec. 4.2.

It is clear that equilibrium properties can be calculated in this way, but
the correct approach to nonequilibrium properties is far from obvious. The
many possible schemes of theoretical and/or practical interest may be broadly
categorised as follows:

1. Linear response (Green-Kubo) formulae from which linear transport coef-
ficients may be calculated from purely equilibrium simulations.

2. Homogeneous molecular dynamics, where the contact with the environ-
ment is simulated by driving forces on each particle, thermostat “fric-
tional” forces, and (for shear flow) “sliding brick” boundary conditions.

3. Inhomogeneous systems driven entirely by boundary effects.

4. Inhomogeneous systems with a combination of boundary effects and bulk
effects such as thermostats.

The most efficient methods for calculating the linear transport coefficients
are the homogeneous thermostatted approaches, which is what they were de-
signed for. The other approaches nevertheless have a great deal of theoretical
interest, including a number of analytic relations between dynamical (micro-
scopic) and thermodynamic (macroscopic) properties.

The calculation of nonequilibrium properties from equilibrium simulations
is clearly limited to situations close to equilibrium; beyond linear transport
coefficients the response is usually nonanalytic as in Sec. 5.6. For the other
approaches, the degree to which far from equilibrium predictions can be made
depends on the physics. A system far from equilibrium that remains homoge-
neous must usually radiate heat (by phonons, photons, neutrinos etc. with long
scattering lengths) rather than conduct it. Similarly, boundary driven nonlin-
ear effects are more strongly affected by the choice of boundary conditions than
near equilibrium. For reasons such as these, far from equilibrium situations need
to be put on a more individual basis, not to say that they don’t share many
properties in common.
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The remainder of this article discusses a number of these schemes in detail,
specifically Green-Kubo formulae and some thermostatted and boundary meth-
ods. These are illustrated using the Lorentz gas, from which general properties
of nonequilibrium steady states can be understood and discovered, and to which
we turn now.

4.2 The periodic Lorentz gas

What is the simplest possible molecular dynamics model? If we use periodic
boundary conditions, momentum is conserved, so a single particle moves triv-
ially with constant velocity. The simplest interaction potential is the hard ball,
Eq. (31). Two identical hard rods in one dimension exchange their velocities
on collision, again leading to trivial dynamics. Thus we need two hard disks
moving in two dimensions under periodic boundary conditions.

Assuming there is no drift (that is, no centre of mass motion) and moving to
relative coordinates, we see that the problem of two hard disks is equivalent to
a point particle colliding with a disk with twice the original radius in periodic
boundary conditions or (equivalently) on a periodic lattice of such scatterers.
This is the periodic Lorentz gas. As a model it differs only from the random
Lorentz gas, Sec. 3.3 in the location of the scatterers and possibly whether they
overlap, but the interpretation here is quite different.

There are three possible regimes in the periodic Lorentz gas, depending
on the shape of the periodic cell and the size of the hard disks, see Fig. 3.
Because the reduction to relative coordinates has the effect of doubling the
radius, it is possible for the disks in the reduced case to overlap, often leading to
a trapped scenario where there is no diffusion. It is possible to define a viscosity
however [11]. When the disks do not overlap, it is possible for a hexagonal cell
to have an upper bound on the time between collisions, and the Lorentz gas is
said to have finite horizon, and there is normal diffusion defined by (z2) ~ t,
see (35) below and Ref. [35]. This is similar to the random Lorentz gas of Sec. 3.3
which has zero probability of an infinite trajectory, and also normal diffusion.
For square, rectangular, and three dimensional cells, non-overlapping disks have
an infinite horizon, leading to anomalous diffusion of the form (x2) ~ tInt (see
Refs. [36, 37] for two dimensions).

The periodic cell in two dimensions is usually square, rectangular or hexag-
onal. In each of these cases, the Lorentz gas is dynamically equivalent to a
finite billiard of the same shape and size and with hard wall boundaries. This
is because a billiard with reflections at the boundary can be extended by re-
flecting (rather than translating) the domain across each straight boundary. In
addition, the square, rectangle and hexagon are the same whether reflected or
translated, so reflecting boundary conditions are equivalent to periodic bound-
ary conditions. Thus the Lorentz gas with a square periodic cell is equivalent to
the Sinai billiard, which contains a circular scatterer at the centre of a square
billiard.

Common to many models with hard collisions, it is often convenient (also
for nonequilibrium extensions discussed below) to consider the natural Poincaré
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Figure 3: The periodic Lorentz gas with hexagonal lattice. The scatterers have
unit radius. There are three regimes depending on the spacing w: (a) Infinite
horizon, w > 4/v/3 — 2; (b) Finite horizon, 0 < w < 4/v/3 —2; (c) Overlapping,
V3-2<w<0.

section determined by the collisions, replacing the flow in continuous time by
a map from one scatterer to the next, together with useful phase functions de-
rived from the flow such as the time between collisions and the displacement
between the centres of the initial and final scatterers. For the two dimensional
Lorentz gas this corresponds to a two dimensional map, with the variables given
by position on the scatterer and outgoing direction of the particle. For periodic
models, the dynamics does not distinguish between scatterers due to transla-
tional invariance, but it is necessary to keep track of the displacement of the
particle from its initial position in order to calculate, for example, the diffusion
coefficient.

4.3 Green-Kubo relations

The method of Green [38] and Kubo [39] computes the linear transport co-
efficients in terms of time correlation functions of quantities computed in an
equilibrium state. The relations can be derived either from linear response
theory or an approach based on the Chapman-Enskog method of solving the
Boltzmann equation (for example see Chap. 6 of Ref. [7]). Here we give a short
derivation of the Green-Kubo relation for the diffusion coefficient, then discuss
various extensions.
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We begin by solving the diffusion equation for the probability density of
finding a particle at a given position and time P(x,t), which is the Boltzmann
distribution function f(x,v,t) integrated over velocity in the macroscopic limit
(large times and distances),

oP

— =DV’P . 32

ot (32)
We used a Fourier transformed version of this equation to define the diffusion
coefficient of the random Lorentz gas in Sec. 3.3. The equation is linear, so the
general solution is an integral over the Green’s functions given by the solution
for an initial Dirac delta distribution P(x,0) = §(x — Xg), that is,

P(x,t) = (4xDt)~4? exp {— %} (33)

where d is the spatial dimension. The mean square displacement of a particle
is thus

((x¢ —x0)%) = /(x —x0)?P(x,t)dx = 2dDt (34)

We expect the diffusion equation to approximate particle dynamics only at
sufficiently large times, larger than typical correlation times since the diffusion
equation contains no memory, and we have also neglected the velocity degrees
of freedom. Thus we have

_ i (Gt —%0)%)
D= Jim == (35)
which is the Einstein relation for the diffusion coefficient. The diffusion coeffi-
cient is thus given (assuming the limit exists) by

L lim i((xt —x0)%)
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which is the Green-Kubo relation for diffusion. This relation has been used to
calculate the diffusion coefficient of the periodic Lorentz gas [35].

A superdiffusive case where the mean square displacement grows faster than
linearly with the time, such as when there is an infinite horizon, then corresponds
to an infinite integral above, as when the velocity autocorrelation function de-
creases as 1/t or slower with a finite number of sign changes. Systems that are
subdiffusive with a slower growth of the mean square displacement correspond
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to zero integral which is harder to observe, and not expected in the Lorentz gas
unless a significant proportion of the disks are touching or overlapping.

Truncating the correlation integral at finite time gives (omitting the limits
above) a time dependent diffusion coefficient, proportional to the time deriva-
tive of the mean square displacement at short times. Such a time dependent
diffusion coefficient is useful to describe the “transient” response, that is, before
correlations have died away.

Anisotropic systems can diffuse at different rates in different directions. The
diffusion coefficient is replaced by a real symmetric positive definite matrix D;;,
which can then be diagonalised leading to d different coefficients along the co-
ordinate axes. The symmetries of the Lorentz gas in a square or hexagonal
lattice preclude such an anisotropic diffusion coefficient, however it occurs nat-
urally with a rectangular lattice. As noted above, a rectangular lattice of one
scatterer has an infinite horizon and hence anomalous diffusion, so at least two
scatterers per unit cell are required to obtain anisotropic normal diffusion. Here
we typically refer to the hexagonal Lorentz gas and write simply D, however it
is easy to generalise most equations, for example (32,49) to the anisotropic case.
Nonlinear response is more general, and leads to anisotropic behaviour even for
the more symmetric hexagonal case (see Sec. 5.6).

