Analogy of PDE classification with classification of conic section

This sheet provides the motivation behind the terminology used for classifying PDE's and parallels the methods used in the lectures. Note that this is only an analogy and doesn't replace the theory behind PDE classification. This is for supplementary information only - it will not be required in an exam.

The general equation describing a conic section (i.e. hyperbola, parabola or ellipse) is given by

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

where a, b, c, d, e, f are all constants. Dividing by a (assuming $a \neq 0$ w.l.o.g. (without loss of generality))

$$
\begin{equation*}
x^{2}+\frac{2 b}{a} x y+\frac{c}{a} y^{2}+\frac{d}{a} x+\frac{e}{a} y+\frac{f}{a}=0 \tag{1}
\end{equation*}
$$

For general a, b, c, d, e, f how do we tell if it is an ellipse, parabola or hyperbola ? Well factorise, by completing the square:

$$
\begin{equation*}
\left(x-\omega^{+} y\right)\left(x-\omega^{-} y\right)+O(x, y, 1)=0 \tag{2}
\end{equation*}
$$

where $O(x, y, 1)$ means terms proportional to x, y and 1 . Expanding equation (2) and identifying with (1) gives

$$
\left.\begin{array}{rl}
\omega^{+}+\omega^{-} & =-2 b / a \\
\omega^{+} \omega^{-} & =c / a
\end{array}\right\}
$$

which means that $\omega^{ \pm}$are the roots of $\omega^{2}+(2 b / a) \omega+(c / a)=0$, and so

$$
\omega^{ \pm}=\frac{-b \pm \sqrt{b^{2}-a c}}{a}
$$

Three cases arise:

1. If $b^{2}-a c>0$ then $\omega^{ \pm}$are real and distinct. Change variables from (x, y) to (ξ, η) by writing $\xi=x-\omega^{+} y$ and $\eta=x-\omega^{-} y$ and substitute into (1) to give

$$
\xi \eta+O(\xi, \eta, 1)=0
$$

or

$$
\xi \eta=A \xi+B \eta+C
$$

for some constants A, B, C which we haven't calculated explicitly. This is the equation of a hyperbola (remember ? ... for example $x y=1$)

2. If $b^{2}=a c$ then $\omega=\omega^{+}=\omega^{-}$, so let $\xi=x-\omega y$ and choose another variable η to be arbitrary, but linearly independent of ξ (i.e. $\xi \neq C \eta$ for any constant C) so that (x, y) can be expressed in terms of (ξ, η). Then from (2),

$$
\xi^{2}+O(\xi, \eta, 1)=0
$$

or

$$
\xi^{2}=A \xi+B \eta+C
$$

for some A, B, C. This is the equation of a parabola (e.g. $y^{2}=x$)
3. If $b^{2}-a c<0$ then the roots $\omega^{ \pm}$are complex conjugates which we can write as

$$
\omega^{ \pm}=\frac{-b \pm \sqrt{a c-b^{2}}}{a}=s \pm \mathrm{i} t
$$

Put this expression into (2) to get

$$
(x-s y+\mathrm{i} t y)(x-s y-\mathrm{i} t y)+O(x, y, 1)=0
$$

and here we choose to define $\xi=x-s y$ and $\eta=t y$, which implies

$$
(\xi+\mathrm{i} \eta)(\xi-\mathrm{i} \eta)+O(\xi, \eta, 1)=0
$$

or, on expanding

$$
\xi^{2}+\eta^{2}=A \xi+B \eta+C
$$

which is the equation of an ellipse (e.g. $x^{2}+y^{2}=1$)

