Sheet C

Characteristics/Initial conditions/Solutions

In this worksheet we generate solutions, typically to problems supporting characteristics, which convey the initial conditions throughout the entire domain.

1. The function $u(x, t)$ satisfies $u_{t}+u_{x}=0$ in $x>0, t>0$ together with the initial condition $u(x, 0)=\sin (x), x>0$ and the boundary condition $u(0, t)=\sin (t), t>0$. Determine the values of u in the whole of the quarterplane $x>0, t>0$. Sketch $u(3 \pi / 2, t)$ for $0<t<6 \pi$. Is the solution reasonable?
2. Find the solution of $a f_{x}+f_{y}=0$ where $a \neq-1$ which takes the value of
(a) $f=\mathrm{e}^{-x^{2}}$ on the line $y=-x$;
(b) $f=1$ on the line $y=-x$.

In both cases discuss what happens when $a=-1$.
3. Find the characteristics of

$$
u_{x}+2 y^{1 / 2} u_{y}=x y
$$

and hence sketch the domain where $u(x, y)$ is defined by initial values on the line segment $0 \leq x \leq 2, y=0$. For the initial values

$$
u(x, 0)=\left\{\begin{array}{lll}
x^{2} & \text { for } & 0 \leq x \leq 1 \\
4-x^{2} & \text { for } & 1<x \leq 2
\end{array}\right\}
$$

find the value of $u(1,1)$ and the value of y at which u_{x} is discontinuous on $x=2$.
4. (a) Show that $u=\alpha x+\beta t+\gamma$ satisfies $u_{t t}-c^{2} u_{x x}=0$ for any constants α, β, γ. Express the solution in the form $f(x-c t)+g(x+c t)$.
(b) Show that $u=\sin (k x) \cos (k c t)$ satisfies $u_{t t}-c^{2} u_{x x}=0$ for any constant k. Express the solution in the form $f(x-c t)+g(x+c t)$.
In each case sketch the space-time trajectories of the maximum values of both $f(x-c t)$ and $g(x+c t)$.
5. Consider and example of unidirectional non-linear wave motion:

$$
u_{t}+u u_{x}=0, \quad \text { with } u(x, 0)=f(x)
$$

(a) Show that the characteristic variable ξ is defined by the implicit equation $x=f(\xi) t+\xi$ and that the solution can also be expressed implicitly in the form

$$
u(x, t)=f(x-t u)
$$

(b) Using implicit differentiation, show that $u_{x}=f^{\prime}(x-t u) /\left(1+t f^{\prime}(x-t u)\right)$ and hence determine a condition when the solution will break down.
(c) With the example $f(x)=-x$, (i) show that the solution breaks down at $t=1$; (ii) sketch the characteristic curves for this case and explain your sketch in relation to part (i); and (iii) sketch the solution as a function of time between $0 \leq t \leq 1$.
(d) Now choose $f(x)=x$, again sketching characteristic curves and how the solution evolves in time. Hence show that this solution does not break down for all $t>0$.
6. In this question you are asked to solve the initial value problem

$$
u_{t}+u u_{x}=x, \quad u(x, 0)=f(x)
$$

using the method of characteristics.
(a) Using the parameters s and ξ, show that the solution can be expressed as $u(s, \xi)=$ $\frac{1}{2}[f(\xi)+\xi] \mathrm{e}^{s}+\frac{1}{2}[f(\xi)-\xi] \mathrm{e}^{-s}$.
(b) Obtain the solution in the form $u=u(x, t)$ when (i) $f(x)=1$ and (ii) $f(x)=x$.
7. (Taken from the 2000 exam). Consider the 1st order linear partial differential equation for the function $u(x, y)$ defined in $x \geq 0$ and $y \geq 0$ given by

$$
\begin{equation*}
(1+x) \frac{\partial u}{\partial x}+(a+y) \frac{\partial u}{\partial y}=f(x, y) \tag{1}
\end{equation*}
$$

where $a \geq 0$ and with

$$
u(x, 0)=g(x) .
$$

(a) Show that the characteristics for equation (C) may be described by

$$
\xi=-1+\frac{a(1+x)}{(a+y)}
$$

and hence sketch the characteristic curves $\xi=$ constant for $a=1$. Further, show that for any given a all characteristic curves pass through a single point $(-1,-a)$.
(b) By considering the characteristic curves as $a \rightarrow 0$ discuss the implications on the nature of the solution when $a=0$ giving reasons for your answer.
(c) Give the equations of the two lines bounding the region of influence of the data on $y=0$ for $0 \leq x \leq 1$ when $a=1$.
(d) You are now given that $f(x, y)=y+1$. Show that a suitable parameter along the characteristic is $s=\ln (1+y / a)$ and that u satisfies

$$
\frac{d}{d s} u(\xi, s)=a \mathrm{e}^{s}+(1-a)
$$

on $\xi=$ constant and hence show that the solution, $u(x, y)$, of (1) is given by

$$
u(x, y)=y+(1-a) \ln \left(1+\frac{y}{a}\right)+g\left(-1+\frac{a(1+x)}{(a+y)}\right)
$$