A more general macroscopic equation for P(x,t) would involve more spatial
derivatives, corresponding to behaviour at shorter distances, and nonleading
terms in the dispersion relation (14). The coeflicients of such terms are called
linear Burnett and super-Burnett coefficients (not to be confused with nonlinear
Burnett coefficients involving higher powers of the forces). The time correlation
function expressions for these coefficients [6] involve cumulants of the form

(vovgvgvpr) — (Vov) (Vpver) — (Vover ) (Vever ) — (Vv ) (Vever)

integrated over all times. They are in general less convergent, so are expected to
diverge for the random Lorentz gas due to its power law decay of correlations [20,
25]. This divergence corresponds to a nonanalytic dispersion relation (14), see
Ref. [26]. The map corresponding to the finite horizon periodic Lorentz gas has
exponential decay of correlations [40, 41], probably leading to convergence of
all coefficients. See Ref. [6, 42] for the connection between this map and the
diffusion and Burnett coefficients calculated in continuous time.

In general, all linear transport coefficients can be written in terms of integrals
of time correlation functions similar to (36), with the velocity replaced by the
relevant thermodynamic flux. For example, the viscosity is computed in terms of
correlations of the shear stress, and thermal conductivity is computed in terms
of correlations of the heat flux. All correlations are computed at equilibrium.
Details can be found in Ref. [30].

There are a couple of limitations to the use of Green-Kubo relations for
computing properties of nonequilibrium systems. The most obvious is that
these relations apply only to linear response; they cannot be applied to systems
far from equilibrium. The other limitation is that correlation functions being
statistical in nature are difficult to calculate to a high degree of precision, com-
pounded by the necessity of a numerical integration, often with a poor rate of
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convergence. Both of these difficulties can be alleviated using thermostats, the
subject of the next section.

5 Nonequilibrium molecular dynamics

5.1 Introduction to thermostats

A thermostat, as its name implies, is a device constructed to control the temper-
ature. In the context of molecular dynamics simulations, it is a term added to
the equations of motion of a system to simulate the effects of the environment.
As such, thermostats serve two main purposes:

1. They allow simulation of nonequilibrium steady states. As noted in Sec. 2.1,
nonequilibrium stationary states necessarily have contact with the envi-
ronment. There are external forces and heat flows. In such situations a
thermostat is needed to keep the energy of the system constant (either
exactly or in an average sense), so that the system remains in a stationary
state despite external forces that tend to increase the energy.

2. They allow simulation of different ensembles. Sec. 3.4 describes equilib-
rium ensembles in terms of contact with the environment, and also pairs
of conjugate variables. The Nosé-Hoover thermostat (below) allows simu-
lations in the canonical ensemble, by fixing the temperature and allowing
the energy to vary. Similarly, thermostats may be designed to fix almost
any system variable (for example kinetic energy, total energy, current,
pressure, enthalpy) while leaving conjugate variables to vary. The various
thermostats can thus be understood as the ensembles of nonequilibrium
statistical mechanics. It is expected that they should lead to equiva-
lent results in the thermodynamic limit (except for fluctuations in the
fixed quantities) as do the equilibrium ensembles, at least in the linear
regime [30, 43, 44].

An alternative to a thermostat where environmental effects are put in the
equations of motion is to simulate such effects at the boundary, which we discuss
in Sec. 6; an advantage of thermostats is that they permit the simulation to
remain homogeneous, see Sec. 4.1.

A common objection to the use of thermostats is that they add “unphysical”
forces to Newtons “exact” equations of motion. The fact is that any scheme
used to replace an unbounded environment by a finite number of degrees of free-
dom (including alternative boundary methods) must unavoidably make drastic
approximations. Some facts that inspire confidence in thermostatted methods
are their ensemble equivalence (above) and their agreement with Green-Kubo
relations for linear transport coefficients. Far from equilibrium, thermostatted
approaches should apply whenever the bulk of the system is in contact with
the environment, either because it is two dimensional, or thermal transfer by
radiation is sufficiently strong.
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5.2 Gaussian and Nosé-Hoover thermostats

A simple method of ensuring that a nonequilibrium molecular dynamics sim-
ulation remains stationary in time despite external forcing is to periodically
renormalise the velocities of all the particles to keep the (kinetic or internal)
energy constant. If the time interval between successive renormalisations is re-
duced to zero, we obtain the Gaussian thermostat, discovered independently for
the kinetic energy by Hoover and collaborators [45] and for the internal energy
by Evans [46]:

X = p
p F,+F. —ap (37)

Here the mass m = 1 and the particle indices have been suppressed, leading to a
description in terms of Nd-dimensional vectors. F; contains all the interparticle
forces as described in Sec. 4.1, F, contains external driving forces, and « is a
scalar thermostat “friction coefficient” which is the same for all particles and
directions.

The value of « is determined by the desired constraint: For constant kinetic
energy we have the Gaussian isokinetic thermostat,

- (Fi+Fe)-p (38)
PP
where the dot product includes a sum over the particles. It is easily verified that
the kinetic energy K = p - p/2 is identically preserved by these equations. The
term “Gaussian” applies to Gauss’ principle of least constraint, whereby these
equations may be derived by demanding the smallest constraint force (according
to the above dot product) at any time, see [30, 47].
For constant internal (kinetic plus interparticle) energy we have the Gaussian
isoenergetic thermostat,
Fe P
PP
which preserves K + ¢; assuming that the internal forces are conservative, F; =
—Vo;.
In this notation the Nosé-Hoover approach treats the thermostatting multi-
plier a as an additional dynamical variable with a feedback mechanism, so we
have for the Nosé-Hoover (isokinetic) thermostat

QAGIE = (39)

ANHIK = %(K — Ky) (40)

where () is a constant that determines the time scale of the feedback and Kj
is the desired kinetic energy, usually NdkpT/2. This is (apart from slight
differences in notation) Hoover’s reformulation of the Nosé thermostat discussed
in Sec. 5.4, see Refs. [48, 49, 50]. The feedback operates as follows: Suppose
the initial kinetic energy becomes too high, then ¢ is positive, leading to more
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damping in (37) which then decreases the kinetic energy, and similarly if the
kinetic energy becomes too small. It is also possible to replace the K’s above
by the internal energy to construct a Nosé-Hoover isoenergetic thermostat.

All of these thermostats simulate the exchange of thermal energy between
the system and its environment. On the average this flow is outward (zero at
equilibrium), corresponding to positive (a), however there is no reason that «
should not become negative occasionally, unlike macroscopic frictional forces.
To be more precise, we can compute the amount of heat being removed by the
thermostat and use irreversible thermodynamics (Sec. 2) to write

. p2

Sirr = T (41)
from which we deduce that the non-negativity of a on average is guaranteed by
the second law.

In the limit of large systems, we expect that all the various processes that
the particles undergo tend to average out, leading to a more or less constant
value of a, as well as various macroscopic variables[51]. This is consistent with
the very low probability of a decrease in entropy in a large dissipative sys-
tem. Because the fluctuations of all thermodynamic quantities are smaller in
large systems (except near phase transitions), different thermostats approach
the same thermodynamic state, another statement of ensemble equivalence.

At equilibrium, that is, with no external force F. it is clear that the isoener-
getic thermostat multiplier a;g is identically zero, while the other thermostats
vary around zero. The Nosé-Hoover thermostat is special in that the equations
generate the canonical ensemble [48, 49, 50], that is, assuming the dynamics is
ergodic (a reasonable assumption in practice for all but the smallest systems
based on numerical work [52]), the probability distribution of x and p (averag-
ing over ) is given by (19). This means that the Nosé-Hoover thermostat can
be (and is) used to simulate an equilibrium system at fixed temperature, rather
than fixed energy.

