Sheet E

Fourier Transforms for PDEs

In this worksheet we apply the Fourier Transform method to some physically relevant PDE problems

1. Consider the intial value problem for the wave equation

$$
\frac{\partial^{2}}{\partial t^{2}} u(x, t)=c^{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t), \quad-\infty<x<\infty, \quad t>0
$$

with initial conditions

$$
\begin{aligned}
u(x, 0) & =f(x) \\
\frac{\partial}{\partial t} u(x, 0) & =g(x)
\end{aligned}
$$

for $-\infty<x<\infty$. Using a Fourier transform in x, show that the solution is

$$
u(x, t)=\frac{1}{2}(f(x-c t)+f(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g\left(x^{\prime}\right) d x^{\prime}
$$

[HINT: Use the result of Sheet D, Q1(b) to help with inversion. Also you will need to consider the result of $\int_{x-c t}^{x+c t} \mathrm{e}^{-\mathrm{i} k u} d u$
2. (a) Solve Laplace's equation in the half-plane

$$
\frac{\partial^{2}}{\partial x^{2}} \phi(x, y)+\frac{\partial^{2}}{\partial y^{2}} \phi(x, y)=0, \quad-\infty<x<\infty, \quad y>0
$$

subject to the conditions

$$
\phi(x, 0)=f(x), \quad \text { and } \quad \phi \rightarrow 0, \quad \text { as } y \rightarrow \infty
$$

using convolutions [HINT: You will need a result from section 2.4 of the lectures]
(b) Evaluate the solution when

$$
f(x)= \begin{cases}1, & |x|<a \\ 0, & |x|>a\end{cases}
$$

3. In the lectures, we derived the solution of the heat equation $\theta_{t}=\alpha \theta_{x x}$ with I.C. of $\theta(x, 0)=$ $g(x)$ for $-\infty<x<\infty$. It was given by

$$
\theta(x, t)=\frac{1}{2 \sqrt{\pi \alpha t}} \int_{-\infty}^{\infty} g(\xi) \exp \left\{-(x-\xi)^{2} / 4 \alpha t\right\} d \xi
$$

Make the choice $g(x)=A \mathrm{e}^{-\beta x^{2}}$ and show, by direct substitution into the expression above that

$$
\theta(x, t)=\frac{A}{\sqrt{1+4 \alpha \beta t}} \exp \left\{-\beta x^{2} /(1+4 \alpha \beta t)\right\}
$$

4. The initial-value problem for the temperature $\theta(x, t)$ in a semi-infinite rod being heated uniformly at the end $x=0$ at a variable rate $g(t)$ is

$$
\begin{aligned}
\frac{\partial}{\partial t} \theta(x, t) & =\frac{\partial^{2}}{\partial x^{2}} \theta(x, t), \quad x>0, \quad t>0 \\
\theta(x, 0) & =f(x), \quad x>0 \\
\frac{\partial}{\partial x} \theta(0, t) & =-g(t), \quad t>0
\end{aligned}
$$

and $\theta, \theta_{t} \rightarrow 0$ as $x \rightarrow \infty$. Using Fourier cosine transforms, find an expression for $\theta(x, t)$. [HINT: You will need a result from the lectures on how to find the inverse F.C.T. of $\mathrm{e}^{-k^{2} t}$ and the result from Sheet D, Q6]
5. The time-dependent transverse displacement $w(x, t)$ in an elastic beam satisfies

$$
\frac{\partial^{4}}{\partial x^{4}} w(x, t)+\frac{\partial^{2}}{\partial t^{2}} w(x, t)=0, \quad-\infty<x<\infty, \quad t>0
$$

with initial conditions

$$
\begin{aligned}
w(x, 0) & =f(x), \\
\frac{\partial}{\partial t} w(x, 0) & =0,
\end{aligned}
$$

for $-\infty<x<\infty$. Use Fourier Transforms to solve this problem. You may use the fact that the inverse Fourier Transform of $H(k)=\cos k^{2} t$ is $h(x)=\frac{1}{2 \sqrt{\pi t}} \cos \left(\frac{x^{2}}{4 t^{2}}-\frac{\pi}{4}\right)$

