
Mathematical Methods 3 2006

Sheet A Revision

This worksheet is revision of topics that you should be familiar with from previous courses.
This include partial differentiation, PDE’s, solving ODE’s, the use of separation of variables,
and complex integration. Some of these questions are quite tough, but should not involve
anything mathematically new to you.

1. Find all the first and second partial derivatives of the following functions

(i) u(x, y) =
x

x2 + y2
, (ii) u(r, θ) = cos 3θ e−r2/2, (iii) u(x, y, z) = f(ax− by + cz)

(a, b, c are constants and f is an arbitrary function.)

2. Use partial differentiation to eliminate the functions f and g to obtain a partial differential
equation for the following functions (e.g. u(x, y) = f(x) + g(y) satisfies uxy = 0)

(a) u(x, y) = f(ax), a constant

(b) u(x, t) = f(x2/κt), κ constant

(c) u(x, t) = f(x− ct) + g(x+ ct), c constant

(d) u(x, y) = f(x+ iy) + g(x− iy)

3. Show that u = f(xy) + xg(y/x) is a general solution of x2uxx − y2uyy = 0.

4. Use the substitution v = uy to find the general solution, u(x, y) of uxy + uy = 0. Your
answer should involve two arbitrary functions g(x) and h(y), say.

5. The heat equation (an example of a parabolic equation) in one spatial dimension is given
by ut = κuxx. Assume a solution of the form u(x, t) = Af(κt)e−[xf(κt)]2 and show that
this satisfies the heat equation provided the function f(v) satisfies the differential equation
f ′(v) = −2[f(v)]3.

Hence deduce that a solution of the heat equation may be expressed in the form

u(x, t) =
A

2
√

(κt+ c)
e−x2/4(κt+c)

for a constant, c = 1/[4f 2(0)]. Under what conditions would such a solution be valid ?

6. Tricky. The motion of one-dimensional waves propagating on the surface of a shallow fluid
having a slowly varying depth h(x) may be approximated by the following ODE

d

dx

(

h(x)
dη

dx

)

+
σ2

g
η = 0

where η(x) represents the height of the surface of the fluid, σ is the angular frequency of
the wave motion and g is gravitational acceleration.



Transform this equation by making the substituion η(x) = ψ(x)f(h(x)) and eliminating
the term proportional to ψ′(x) that results to obtain the ODE

d2ψ

dx2
+ κ(x)ψ = 0

where

κ(h(x)) =
σ2

gh(x)
−

1

2

(

h′′(x)

h(x)

)

+
1

4

(

h′(x)

h(x)

)2

[HINT: As an intermediate step you should find that you need to solve the equation
2hf ′(h) + f(h) = 0 for f(h).]

7. Laplace’s equation in two dimensions is given by

uxx + uyy = 0.

Use separation of variables (i.e. assume a solution of the form u(x, y) = f(x)g(y)) to show
that the solution of Laplace’s equation in the semi-infinite rectangle 0 ≤ x <∞, 0 ≤ y ≤ 1
satisfying

u(x, 0) = u(x, 1) = 0 for 0 < x <∞

ux(0, y) = 1 for 0 < y < 1

and u(x, y) → 0 as x→ ∞ for 0 < y < 1

is given by

u(x, y) = −

∞
∑

n=1

4

(2n− 1)2π2
sin((2n− 1)πy)e−(2n−1)πx.

8. Use the separation of variables method to find the solution of the heat equation uxx = ut

in 0 < x < π, t > 0 with boundary conditions on the ends x = 0 and x = π given by
u(0, t) = 0, ux(π, t) = 0 for t > 0 and an initial condition at time t = 0 given by u(x, 0) = 1
for 0 < x < π. Your solution should be expressed in terms of an infinite sum and you
should confirm that u(x, t) → 0 as t→ ∞.

9. These questions are designed as a revision of complex function theory (contour integration).
Show that

(a)
∫ ∞

0

sin ka

k
dk =

{

1
2
π, a > 0

−
1
2
π, a < 0

(b)
∫ ∞

0

cos kx

k2 + a2
dk =

π

2a
e−a|x|

10. Hard. The flexural oscillations of an elastic beam of finite length occupying x ∈ [0, a] are
governed by the PDE

D
∂4W

∂x4
+m

∂2W

∂t2
= 0, 0 < x < a

for the displacement W (x, t) where m is the mass per unit length of the beam and D is
the “flexural rigidity”. The conditions that the left-hand end at x = 0 is clamped and the
end at x = a is free are given by

W (0, t) =
∂

∂x
W (0, t) =

∂2

∂x2
W (a, t) =

∂3

∂x3
W (a, t) = 0.



(a) Assume a time harmonic dependence of W (x, t) = w(x)eiσt where σ is the angular
frequency may be factored and show that w(x) now satisfies the ODE

d4w

dx4
− µ4w = 0, 0 < x < a (1)

with µ4 = mσ2/D and

w(0) =
d

dx
w(0) =

d2

dx2
w(a) =

d3

dx3
w(a) = 0. (2)

(b) Find the four linearly independent general solutions of (1) using the standard method
of assuming a solution of the form w = Aerx and solving the “characteristic equation”
for r.

(c) Hence solve (1) subject to the four boundary conditions (2) to show that the modes
of oscillation are given by

w(x) = (sinhµx− sinµx) +
(sinhµa+ sinµa)

(coshµa+ cosµa)
(coshµx− cosµx)

(modulo an arbitrary multiplicative constant) where µ must satisfy

coshµa cosµa = −1. (3)

(d) Using graphical considerations, approximate the location of a sequence of values of
µ = µn from (3). These values determine the possible frequencies σ = σn that the
beam may undergo free oscillations from the relation σ2

n = Dµ4
n/m

(e) Experiment (what fun !!).

The equations in this question describe the oscillations of a ruler held fixed against
a table at one end and “pinged” at the other end (provided the ruler has a fairly
rectangular cross section).

The task is to determine experimentally the “flexural rigidity”, D of the ruler. Fix a
length of ruler protruding over the table. You also need to find the weight of the ruler
and work out the mass per unit length, m. Ping the ruler and try and estimate the
frequency, f (in Hertz – oscillations per second) at which it makes oscillations. To get
σ, which is the angular frequency, use σ = 2πf . The ping you gave the ruler will have
excited the first mode or fundamental mode of oscillation. That is, µ = µ1 ≈ π/2a
from part (d). So now we have D = mσ2/µ4

1 ≈ 16ma4σ2/π4 and you should be able
to calculate D.

This may seem a fairly trivial and pointless exercise, but determining the flexural
rigidity and modes of oscillation of steel girders, aircraft panels and ice sheets (for
example) are extremely important in engineering design.