There are many other types and uses of thermostats. There are specific algo-
rithms for computing all possible transport coefficients. For example, shear vis-
cosity can be computed using “sliding brick” boundary conditions, thermostat-
ted such that the temperature is measured relative to a linear velocity profile
characteristic of Couette flow. Thermal conductivity can be computed by in-
cluding forces that accelerate hot and cold particles in different directions. Both
of these examples are homogeneous, with no dependence of distributions on po-
sition. There are also inhomogeneous algorithms, where different parts of a
system (for example particles sufficiently close or belonging to the walls) are
thermostatted at different temperatures, or at the same temperature relative
to different velocities. Finally, it is possible to apply thermostats to enforce
other ensembles, for example constant pressure (hence fluctuating volume). All
these examples and more are described in texts on nonequilibrium molecular
dynamics [29, 30, 31]. A more recent review of the Gaussian and Nosé-Hoover
thermostats with a discussion of Gauss’ principle and application to the Lorentz
gas is given in Ref. [47].
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5.3 The nonequilibrium Lorentz gas

Just as the random Lorentz gas appears as one of the simplest applications of
the Boltzmann equation (Sec. 3.3) and the periodic Lorentz gas appears as one
of the simplest examples of equilibrium molecular dynamics (Sec. 4.2), so the
(more precisely “a”) nonequilibrium Lorentz gas appears as one of the simplest
examples of nonequilibrium molecular dynamics. We begin with a description
of the “colour diffusion” algorithm for the self diffusion coefficient, see Ref. [30].
This is arguably the simplest nonequilibrium molecular dynamics algorithm, as
it is homogeneous, involves only the usual periodic boundary conditions, and
the external force on each particle is a constant.

The self diffusion coefficient is the limit of the mutual diffusion coefficient
of a mixture of two species that become identical. In the colour diffusion al-
gorithm, each particle is assigned a positive or negative “colour charge” which
(unlike electric charge) has no effect on the interparticle forces, but determines
the interaction with an external “colour field” E.. Thus the external force on
particle i with charge ¢; is F, = ¢;E.. The response to such an external field
is the “colour current”, J. = > ¢;p;/m. The diffusion coefficient (equivalent
to “colour conductivity”) is then proportional to the ratio [(J.)|/|E.| in the
limit |E;] — 0. In order for the time average of the current to make sense,
a thermostat must be applied. From the point of view of calculating the lin-
ear response of a many particle system, it doesn’t matter which thermostat is
applied, or whether it is applied to the whole system or to the two types of
particles separately.

The simplest such case of the colour diffusion algorithm is thus two particles
(one of each colour charge) interacting with a hard ball potential in two di-
mensions with a Gaussian thermostat (since a Nosé-Hoover thermostat has an
extra phase space variable o). The isokinetic and isoenergetic thermostats are
equivalent here, since the internal force is zero outside collisions, and the colli-
sions are not affected by either thermostat. As in Sec. 4.2 we consider relative
coordinates, which reduces the problem to that of a single point particle moving
in a periodic cell under the influence of a constant field F and a thermostat, and
colliding with a single circular scatterer: The nonequilibrium Lorentz gas [53].

The thermostat ensures that twice the energy of the particle, p?/m is con-
stant, so as before it is possible to set the magnitude of the momentum, the
mass and the radius of the scatterer equal to unity by appropriate scaling. The
equations of motion are thus

X = p (42)
p = F-F-pp (43)

Note that the denominator of (38) for agrx may be set equal to unity due to
the constancy of the kinetic energy, so that the equations for the nonequilib-
rium Lorentz gas, generalised to arbitrary dimension and position dependent
external forces apply to many particle systems constrained by the Gaussian
isokinetic thermostat, and hence approximately to other thermostatted systems
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when ensemble equivalence holds. This close connection between the nonequi-
librium Lorentz gas and many particle systems in a nonequilibrium steady state
is extremely useful in discovering and demonstrating general properties of the
latter.

The solution of the isokinetic equations for the Lorentz gas is most easily
expressed in terms of the angle # between the direction of motion and the
field, which is assumed to be in the positive z direction and have magnitude F'.

Specifically p, = cosf and p, = sinf in two dimensions, leading to § = —Fsiné.
Given initial conditions with a subscript 0, the solutions are
t—tp
tan(f/2) = tan(fy/2)exp | — 7 (44)
1 sin @
= ——1 45
v R o <sin 90> (45)

y = yo—<0;90> (46)

with direct generalisations to higher dimensions. Note that the displacement
transverse to the field y —yo cannot exceed 7/ F’; the particle rapidly approaches
the direction of the field. The transcendental functions make it difficult to
determine analytically when a collision with the circular scatterers takes place;
one possible numerical approach is to put a lower bound on the time to the
next collision using a circular approximation to the trajectory, moving forward
this time step, and iterating to convergence [54]. In spite of this difficulty, it is
possible to obtain analytic expressions for the linear integrated equations used
to compute the Lyapunov exponents in terms of the initial and final angles of
each free path between collisions, see Refs. [47, 55].

In response to the external field F and collisions with the (usually hexagonal)
lattice the particle drifts with a current given by

J=x (47)
assuming finite horizon. Using Eq. (38) with |p| =1 for a we find
J F=a (48)

in agreement with (41). In the limit of small field the average current is the
same for almost all (Lesbesgue) initial conditions [57] and is given by

(J) = DF + o(F) (49)

where D is the diffusion coefficient, or tensor in the anisotropic case. For the
case of infinite horizon, there are two possibilities: When the field is along one
of the infinite horizon directions the particle almost always ends up moving
without collisions along this direction, otherwise the current appears normal.
The zero field limit is thus not defined, and in any case would correspond to
anomalous diffusion.

The equations of motion of the nonequilibrium Lorentz gas have the following
immediate properties, which also apply to more general thermostatted systems:
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1. Time reversibility: Reversing the direction of time is equivalent to replac-
ing p by —p, as in Newtonian (unthermostatted) mechanics. This has the
effect of changing the sign of a. On the Poincaré section determined by
the surface of the scatterers this corresponds to a reflection in the outgoing
angle across the normal to the scatterer, that is, replacing 6 by € + 2y in
Fig 1.

2. Phase space contraction: Liouville’s equation (21) implies that the rate
of growth of a volume element 6V, which is inversely proportional to the
probability density p evolves according to

V. ldp _ 1 (dp
V. pdt  p

E+F-Vp>:V-F (50)

Evaluating V - F for the equations of motion, (37) with (38-40) we find

—(Nd — 1)aG1K
V- -F= —(Nd—l)aGIE (51)
—Ndanuark

which reduces to —a in the two dimensional Lorentz gas. The collisions
of the Lorentz gas (or other hard ball systems) are instantaneous and
preserve phase space volume, so they do not affect the above formulae.

The phase space contraction has a number of effects, namely that the sum
of the Lyapunov exponents is negative, and related to the average value of «,

Y A=(V-F) (52)

For the case of the two dimensional Lorentz gas, the Kaplan-Yorke relation
gives the information dimension [56] of the attractor for the Poincaré map for
sufficiently small field [57],

)\1 . 2)\1 + <Oé>

D=1+

Pl = M+ () (53)

This is less than the dimension of the map (two) since the phase space con-
traction requires the density to concentrate on a small set most of the time.
Nevertheless, the attractor is dense in phase space for sufficiently small field [57],

Do =2 (54)

Numerical evidence for what “sufficiently small” implies in practice is given
below, Sec. 5.6. The concentration of the density onto multifractal distributions
means that for the steady state, the density becomes a distribution, and is
studied by means of more general techniques, such as Sinai-Ruelle-Bowen (SRB)
measures or periodic orbit measures, Sec. 5.5.

It is clear from Eq. (41) that « is related to the rate of entropy production,
so now phase space contraction can also be related to entropy production. The
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Gibbs entropy, Sec. 3.4, which was constant for equilibrium (specifically phase
space volume conserving) systems, now decreases to negative infinity!

. dSqg .

tlggo ;= tlggo (V-F)pdl' = —(a) <0 (55)
Needless to say, this has been the source of a large amount of confusion in the
literature. The correct resolution is probably along the following lines: The
Gibbs entropy is telling us (appropriately) that entropy is being removed from
the system via the thermostat; it does not take into account irreversible entropy
production in the system, as it did not do so for isolated systems; it cannot tell
us about the entropy increase in the environment since the phase space does
not include these degrees of freedom. There have been a number of attempts
(mostly in connection with Baker maps) to coarse grain the Gibbs entropy of
a nonequilibrium system, in order to take into account the irreversible entropy
production. This is a very active area of discussion at present, see Refs. [10, 28].
The accumulated phase space contraction along a trajectory is easily found

to be

V) _ o fetere (56)

oV (0)
for the nonequilibrium Lorentz gas (with obvious extensions to all the ther-
mostats considered above), corresponding to a probability density of

,D(Xt,t) — efot a(t')dt' (57)
p(Xo,O)

assuming continuous distributions. This is an example of a Kawasaki distribu-
tion function [30, 58]. The argument of the exponential gives the total amount
of entropy removed by the thermostat; for the Lorentz gas this is

t t
/ a(tdt' = / J-Fdt' = /F ~dx = —-A® (58)
0 0
assuming the external force is conservative,
F=-Vo® (59)

For the Lorentz gas, ® is a linear function of the coordinates. This expression
for the accumulated phase space contraction provides a motivation for the sym-
plectic structure of the next section, as well as a basis for a discussion of time
reversibility.

Newton’s equations are time reversible, so one of the difficulties in under-
standing the second law of thermodynamics is that for any system observed to
increase in entropy, it is possible to set up a time reversed system with a decrease
in entropy with time. Boltzmann’s solution (Sec. 3.1, Ref. [12]) is that the most
likely states (corresponding to large regions of phase space) are those with high
entropy; the initial state of the Universe has very low entropy for some reason,
but the final state is not constrained in this way. In the same way, for every
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trajectory in a thermostatted system with positive a and hence positive entropy
production, there is a time reversed trajectory with the opposite. However a
uniform initial distribution, or in fact any smooth initial distribution, has (at
long times) a greater probability of positive « leading to a positive («). This
is because the volume in phase space is bounded, and so only an exponentially
small proportion of trajectories can grow with a positive exponential, while the
remainder are forced to contract to make room for the growing trajectories.
A more quantitative description can be given in terms of periodic orbits, see
Sec. 5.5 and Ref. [59].

If, in addition to phase space contraction, sufficiently strong chaotic prop-
erties (“Anosov-like”) can be assumed, the ratio of the probabilities that a tra-
jectory of length 7 will have entropy production AS (as measured by the phase
space contraction above) or —AS in the limit 7 — oo approaches e”S. The limit
is taken keeping the entropy production rate AS/7 constant. This result, called
the fluctuation theorem was first observed for shearing flow in Ref. [60] and
proved in Refs. [61, 62]. It applies to the Lorentz gas if the field is not too large;
although it is not strictly Anosov due to the collisions, it nevertheless retains
very strong chaotic properties. The fluctuation theorem and its generalisations
are an active area of investigation at present [9].

5.4 Symplectic properties

Another of the unexpected properties of thermostatted systems (in particular
those with isokinetic thermostats) is that, despite phase space contraction, it is
possible to express the dynamics in terms of Hamiltonian equations which are
by definition (23) phase space conserving. The first such formulation was the
original Nosé thermostat [48, 49, 50],

™
Hy(x, 57, ps; A Z 2|m| (x) + @ +2K,lns (60)

Here s and its conjugate momentum p, are supposed to represent the “heat
bath”. If we interpret the time variable A as related to physical time ¢ by
dt = d\/s then we can derive Hoover’s form of the equations, Eqgs. (37,40) using
pi = mydx;/dt = w;/s and a = ps/Q (and in our case, setting the masses
equal to one). Note that rewriting the equations in this manner has reduced the
number of dimensions of phase space by one, since the equations of motion for
x, p and « do not contain s. This also means that there is no manifest constant
of motion (given by Hy) for the new form of the equations. The new equations
are phase space contracting because they are written in different variables — the
physical momentum p differs from canonical momentum 7 by a factor s, which
keeps track of the entropy production since its equation of motion is ds/dt = as.

Another Hamiltonian for a thermostatted system is that of the Gaussian
isokinetic thermostat, which in contrast to the Nosé-Hoover thermostat has a
manifest constant of motion, namely the kinetic energy. Thus it is natural for
the Hamiltonian to be some function of the kinetic energy, written so that the
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physical and canonical momenta vary by the accumulated phase space contrac-

tion, eA? (see the end of the previous section). In fact, the Hamiltonian [16]
o2
He(x;m;A) = em? (61)

with the interpretation dt = e®d)\ leads to the Gaussian isokinetic equations (37,38)
with p = e®m and F = —V® when the constraint p? = 1 is imposed. This is
also a Hamiltonian that generates geodesics [63] on the space with conformally
flat metric

ds®> = e *®dq? (62)

leading to variational approaches based on finding the stationary (usually mini-
mum) geodesic length, and an interpretation as light passing through a medium
with refractive index n = e~®.

There is a third thermostat with a Hamiltonian description, namely the
isoenergetic thermostat (39) restricted to the case where the internal and exter-
nal forces are proportional, that is F, = —vF, F; = (1 — v)F with v constant
and F = —V®. The momentum equation is then

dp _ F Fp

dt 7p2

P (63)

with the conserved energy E., = p?/2 + (1 — v)®. This restricted isoenergetic
thermostat is not realistic from the point of view of internal and external forces
being proportional; rather it allows a continuous interpolation between the case
of no thermostat v = 0 to that of the isokinetic thermostat v = 1. Because
the kinetic energy is no longer constant, the denominator cannot be ignored,
in fact an additive constant is added to ® to ensure that E, is zero, then p?
can be replaced by —2(1 —v)®. Noting that F/® can be written —V In |®|, the
accumulated phase space contraction (56) is thus |®[7/(2(1=7) Paralleling the
isokinetic thermostat, we then arrive at the “restricted Gaussian isoenergetic”
Hamiltonian [64]

2
TT
Hrare(x;m; ) = |¢’|77/(177)7 +(1—=7)® (64)

which, coupled with the constraint Hrgrg = 0 and the time scaling dt =
|®|~7/C(=7))d\ leads to the above equations of motion.

It was noted in [16] for the Gaussian isokinetic thermostat, in [65] for the
Nosé-Hoover thermostat, and in [64] for the restricted Gaussian isoenergetic
thermostat that the somewhat arbitrary time scaling may be obviated by adding
a constant to the Hamiltonian to make its numerical value zero, and then mul-
tiplying by an appropriate factor, namely e~?® for the Gaussian thermostat and
s for the Nosé-Hoover thermostat. In general, the Gaussian isokinetic Hamilto-
nian with a time scaling of dt = e?®d\ becomes

(3-1)®
Hy(x;m;\) = e@t0e . _C (65)

2 2

31



with the isokinetic constraint simply Hz = 0. These Hamiltonians apply to
thermostatted systems with arbitrary conservative forces and arbitrary numbers
of particles. The Lorentz gas version of the case 8 = —1 corresponding to the
familiar kinetic plus potential energy Hamiltonian was noted by Hoover and
collaborators eight years previously [66].

The Hamiltonian gives an alternative derivation of the solutions of the equa-
tions of motion of the nonequilibrium Lorentz gas, Eqgs. (44-46). The potential
® = —F'z does not depend on y, so T, = eF””py is a constant of the motion. p,
is determined by the constraint p 4+ p} = 1, allowing an immediate solution in
cartesian coordinates by integration.

While the equations of motion of these thermostats can be derived from a
Hamiltonian, the global structure including the periodic boundary conditions is
not strictly Hamiltonian. This is because the potential ® (for example) is not
periodic; for the Lorentz gas it is a linear function of position. The lack of a
global Hamiltonian allows the steady state distributions not to be uniform on
some energy surface; they are typically multifractal. In spite of this, the local
symplectic structure is sufficient to ensure the pairing of Lyapunov exponents,
discussed next. The isokinetic Hamiltonian has also been applied to a definition
of temperature using the Boltzmann entropy in [15]. Choquard [67] has a further
exposition of the variational properties of the isokinetic thermostat, including
a Lagrangian approach and a link with the conformally symplectic formalism
used in Ref. [68] for a proof of the pairing rule, below.

We have already seen the Lyapunov sum rule (52), which relates the entropy
production, a macroscopic quantity, to the sum of the Lyapunov exponents, a
microscopic quantity. The pairing of Lyapunov exponents, also called the con-
jugate pairing rule or symmetry of the Lyapunov spectrum, is a much stronger
property, relating individual pairs of Lyapunov exponents. It is proved using
the symplectic property of the dynamics, and appears to be limited in validity
to systems admitting a Hamiltonian description.

It has been known for some time that the Lyapunov exponents of a Hamil-
tonian system come in £ pairs, that is, they may be split into groups of two,
each of which sums to zero [69]. In 1988 Dressler [70] showed that for a con-
stant frictional coefficient «, the sum of each pair of Lyapunov exponents is —a.
Incidentally, the constant o “thermostat” can also be derived from a Hamil-
tonian, obtained as for the isokinetic thermostat above, with the accumulated
phase space contraction e® replaced by e=®* = 1/(a)\). In contrast to the usual
thermostats, this Hamiltonian is explicitly time dependent.

Meanwhile, numerical simulations of many particle systems where Lyapunov
exponents were computed began to show evidence for a similar law [30, 71,
72, 73]. Ironically the first observations of Lyapunov exponent pairing were in
shearing systems, where more detailed recent computations have ruled out exact
pairing [74]. Initially the results were explained in terms of the large number
of particles [75]. In systems of many particles it is often easier to compute
the largest and smallest Lyapunov exponents than the whole spectrum, so the
pairing rule if it holds can be used to relate these measurable exponents to the
entropy production and (also measurable) transport coefficients.
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In order to clarify the role of the system size, and also because it is possible to
compute Lyapunov exponents more precisely in small systems, the author and
two collaborators studied the Lyapunov exponents of the simplest thermostatted
system with more than one nontrivial pair of Lyapunov exponents, the three
dimensional Lorentz gas [54]. The results, that two pairs of Lyapunov exponents
each sum to —(«) whether positive or negative and that a trivial pair is zero due
to the conservation of kinetic energy, were extremely helpful in understanding
the conditions under which pairing occurs. In this case at least, pairing does not
depend on a large system limit, or on chaotic properties associated with positive
Lyapunov exponents, so it must be derived from the equations of motion. The
degrees of freedom corresponding to the direction of the flow and the conserved
kinetic energy give zero exponents not summing to —{a), so they must somehow
be excluded from consideration. With these points in mind, we move on to a
statement of the result and a sketch of the proof.

The conjugate pairing theorem states that for the isokinetic thermostat and
the restricted isoenergetic thermostat discussed above there are two zero Lya-
punov exponents, and the remaining Nd—1 pairs of exponents sum to —(a)— A.
The Nosé-Hoover thermostat is the same except that there is one zero exponent
and Nd pairs. The Lyapunov exponents and average values of a are computed
using the same invariant measure, which may be any trajectory or invariant
measure of the system. In particular, the theorem holds irrespective of chaotic
properties such as ergodicity or positive Lyapunov exponents, and irrespective
of the size of the system.

The main ideas of the proof are sketched below; details can be found for the
isokinetic thermostat in Refs. [68, 76, 77], the restricted isoenergetic thermostat
in Ref. [78] and the Nosé-Hoover thermostat in Refs. [65, 68]. Refs. [68, 77]
explicitly include the collisions, and the isokinetic thermostat on a curved man-
ifold. Numerical evidence excludes pairing in shearing systems [74] and a more
general isoenergetic thermostat [78].

Hamiltonian dynamics can be written most simply using a matrix

J:<_OI é) (66)

where I is the unit submatrix, and the block form corresponds to x, w. We
have the transpose JI = —.J and J?> = —1. Then Hamilton’s equations are
I' = JVH and the equation of motion for perturbations is 6" = T'(£)6T" where
T = JVVH. The matrix T satisfies the equation TTJ + JT = 0 (where a
superscript 7 denotes transpose) due to derivatives of H commuting, compare
with Liouville’s theorem (23). The first step to prove the pairing rule is to show
that the appropriate matrix 7" satisfies a generalised equation,

TTT 4+ JT = —aJ (67)

For the case of constant a this is straightforward, but for the other thermostats
it is first necessary to reduce the space to exclude the zero exponents by ruling
out perturbations that are parallel to the flow, and for the isokinetic thermostat,
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those that violate the constant energy condition. The 7' matrix then contains
coefficients of the constrained perturbation equations. Refs. [68, 77] also prove
an equivalent condition for the hard collisions.

The equation (67) for the perturbation evolution equations can be extended
to finite evolutions 6T'(¢t) = L(¢)6T'(0) using the equation for the L matrix,
L = T'L with initial condition L(t = 0) = 1 to obtain

pLTJL = J (68)

where p = exp( [, adt). Consider the eigenvalues of M = LTL, which obeys
p>MTJM = J following from (68). Straightforward matrix manipulations of
the eigenvalue equation leads to the result that the eigenspace of an eigenvalue
A? is transformed by J into an eigenspace with eigenvalue 1/(A%u?). The Lya-
punov exponents are the infinite time limit of the logarithm of the eigenvalues,
divided by twice the time. Thus the spectrum is symmetric with the pairs
summing to —(a), and the theorem is proved.

5.5 Periodic orbit approaches

It was noted in Sec. 5.3 above that invariant measures of thermostatted nonequi-
librium systems (including the Lorentz gas) are multifractal. This means in par-
ticular that the concept of a smooth probability density p(I') must be replaced
by a more general description.

The most primitive approach is to coarse grain the space into arbitrary
partitions (say, of equal size) and count the number of times a long (hopefully
typical) trajectory passes through each cell. This does not depend on strong
chaotic properties; ergodicity is sufficient to define a unique measure. The
disadvantages are that there are few mathematical results for such a general
framework, the partition does not take into account the natural structure of the
dynamics, and it is not immediately clear how to define measures on repellers of
open systems, which almost all trajectories leave after a finite (typically rather
short) time, see Sec. 6.

It may be possible to prove (or make a plausible hypothesis) that the dy-
namics is sufficiently hyperbolic that there are invariant measures smooth along
unstable (expanding) directions in phase space; these are called Sinai-Ruelle-
Bowen (SRB) measures. While it is possible to prove a number of results per-
taining to such systems [32, 77], a proof of the existence of (for example) a
Markov partition does not necessarily show how to construct it efficiently, and
is of no use if the required dynamical properties have not been shown. For the
nonequilibrium Lorentz gas, rigorous results are mostly restricted to the case of
small field and finite horizon, see for example [57].

Periodic orbit theory [3, 79] provides both the mathematical justification
(given sufficiently strong hyperbolicity [80]) and also gives explicit expressions
for multifractal measures that can be applied to many systems (with apparent
success, although sometimes slower convergence [81]) for which enough periodic
orbits can be located, but rigorous proofs are not available. In addition, the
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periodic orbits are coordinate invariant, make use of the dynamics in a natural
manner, and are applicable to open systems. We refer here to classical periodic
orbit theory; there are similar theories applicable to quantum systems in the
semiclassical limit [3, 82] and more recently to stochastically perturbed classical
systems [83, 84].

It may seem strange that the properties of a system can be determined from
a set of zero measure orbits such as the periodic orbits; to make an analogy,
numerical integration schemes often use only rational points at which to evaluate
the integrand. The main question is whether the set of zero measure (rational
points or periodic orbits) is dense in the measure (phase space or some lower
dimensional attractor). For the case of periodic orbits, this is usually either
proven or a reasonable assumption.

Periodic orbits arise naturally when system properties are computed from
the spectrum of evolution operators. The desired property is first expressed
in terms of a generating function that is multiplicative in time, for example
the current (for the nonequilibrium case) and the diffusion coefficient (for the
equilibrium case) are expressed as

0
Ji = 75(5”,3:0 (69)
1
D = EtrDij = 2d Z 8,& aﬁz |:6 0 (70)
s(B) = Jim > In(eBrax) (71)

using the Einstein relation (35) where 3 is a dummy variable, Ax = x(t) —x(0)
and s(3) gives the rate of exponential growth of the average, and is thus the
leading eigenvalue of the Liouville operator weighted by the exponential.

The leading eigenvalue of an evolution operator (such as a weighted Liouville
operator) may be computed in a number of ways. Some of the most common,
namely the long time asymptotic form of its trace, Ruelle’s dynamical zeta
function, and the Fredholm determinant lead to expressions in terms of periodic
orbits [3, 4, 7, 79, 85]. For example the most rapidly convergent expressions
usually come from the Fredholm determinant of a discrete time system (for
example using the collisions of the Lorentz gas to define the dynamics), det(1 —
zL) where z = e~ * and L is the weighted evolution operator. The determinant is
then expanded using the general matrix relation det M = ™M to a maximum
order in z. The resulting expression involves tr£™ which counts the ways the
system can return to its starting point after n iterations, the periodic orbits of
length n. Specifically,

e,@-Ax

D DR T o)) 2

x:f7 (x)

where J is the Jacobian matrix of derivatives of f”, the nth iterated Poincaré
map.
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The denominator is often approximated by |A[, the product of the expanding
eigenvalues of J, that is, those with a magnitude strictly greater than one.

|A| is also given by eTZ)‘Jr, the exponential of the period times the sum of
the positive Lyapunov exponents along the periodic orbit. Approximating the
denominator of (72) by |A| is exact in the limit of long orbits and affects the rate
of convergence but not the result of the periodic orbit expressions for the leading
eigenvalue and derived quantities. They lead to the two most often used closed
expressions for the diffusion constant, one obtained directly from the trace,

n i)y AXZ/|A
D= i lim Zx.f (x)=x /| | (73)
2d n—o0 Zx:f"(x):x T/|A|
and one obtained using dynamical zeta functions,
1 Zf{p}(—l)k(Axl + oo+ Axp)?/|Ar A (74)

T2 Y COMT .+ T /IAr - A

Here, Ax is the displacement of an orbit that is periodic in the elementary cell.
It might be zero, corresponding to a periodic orbit in the extended phase space,
or it might be nonzero, finishing at an equivalent point on a different scatterer.
T is the period, in terms of the continuous time. p indicates prime cycles, that
is, those periodic orbits that are not repeats of shorter orbits. For the first
expression, the sum is over all periodic points, whether belonging to a prime
cycle or the repeat of a prime cycle; in the limit n — oo almost all cycles are
prime, so this does not matter. The second expression is a sum over all sets of
prime cycles containing k = 1,2,3... cycles. The alternating sign (—1)* usually
leads to partial cancellations between longer cycles AB and a combination of
shorter cycles that approximate them, A and B, thus making the zeta function
more rapidly convergent than the trace formula. The zeta function expression
is usually ordered by topological length, that is, all combinations of cycles with
a total number of collisions less than a maximum N,,,, are counted, with an
assumed limit N,,ax — oo.

The current is computed by similar expressions (omitting 2d and the powers
of two), and in fact any phase variable a(x) may be averaged in this manner,
replacing Ax by [ adt computed along the periodic orbit. The trace formula (73)
thus leads to a sequence of increasingly detailed measures supported on the
periodic orbits given by Dirac delta functions weighted by the inverse orbit
stability. The zeta function expression (74) gives a more complicated but often
more quickly convergent (in a weak sense) sequence of measures on the same
sets.

There have been a number of applications of the above formulae to the
hexagonal Lorentz gas [86, 87, 88, 89] numerically searching for periodic orbits
up to typically ten collisions and computing the current or the diffusion coeffi-
cient. There are a number of technical difficulties, such as making sure all of the
tens of thousands of orbits up to this length are found and making maximal use
of the symmetry. The conclusions are that the formulae work, although not yet
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to the level of precision of alternative methods; the symbolic dynamics (allowed
sequences of collisions) is very complicated and depends strongly on the external
field; the trace formula may converge more quickly than the zeta function for
this system. A zeta function approach with ordering by stability A,,,, rather
than topological length NV,,.. appears to work better when there are many al-
most stable cycles at high field [65] (see Sec. 5.6) and in other systems with
weak hyperbolicity [81].

Finally, there are general arguments made using periodic orbit measures
confirming a number of physical results. It is clear from (73) that the diffusion
coefficient must be nonnegative, in agreement with the second law of thermo-
dynamics. Combining a periodic orbit and its time reverse (with negative dis-
placement and Lyapunov exponents) and using the Lyapunov sum rule (52), it
is possible to show that J - F and hence the entropy production (41,48) must
also be nonnegative out of equilibrium. This argument was given in Ref. [90]
for the Lorentz gas and extended to systems with many particles in Ref. [91].
This leads to the following explanation of the second law in thermostatted sys-
tems: periodic orbits corresponding to increasing entropy are more stable and
have smaller values of A than their time reversed counterparts, hence those with
increasing entropy are weighted more strongly, leading to an average entropy
production which is nonnegative. Rondoni and Cohen [92] have used periodic
orbit measures for thermostatted systems to derive the Onsager reciprocal re-
lations which state that the full linear response matrix connecting all possible
fluxes and forces is symmetric.

5.6 Nonlinear response

Diffusion in the Lorentz gas is a linear process. In Sec. 3.3 the point particles
are noninteracting, so the properties of a distribution of many point particles
can be obtained by a linear superposition of many single particle trajectories.
Until the noninteracting, pointlike approximation fails, there is no density at
which the system ceases to be linear. On the other hand, the nonequilibrium
Lorentz gas has a natural scale, determined by when the curvature induced in
the trajectories by the field is comparable to the distance between the scatterers,
at which the current is no longer approximately proportional to the field.

One approach to nonlinear response is to define nonlinear Burnett coeffi-
cients. Linear Burnett coefficients which form an expansion for the particle flux
in terms of higher derivatives of the density were briefly described in Sec. 4.3.
We could also envisage nonlinear Burnett coefficients forming an expansion for
the current in terms of higher powers of the field, or vice versa. In realistic
systems such an expansion usually involves nonanalytic terms. For example, in
three dimensional shear flow, the viscosity n is well described in terms of the
shear rate v (not too large) by 7 = 7o —n17*/? [30]. The nonequilibrium Lorentz
gas is still more problematic, with J most likely nondifferentiable almost every-
where, although this has not been proved and numerical evidence is far from
conclusive, see Fig. 4. It is also unknown whether the diffusion coefficient is
a differentiable function of the spacing between the scatterers. Discontinuous
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Figure 4: Current versus field for the nonequilibrium Lorentz gas. The lattice
is hexagonal with w = 0.236 and finite horizon, see Fig. 3. The field is directed
along the line between nearest neighbours. At small field the current is pro-
portional to field according to (49) with a diffusion coefficient of approximately
0.18. The support of the attractor collapses to a fractal set at about F = 2.2,
but this has no apparent effect on the current. For some fields above 2.4 and
all fields above about 2.5 the attractor is a stable periodic orbit. The speed of
the particle is fixed, so the current can never exceed unity.

one dimensional maps are known to exhibit nondifferentiable diffusion coeffi-
cients [93], however the Lorentz gas dynamics viewed as a flow is continuous so
the diffusion coefficient is probably somewhat smoother.

We observed in Sec. 4.3 that the symmetry of the hexagonal Lorentz gas
requires that an isotropic conductivity, and hence to linear order the average
current is parallel to the field. There is no such restriction for the nonlinear
response; except for the cases when the field points along the line between
nearest or next nearest neighbours (hence a reflection symmetry), the average
current is not in general parallel to the field [55].

It is known that for sufficiently small field the two dimensional nonequi-
librium Lorentz gas with finite horizon is ergodic [57]. Together with time
reversibility and the continuity of the dynamics (in continuous time, not in the
Poincaré map), this implies that while almost all initial conditions lead to the
same average current, there are arbitrarily large deviations for short times. This
is because almost every trajectory must pass arbitrarily close to the time reverse
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of a normal trajectory, that is, a trajectory with negative entropy production.

At larger field strengths, the ergodicity is observed to break in one of two
ways, depending on the spacing of the scatterers and the orientation of the
lattice with respect to the field [94]. One possibility is that a marginally stable
periodic orbit appears, surrounded by an elliptic region separate from the rest
of the hyperbolic phase space, first observed by Moran and Hoover [53]. If the
initial condition is inside this region, the particle always moves between the
same two scatterers, and the average current is zero. Outside the region, the
dynamics is similar to that at lower fields.

In the other mechanism, the final state (and hence average current) is the
same for almost all initial conditions, however it is no longer dense in phase
space, and has a box counting dimension less than that of phase space. It is now
completely disjoint from its time reverse (the “repeller”), and deviations from
the second law are limited to a single collision. This implies that the distribution
of fluctuations (both parallel and perpendicular to the field) is quite different
to that of small field. The transition to this state, described in Ref. [94] is
termed crisis induced intermittency, and corresponds to a discontinuous change
in the box counting dimension of the attractor, but the current, Lyapunov ex-
ponent, and information dimension are continuous. Not all periodic orbits now
lie in the attractor, so it is imperative that periodic orbit calculations (Sec. 5.5)
only contain those cycles actually in the attractor. This can be accomplished
by searching a long typical trajectory (rather than the whole phase space) for
periodic orbits, often a useful approach in any case.

Typically, both mechanisms are observed at different field strengths for the
same spacing, and as the field is further increased, further crises occur, creating,
destroying and removing periodic orbits from the attractor. Eventually one (or
more [95]) periodic orbits becomes stable, attracting all or at least a positive
measure of initial conditions. There is a range of fields over which stable windows
and chaotic attractors alternate in a complicated fashion [55]. At sufficiently
large fields there is always a stable orbit, and at infinite field, the limiting
behaviour is that of an orbit creeping along a disk until it can move in the
direction of the field to the next disk.

While it is clear that many similar features occur in the three dimensional
nonequilibrium Lorentz gas [54] and various molecular dynamics simulations
driven to very high fields [30], the details depend to a large extent on the model
at hand. While it might require unreasonably strong forcing to generate sta-
ble configurations with no positive Lyapunov exponents, it is sufficient to let
only one of the positive exponents go negative to expect that the attractor and
repeller are disjoint, and therefore a dynamical and time reversible structure
qualitatively different to that near equilibrium. It is also possible that measure-
ments of large systems ignore and hence average over many degrees of freedom,
which may tend to wash out the multifractal structure of phase space. In any
case, there is much more to be understood about the dynamics of a many par-
ticle system in a far from equilibrium steady state.

39



6 Boundary driven systems

6.1 Open boundaries: The escape rate formalism

Now we turn to nonequilibrium systems with Newtonian equations and no phase
space contraction, with nonequilibrium effects generated by the boundaries.
Systems with both boundary effects and thermostats are considered in Sec. 6.3.

Suppose we consider a Lorentz gas, either random or periodic (with finite
horizon), in a bounded region of space. Trajectories in the system can then be
divided into four classes, depending on whether they remain in the system at
late or at early times. Almost all (Lebesgue measure) trajectories remain in the
system for only a finite time. Those that remain in the system at both early
and late times form the repeller, which in this case is the closure of the periodic
orbits. Trajectories that are in the system at late but not early times form the
stable manifold of the repeller, and those in the system at early but not late
times form the unstable manifold of the repeller.

A smooth distribution of initial conditions will converge (weakly) to a dis-
tribution over the repeller and its unstable manifold that is steady except that
it decays in time as the measure escapes through the boundary. In the language
of Sec. 5.5, a generic initial distribution acted on by the Liouville evolution op-
erator will be dominated at late times by its leading eigenfunction. The rate of
decay, the escape rate -, is directly given by the leading eigenvalue; the number
of particles in the system given an initial uniform distribution decays as

N(t) ~ N(0)e™ (75)

This exponential decay rate and its calculation as an eigenvalue using stan-
dard periodic orbit theory [3, 96] depends on the uniform hyperbolicity of the
system. Nonuniformly hyperbolic systems have recently been treated in this
manner, but with more care due to the appearance of a power law decay and
a branch cut in the spectrum [97]. For hyperbolic systems, the escape rate is
also related to other dynamical quantities, the sum of the positive Lyapunov
exponents, and the Kolmogorov-Sinai entropy by [32]

Y= Z)\+ - hKS (76)

and in the two dimensional case, also to the partial information codimension
C1 [98]
Y =Ara (77)

where ¢; is the dimension of phase space minus the information dimension D of
either the stable or the unstable manifold. So far we have related the exponential
escape rate of a hyperbolic system to periodic orbits, the positive Lyapunov
exponent(s) and a dimension of the repeller.

Suppose now that the dimensions of the system are so large (specifically,
much larger than the mean free path) that the evolution of phase space density
is well described by the diffusion equation (32). Open square boundaries corre-
spond to the condition P=0onx =0,y =0, z = L and y = L (for simplicity;

40



other geometries are possible, altering the constant 72 below), leading to the
general solution

nmy Dr?
P(z,y,t) = Zmensm s1nTexp _?(m +n®)t (78)

m=1n=1
from which we find the decay rate of the leading m = n = 1 mode,
_ 272D
7.2
Equating the escape rates of the dynamical and hydrodynamic approaches in

the limit of large systems, we obtain escape rate expressions for the diffusion
coefficient [99],

(79)

L2 ) L2 2
D= lim 2= = lim Z)\+—hK5)_ lim —Aier = lim =

—A CH
L5500 272 L—>oo 271'2 +

(80)
where the last equality involving the partial Hausdorff codimension in the large
system limit is found in Ref. [100]. This is useful since cg can be computed more
easily than either hig or ¢; [101]. Unfortunately none of the above quantities
can be calculated efficiently enough in the large system limit for these equations
to compete with the thermostatted approach as a means of computing the dif-
fusion coefficient. They can be used to check the consistency of the approach,
however, and remain of great theoretical interest. Compare Eq. (53) where
the information codimension in the thermostatted two dimensional Lorentz gas
gives a very similar expression for the diffusion coefficient:

)\+ C1

D= 1!_‘1310 F?

(81)
Note that the thermostatted Hausdorff codimension is exactly zero up to rea-
sonably strong fields (see Sec. 5.6). The escape rate -y plays the same role for
the open system as the multiplier « plays for the thermostatted system in deter-
mining the rate of decay of phase space volume occupied by an initially smooth
distribution of particles; in one case particles are lost through the boundaries,
while in the other the volume contracts due to the equations of motion.

The escape rate formalism applies not only to diffusion, but also to other
linear transport coefficients. The idea is that each Green-Kubo expression (36)
can be transformed into an equivalent Einstein relation (35) containing the
mean square difference of a quantity other than displacement. Such a quantity
is called a Helfand moment, for example, the Helfand moment corresponding
to shear viscosity is (up to a constant factor) ). x;p;, where the sum is over
particles. The escape condition then corresponds to a bound on the Helfand
moment. In this way, all linear transport coefficients may be related to escape
in an appropriate system with a large size limit. The small size limit corresponds
to a steady state far from equilibrium, however it is quite different to the ther-
mostatted system at strong field, and it is not clear what physical system it
could represent. More details on the escape rate formalism and its applications
can be found in Refs. [6, 7, 99, 100, 102].
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6.2 Flux boundaries

A Lorentz gas in a finite domain need not have absorbing boundaries; it is also
profitable to consider the possibility of injecting particles into the system from
the boundaries. The most common (but by no means the only possible) geom-
etry considered for this situation is that of a Lorentz gas (random or periodic
with finite horizon) in a slab given by —L/2 < z < L/2 and —oo < y < 0o. At
the left (right) boundary, particles are injected in all directions with a density
f— (f+)- This is analogous to numerical simulations where boundary conditions
at a certain temperature are maintained by injecting particles at the boundary
with a Maxwell-Boltzmann distribution, ignoring correlations.

In the steady state, the particles fill the whole phase space except the re-
peller and its unstable manifold which constitute a set of zero measure. Since
phase space volume is conserved, the density of particles at a given position
and velocity is either f_ or f; depending on the boundary through which the
particles entered. This means that the phase space density is piecewise constant
(hence piecewise smooth) with a fractal set where the density is undefined.

This prescription for the phase space density can be coded by the following

formula [103]:
_ ot ey
f(x,v)—T-l-g- x+/ vidt (82)
0

where g = e, (f+ — f-)/L is the density gradient across the slab, and —T' is
the time the particle entered the system. The term in the large parentheses
evaluates to the position the particle entered the system, with an z-component
of £L/2; combined with g it provides the necessary increment to obtain the
density fi. The term g - x gives a linear density profile; after integrating over
the velocity directions to obtain P(x) from f(x,v), this is a trivial solution of
the diffusion equation (32). The integral then determines how far the actual
density fi differs from the average behaviour.

As in Sec. 6.1 above, we are really interested in the large system limit,
L — oco. The gradient g is kept finite, while f; — f_ tends to infinity. The first
term (f4 + f—)/2 can be ignored, as it gives only a constant shift, the average
density at £ = 0. The time the particle entered the system goes to —oc. We
find that the result,

B(x,v)=g- <x + /0 h vtdt> (83)

diverges for all x and v. This is perhaps not surprising given that the phase
space density for the nonequilibrium steady state is multifractal in the ther-
mostatted approach, Sec. 5.3. In any case, it does not cause a problem, since
the average with respect to the nonequilibrium distribution (),e of an arbitrary
phase variable a(x,v) can be naturally defined by

@ = @) =g (@0 + [ taviar) (s4)
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If a is the current J, this leads directly to the expected relation J = —Dg with
the diffusion coefficient D given by its Green-Kubo formula (36).

Distributions of this form were originally introduced by Lebowitz [104] and
MacLennan [105]. It is possible to represent ¥ by its cumulative distribution
function, which is continuous [6]. It is one of the main tools used to apply Baker
maps to the understanding of nonequilibrium steady states and entropy produc-
tion, where the cumulative distribution function becomes an exactly selfsimilar
Takagi function [6, 7, 10]. There is a natural extension to other transport pro-
cesses in a similar fashion to the open case, Sec. 6.1. See also Ref. [106] where
this approach is used to describe hydrodynamics outside local equilibrium.

We conclude our discussion of flux boundary conditions with a connection to
the thermostatted approach. Suppose we coarse grain ¥ to some resolution e,
ignoring smaller variations. We can approximately compute ¥ in some region of
size € in phase space by tracing back in time until the chaotic dynamics amplifies
the initial uncertainty to the point at which the particle could have come from
any direction with roughly equal probability, time —7. We can then write for
the € smoothed distribution,

\I’e(xa V) Rg X7 (85)

Compare this with an e smoothed distribution using a field and thermostat.
For sufficiently small field, the trajectory remains close to a trajectory without
field over such a time 7. The thermostatted case has no overall variation in
density, so the average density at time —7 is roughly unity. However, phase
space contraction increases the average density to approximately eF"2*, which
reduces in the limit of small field to 1+ F - Ax. Thus the nonequilibrium steady
state distribution obtained using flux boundary conditions is the same up to a
multiplicative constant as the deviation of the distribution from equilibrium in
the weak field thermostatted case. The distribution ¥ is directly proportional
to the gradient g, so it cannot exhibit any nonlinear features, as expected for
diffusion in the Lorentz gas.

6.3 Boundaries with thermostats

There are also a few approaches combining elements from both thermostatted
and boundary driven nonequilibrium models. Chernov and Lebowitz [107, 108]
use wall collision rules that are energy conserving, time reversible and phase
space contracting (on the average) to drive a many particle system into a shear-
ing steady state. This can be made equivalent to a thin layer where the particle
is subject to a strong oblique force and a thermostat, and thus belongs with the
methods mentioned at the end of Sec. 5.2.

Tél and collaborators [10, 109, 110, 111] consider open systems with an ex-
ternal field. They focus on Baker map approaches, but much of their discussion
on the relationships between escape rate, entropy production and dimension
applies equally to the Lorentz gas or many particle systems. There are now
two limits of interest, FF — 0 and L — oo. If the latter is taken first it is
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necessary to impose a thermostat to keep the velocity under control. Never-
theless, the phase space contraction is bounded, since the repeller is in a finite
domain, see (56). This means that the Lyapunov exponents add to zero as in a
Hamiltonian system.

The analysis proceeds similarly to that of the field free case, Sec. 6.1. Egs. (75-
77) pertaining to the escape rate, Lyapunov exponent and the partial informa-
tion codimension of general open two dimensional systems remain valid. The
hydrodynamic equation now contains both a diffusion and drift term,

oP ©
— =V-(D-VP-JP) (86)
ot
«>
where D and J depend on F according to the microscopic dynamics; for the
usual case of a homogeneous system J does not depend on position. For small
field we have J = DF from (49), where D is the (usually isotropic) zero field
diffusion coefficient. The equation is easily solved in a strip 0 < z < L by
separation of variables leading to the escape rate
D, JI2

L? + 4D,

V= (87)
reducing when the zero field limit is taken first to (79) and when the large
system limit is taken first to another expression for the diffusion coefficient,

4’)/ . 4>\+Cl

D= l}ﬂlino F2 1!“1310 2

(88)

The factor of four difference from Eq. (81) was noted in Ref. [110] and is due to
the different (here semi-infinite) geometry. In all cases the information codimen-
sion of the relevant measure can be associated with the transport coefficient,
and hence the entropy production. The thermostatted methods and open sys-
tems, alone or in combination, describe the same nonequilibrium processes, at
least in the linear regime.

7 Outlook

Many of the connections between dynamical and statistical descriptions and
between microscopic and macroscopic properties of equilibrium and nonequi-
librium stationary states have been addressed using a very simple model, the
Lorentz gas. It is remarkable that most of these connections and properties
do not depend on the number of particles, but apply to both the smallest and
largest systems. There are undoubtably many more connections to be made on
this level. One of the chief aims of the present work is to bring a diversity of
ideas together to catalyse progress in this direction. For this purpose, it is also
helpful to keep in mind a few limitations of the Lorentz gas paradigm.

In the Lorentz gas it is necessary to distinguish between real space density
P and single particle density f. Similarly, in many particle systems there is an
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additional distinction between single particle density f and phase space density
p. A significant conceptual difficulty is that macroscopic entropy, defined as
an extensive quantity according to Sec. 2.2 is a function of real space, while
the microscopic descriptions of Sec. 3 involve the phase space. The effect of
this, which is not apparent from the Lorentz gas, is that the thermostatting
multiplier @ and the escape rate 7 are not local quantities in general; they
depend on a simultaneous description of all the particles. These distinctions are
also important with regard to Baker map approaches [10], where concepts such
as real space and phase space do not obviously play the same roles and need to
be carefully delineated.

There are some instances where the same chaotic properties act differently
in larger systems. While we expect systems of many particles to have hyperbolic
properties [8], some of the fractal structure might be washed out by measure-
ments that average over many of the degrees of freedom. It is also not clear to
what extent such averaging can be simulated by, for example, random placement
of the scatterers in the Lorentz gas.

Conversely, some chaotic properties of large systems are different to those
of lower dimensional systems. A number of results, particularly those relating
dimensions and Lyapunov exponents have only been proven for two dimensional
systems. Higher dimensional results may be more difficult to prove, or the
structure may be more detailed than in two dimensions. The three dimensional
Lorentz gas, corresponding to a five dimensional flow or a four dimensional
map and thus having two nontrivial pairs of Lyapunov exponents, has already
provided a useful example of the conjugate pairing rule [54] and may well contain
much structure characteristic of higher dimensional dynamics. An alternative is
the six dimensional map corresponding to three hard disks in two dimensions.

There remain a number of challenges in the theory of stationary states far
from equilibrium. Not the least of these is the difficulty defining a useful and
unique entropy, despite the observation that the irreversibility of the second
law applies universally, near or far from equilibrium. Another issue is that
many of the approaches such as various thermostats or boundary conditions are
equivalent only in the linear regime. The nonlinear properties of the Lorentz
gas given in Sec. 5.6 are only the beginning of what can be understood about
such nonequilibrium systems.

The author is grateful for helpful discussions with N. I. Chernov, E. G. D.
Cohen, J. R. Dorfman, P. Gaspard and W. G. Hoover, and for collaboration on
many of these subjects with G. P. Morriss.
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